JPS60204904A - Gas turbine blade - Google Patents

Gas turbine blade

Info

Publication number
JPS60204904A
JPS60204904A JP6078184A JP6078184A JPS60204904A JP S60204904 A JPS60204904 A JP S60204904A JP 6078184 A JP6078184 A JP 6078184A JP 6078184 A JP6078184 A JP 6078184A JP S60204904 A JPS60204904 A JP S60204904A
Authority
JP
Japan
Prior art keywords
blade
cooling
gas turbine
cooling fluid
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6078184A
Other languages
Japanese (ja)
Inventor
Yoshitaka Fukuyama
佳孝 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6078184A priority Critical patent/JPS60204904A/en
Publication of JPS60204904A publication Critical patent/JPS60204904A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/185Liquid cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To uniformaize cooling by respectively providing a first cooling fluid passage in a blade around the surface thereof and a second cooling fluid passage inside the blade. CONSTITUTION:A first cooling fluid passage 10 is provided between a parent material 2 of a blade 1 and a surface member 3, which is communicated with cooling water supply piping 13 and plenums 5, 6. In addition, a second cooling fluid passage 9 is provided inside the blade 1, which is communicated with cooling water supply piping 14, plenums 7, 8, and a cooling water waste pipe 15. Thus, cooling air passage through the first cooling fluid passage 10 is prevented from being raised in temperature whereby the surface of the blade 1 exposed to hot temperature can be uniformly cooled.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービンの翼に関し特に発電等に使用する
ガスタービンの静翼に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to blades of gas turbines, and particularly to stationary blades of gas turbines used for power generation and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知のように、ガスタービンと蒸気タービンとの複合サ
イクルで構成される発電プラントの熱効率を向上させる
には、ガスタービンの入口のガス温度を増加する挙が効
果的である。ところが現用されている耐熱合金製のガス
タービン翼では、ガスタービン入口ガス温度を900℃
以上にすると、前記耐熱合金が使用限界温度に達するお
それがあり、したがって、ガスタービンの信頼性が大き
く低下する。このため、様々な流体冷却構造を持つガス
タービン翼が検討されてきた。
As is well known, increasing the gas temperature at the inlet of the gas turbine is effective in improving the thermal efficiency of a power plant configured with a combined cycle of a gas turbine and a steam turbine. However, with the gas turbine blades currently in use made of heat-resistant alloys, the gas turbine inlet gas temperature is limited to 900°C.
If the temperature is higher than that, there is a risk that the heat-resistant alloy will reach its service limit temperature, and the reliability of the gas turbine will therefore be greatly reduced. For this reason, gas turbine blades with various fluid cooling structures have been studied.

従来検討されている流体冷却構造を持つガスタービン翼
は、空気冷却翼と液体(主に水)冷却翼とに大別され、
いずれも翼内部に複数の冷媒通路全備えた構造を採用し
ている。
Gas turbine blades with a fluid-cooled structure that have been considered in the past are broadly divided into air-cooled blades and liquid (mainly water)-cooled blades.
Both have a structure with multiple refrigerant passages all inside the wing.

しかしながら、空気冷却翼では、冷媒通路内における冷
却用空気の熱伝達率が低いので、ガスタービン入口のガ
ス温度が1100°Cを越えると、必要な冷却用空気量
が著しく増大し、しかも翼内部の冷却だけでは十分な冷
却性能が得られないから、翼に形成した小孔やスリット
から舅外に冷却の空気を吹き出す、膜冷却方式に依存せ
ざるを得ない。その結果生じる冷却用空気量の増大、高
温ガス中への低温空気の吹き出しはいずれもガスターピ
ノの出力低下、熱効率の減少につながるという問題があ
る。
However, in air-cooled blades, the heat transfer coefficient of the cooling air in the refrigerant passage is low, so when the gas temperature at the gas turbine inlet exceeds 1100°C, the amount of cooling air required increases significantly, and Since sufficient cooling performance cannot be obtained by cooling the wings alone, we have no choice but to rely on a film cooling method, which blows cooling air out of the wings through small holes or slits formed in the wings. The resulting increase in the amount of cooling air and the blowing of low-temperature air into the high-temperature gas both lead to a decrease in the output of the Gaster Pino and a decrease in thermal efficiency.

また、液体冷却翼では、冷媒通路内における熱伝達率が
高いので、ガス側の温度および熱伝達率分布、ならびに
翼内部構造によって決まる冷媒通路までの翼の熱抵抗に
基づいて、裏表面温度が決定される度合が高くなる。し
たがって、翼内部の冷却構造は、真外部の熱的条件に大
きく影響されるから、確実な翼内部の冷却構造を決定す
ることが非常に困難となり、しかも、その構造は真外部
の熱的条件の変化に対する汎用性を著しく欠くものとな
る。さらに、密度の高い液体を冷媒として使用すること
は、回転中の翼内部の冷媒通路内部が高い遠心力によっ
て非常な高圧力となることを意味し、それに対処する翼
内部構造が要求される。
In addition, in liquid-cooled blades, the heat transfer coefficient within the refrigerant passage is high, so the back surface temperature is determined based on the temperature and heat transfer coefficient distribution on the gas side and the thermal resistance of the blade to the refrigerant passage, which is determined by the internal structure of the blade. The degree to which it is determined increases. Therefore, the cooling structure inside the blade is greatly affected by the thermal conditions directly outside, making it extremely difficult to determine a reliable cooling structure inside the blade. This results in a significant lack of versatility with respect to changes in Furthermore, using a high-density liquid as a refrigerant means that the inside of the refrigerant passage inside the rotating blade becomes extremely high pressure due to high centrifugal force, and an internal blade structure is required to cope with this.

一般には前記の高圧力に対処するために冷媒通路は断面
小円形とし、翼内部に所定間隔で配置する構成とするが
、その場合、冷媒通路が非常に高い効率のヒートシンク
となるため、そのまわりに強い三次元性温度場が形成さ
れ、したがって、翼表面が均質に冷却されず、翼内部に
も強い熱応力が生じる等の問題がある。
Generally, in order to deal with the high pressure mentioned above, the refrigerant passages are made into a small circular cross section and are arranged at predetermined intervals inside the blades. A strong three-dimensional temperature field is formed, which causes problems such as the blade surface not being cooled uniformly and strong thermal stress occurring inside the blade.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に基づきなされたもので、冷却が良
好且つ均一になされ、しかも熱応力の発生を最小限とし
たガスタービン翼を得ることを目的としている。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to obtain a gas turbine blade that can be cooled well and uniformly, and in which the generation of thermal stress is minimized.

〔発明の概要〕[Summary of the invention]

本発明においては、高温ガスに直接接触する翼表面近傍
の翼内に冷却流体を通す第一の冷却流体流路を、また、
翼内部に第2の冷却流体通路をそれぞれ設け、両者を通
過する冷却流体間の熱交換を利用し、又、第一の冷却流
体の一部又は全部を翼構成体の外部に放出する事により
、前記の目的を達成している。
In the present invention, a first cooling fluid flow path for passing cooling fluid through the blade near the blade surface that is in direct contact with high temperature gas is also provided.
By providing second cooling fluid passages inside each wing, utilizing heat exchange between the cooling fluids passing through both, and discharging part or all of the first cooling fluid to the outside of the wing structure. , has achieved the above objectives.

〔発明の効果〕〔Effect of the invention〕

本発明によれば第11第2の冷却流体の熱交換により、
特に第1の冷却流体の温度上昇が防げるから、高温にさ
らされる翼外面をより均一に冷却する事ができ、高温ガ
ス中への吹き出し空気量を大幅に減少でき、出力や熱効
率を増加でき、高温の燃焼ガスが直接衝突する翼体部に
は、冷却空気吹き出し孔を持たないから悪質燃料を使用
しても冷却性能の悪化は生じにくい。
According to the present invention, by heat exchange of the eleventh second cooling fluid,
In particular, since the temperature rise of the first cooling fluid can be prevented, the outer surface of the blade, which is exposed to high temperatures, can be cooled more uniformly, the amount of air blown into the high-temperature gas can be significantly reduced, and the output and thermal efficiency can be increased. The wing body, which the high-temperature combustion gas directly collides with, does not have cooling air blow-off holes, so even if bad fuel is used, the cooling performance is unlikely to deteriorate.

即ち本発明のガスタービン翼においては、翼面を冷却す
る冷却空気を冷却水を用い翼の内部で冷却する事により
使用量を減少した上、冷却空気の温度上昇をおきえる事
により均質で効率の良い冷却を行い得る。さらに翼の冷
却に使用した空気を回収する手間を省き、翼根部等に吹
き出し冷却すれば、水冷却に必要な部材内配管を省略で
き、構造としても簡単化される。この方法を取っても冷
却空気の温度上昇がおさえられ、又膜冷却の対象面積が
小さいから、冷却空気量は従来の空気冷却翼に心安とな
るものに比較し大幅に少くできる、又水に云えられた熱
量は燃料や水、空気の予熱に用いる事ができ、発電プラ
ントの効率向上に寄与する。
In other words, in the gas turbine blade of the present invention, the amount of cooling air used to cool the blade surface is reduced by cooling it inside the blade using cooling water, and the temperature rise of the cooling air is suppressed to achieve homogeneous and efficient cooling. Good cooling can be achieved. Furthermore, if the air used for cooling the blades does not have to be recovered and is blown out and cooled at the blade roots, the internal piping required for water cooling can be omitted and the structure can be simplified. Even if this method is used, the temperature rise of the cooling air can be suppressed, and since the area targeted for film cooling is small, the amount of cooling air can be significantly reduced compared to conventional air-cooled blades, which provide peace of mind. The generated heat can be used to preheat fuel, water, and air, contributing to improving the efficiency of power plants.

〔発明の実施例〕[Embodiments of the invention]

第1図、第2図は本発明の一実施例を示す。 FIGS. 1 and 2 show an embodiment of the present invention.

辞職IVig頂部2a、翼板2b、g根部2Crを有し
、第1図x −X線における断面がほぼ工学状を呈する
構造母材2の周面に表面材3を例えば母材表面に突出し
た多数のピンチを介して貼付けて構成されている。
A surface material 3 is protruded onto the surface of the base material, for example, on the circumferential surface of the structural base material 2, which has a top portion 2a, a wing plate 2b, and a root portion 2Cr, and whose cross section along the x-X line in FIG. It consists of pasting through multiple pinches.

第2図は本発明を適用し、翼頂部と翼根部を冷却空気吹
き出し冷却した例の断面図<x−x>を示す。翼頂部2
a、g根部2cKはその内部に第一の冷却流体供給プレ
ナム5゜吹き出しプレナム6、第二の冷却流体供給プレ
ナム7、回収プレナム8が形成され、プレナム7とプレ
ナム8は多数の第二の冷却流路9により連結されている
。なお、表面部材3と母材2の間に形成される空間(第
一の冷却流路) 10tiプレナム5からプレナム6に
連結され、供給された流体は吹き出し孔11からガス中
罠放出され、低温の空気膜を翼外面に形成する事により
、部材の高温化を防ぐ。
FIG. 2 shows a sectional view <x-x> of an example in which the present invention is applied and the blade top and blade root are cooled by blowing cooling air. Wing top 2
a, g The root portion 2cK has a first cooling fluid supply plenum 5°, a blowout plenum 6, a second cooling fluid supply plenum 7, and a recovery plenum 8 formed therein, and the plenums 7 and 8 have a plurality of second cooling They are connected by a flow path 9. Note that the space (first cooling channel) formed between the surface member 3 and the base material 2 is connected from the 10ti plenum 5 to the plenum 6, and the supplied fluid is emitted from the blow-off hole 11 into the gas trap and cooled to a low temperature. By forming an air film on the outer surface of the blade, the temperature of the components is prevented.

第二図では、翼頂部2aに関しては、供給プレナム5と
放出プレナム6を流路12で結び流量調整用絞り構造と
する構成を取り、翼根部2cは第一の冷却流路10がそ
のままプレナム6へと通じる構成としであるが、これに
限定される事はなく、翼頂部翼根部のいずれも、これら
相方の構成とする事が出来る。なお、プレナム51CH
空気供給管13がプレナム7には冷却水供給管14が、
プレナム8には冷却水排出管15が連通されている。
In FIG. 2, the blade top part 2a has a configuration in which the supply plenum 5 and the discharge plenum 6 are connected by a flow path 12 to form a throttle structure for adjusting the flow rate, and the blade root part 2c has a configuration in which the first cooling flow path 10 is directly connected to the plenum 6. However, the configuration is not limited to this, and both the blade top and blade root portions can have a configuration similar to these. In addition, plenum 51CH
The air supply pipe 13 is connected to the plenum 7, and the cooling water supply pipe 14 is connected to the plenum 7.
A cooling water discharge pipe 15 is connected to the plenum 8 .

上記のタービン静翼において表面部材3の貼り付けは溶
接又は拡散接合により行え、部材は特に高温コロ−ジョ
ンに強いものとする。第二の冷却流路は、水によるエロ
ージ■ンやコロ−ジョンに強い部材の管をうめ込み形成
する方式又は、母材に電解加工による細孔加工とプレナ
ム間の管接合により構成する事ができる。冷却空気吹き
出し孔1dt解加工やレーザ加工による細孔形成技術で
作製する。
In the turbine stator blade described above, the surface member 3 can be attached by welding or diffusion bonding, and the member is particularly resistant to high temperature corrosion. The second cooling channel can be formed by embedding a tube made of a material that is resistant to water erosion and corrosion, or by forming small holes in the base material by electrolytic processing and joining the tubes between the plenums. can. The cooling air outlet hole is manufactured using pore forming technology such as 1dt processing or laser processing.

冷却水供給管14から供給された冷却水はプレナム7か
ら冷却路9を通り、プレナム8に集められ、排出管15
を経由して、翼夕iに取り出妊れる。冷却水は翼体内部
の熱伝達により昇温されているから、外部で熱回収し、
効率の増加を計る。一方、空気供給管13から供給され
た空気は、プレナム5に入り、鰯頂部を膜冷却する場合
、プレナム6と表面材3の直下の流路10に分けられる
。翼頂部冷却空気は、流路桧を通り、プレナム6から翼
外へ小孔11全通して吹き出される。又翼面冷却空気は
流路lOを通り)を根ブレナム5に集められ、小孔11
から翼外に放出される。
The cooling water supplied from the cooling water supply pipe 14 passes through the cooling path 9 from the plenum 7, is collected in the plenum 8, and is discharged from the discharge pipe 15.
Through this, I can get pregnant with Tsubasa Yui. The temperature of the cooling water is raised by heat transfer inside the blade body, so the heat is recovered externally.
Measure efficiency gains. On the other hand, air supplied from the air supply pipe 13 enters the plenum 5 and is divided into the plenum 6 and a flow path 10 directly below the surface material 3 when film cooling the top of the sardine. The blade top cooling air passes through the flow path and is blown out from the plenum 6 to the outside of the blade through the small holes 11. In addition, the airfoil cooling air passes through the flow path 1O) and is collected in the root blemish 5, and is passed through the small hole 11.
is ejected from the wing.

この構成とすると、冷却水供給プレナム7は単に冷却水
を分割する役割だけをはたすものとし、翼根部の冷却は
翼面を冷却したあとの空気を用いる事で小量で効果的に
行う事ができる。さらに冷却水配管を翼根部や翼根頂部
に形成する必要はなくなり、冷却空気の翼根からの回収
管も不用となるから、構造は単純となり、製造も容易と
なる。
With this configuration, the cooling water supply plenum 7 only serves the role of dividing the cooling water, and the blade root can be effectively cooled with a small amount by using the air after cooling the blade surface. can. Furthermore, there is no need to form cooling water piping at the blade root or blade root top, and there is no need for a recovery pipe for cooling air from the blade root, so the structure is simple and manufacturing is easy.

本発明は前記実施例に限定される事はなく、膜冷却する
部位を翼頂部いは翼根部に限っても良い。
The present invention is not limited to the above-mentioned embodiments, and the region to be film-cooled may be limited to the blade top or the blade root.

第3図は第1図のKY断面を示すが、本発明をさらに翼
後縁部への冷却空気の一部吹き出しを含む構成としだも
のを第4図に示す。翼体構成は翼後縁部が変っており、
後縁吹き出し孔16及び通路スペーサ17を有し、冷却
空気の一部を翼後方に吹き出す構成となっている。翼部
材2bは、後端部散のひる構成でももちろん良く、又、
翼後端部流路内面にビンフィン或いはタービュレンスプ
ロモータを付けた構成としても良い。
FIG. 3 shows the KY cross section of FIG. 1, and FIG. 4 shows a configuration in which the present invention further includes blowing out part of the cooling air to the trailing edge of the blade. The wing body configuration has changed at the trailing edge of the wing,
It has a trailing edge blowout hole 16 and a passage spacer 17, and is configured to blow out a portion of the cooling air to the rear of the blade. Of course, the wing member 2b may have a wing configuration with a scattered rear end, and
A configuration may also be adopted in which a bin fin or a turbulence promoter is attached to the inner surface of the flow path at the rear end of the blade.

【図面の簡単な説明】[Brief explanation of the drawing]

m1図は、本発明の一実施例を示す斜視図、第2図は第
1図のx −x断面を示す断面図、第3図は第1)図の
Y−Y断面を示す断面図、8g4図は本発明の他の実施
例のY−Y断面を示す断面図である。 1・・・タービン′静翼 2・・・構造母材3・・・表
面部材 4・・・ピン 5、6.7.8.・・・プレナム 9・・冷却管 10 冷却流路 11・・・空気吹き出し孔 13・・空気供給管14・
・・冷却水供給管 15・・・冷却水排出管第1図 第2図 第J17 第9図 7
Fig. m1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a sectional view showing the x-x cross section of Fig. 1, and Fig. 3 is a sectional view showing the Y-Y cross section of Fig. 1). Figure 8g4 is a sectional view showing a Y-Y cross section of another embodiment of the present invention. 1... Turbine' stationary blade 2... Structural base material 3... Surface member 4... Pin 5, 6.7.8. ...Plenum 9...Cooling pipe 10 Cooling channel 11...Air outlet hole 13...Air supply pipe 14...
...Cooling water supply pipe 15...Cooling water discharge pipe Fig. 1 Fig. 2 J17 Fig. 9 7

Claims (3)

【特許請求の範囲】[Claims] (1)翼頂部、翼板、翼根部をそなえた構成母材と、こ
の構成母材の翼板周面を覆って設けられ、前記局面との
間に第一の冷却流体の流路空間を構成する表面部材と、
前記空間に第一の冷却流体を供給する手段と、翼頂部に
つながるシーラウド部、翼根部につながるプラットフォ
ーム部および翼体外面の一部あるいは全部に、第一の冷
却流体の一部あ石いは全部を翼構成の外側に放出する穴
構造ああいはスリット状構造と、前記構成材の翼板周縁
近傍に設けた多数の冷却管と、これらの冷却管に第二の
冷却流体を供給し排出する手段を有することを特徴とす
るガスタービンの翼。
(1) A flow path space for a first cooling fluid is provided between a base material having a blade top, a blade plate, and a blade root, and a surface provided to cover the circumferential surface of the blade of this base material. Constituent surface members;
means for supplying a first cooling fluid to the space, and a part of the first cooling fluid is injected into a part or all of the searoud part connected to the blade top, the platform part connected to the blade root, and the outer surface of the blade body. A hole structure or slit-like structure that discharges all of the fluid to the outside of the blade structure, a large number of cooling pipes provided near the periphery of the blade plate of the component material, and a second cooling fluid that is supplied to and discharged from these cooling pipes. A gas turbine blade characterized in that it has a means for.
(2)第一の冷却流路内部に流体の流れと対向したリプ
構造を持つことを特徴とする特許請求の範囲第1項記載
のガスタービンの翼。
(2) The gas turbine blade according to claim 1, characterized in that the first cooling channel has a lip structure that faces the fluid flow.
(3)第一の冷却流路内部に流体の流れに平行したフィ
ン構造を持つことを特徴とする特許請求の範囲第1項記
載のガスタービンの翼。
(3) The gas turbine blade according to claim 1, characterized in that the first cooling channel has a fin structure parallel to the fluid flow.
JP6078184A 1984-03-30 1984-03-30 Gas turbine blade Pending JPS60204904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078184A JPS60204904A (en) 1984-03-30 1984-03-30 Gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078184A JPS60204904A (en) 1984-03-30 1984-03-30 Gas turbine blade

Publications (1)

Publication Number Publication Date
JPS60204904A true JPS60204904A (en) 1985-10-16

Family

ID=13152171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078184A Pending JPS60204904A (en) 1984-03-30 1984-03-30 Gas turbine blade

Country Status (1)

Country Link
JP (1) JPS60204904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119303U (en) * 1991-04-09 1992-10-26 三菱重工業株式会社 nozzle
US5320485A (en) * 1992-06-11 1994-06-14 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (S.N.E.C.M.A.) Guide vane with a plurality of cooling circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119303U (en) * 1991-04-09 1992-10-26 三菱重工業株式会社 nozzle
US5320485A (en) * 1992-06-11 1994-06-14 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (S.N.E.C.M.A.) Guide vane with a plurality of cooling circuits

Similar Documents

Publication Publication Date Title
US5197852A (en) Nozzle band overhang cooling
US4775296A (en) Coolable airfoil for a rotary machine
US5482435A (en) Gas turbine blade having a cooled shroud
JP4128662B2 (en) Coolable airfoil
JPS58126402A (en) Aerofoil which can be cooled
EP0416542B1 (en) Turbine blade
US5288207A (en) Internally cooled turbine airfoil
JP4486201B2 (en) Priority cooling turbine shroud
JP2971386B2 (en) Gas turbine vane
US3994622A (en) Coolable turbine blade
US3528751A (en) Cooled vane structure for high temperature turbine
JP2006083859A (en) Device and method for cooling turbine bucket platform
JP2017025907A (en) Cooling structure for stationary blade
JP6105166B2 (en) Turbine blade with heat sink having airfoil shape
EP1094200A1 (en) Gas turbine cooled moving blade
JPS59200001A (en) Gas turbine blade
JPS60204904A (en) Gas turbine blade
JPH0421042B2 (en)
JP3186576B2 (en) Gas turbine vane
JP3302370B2 (en) External air seal for turbine blades with thin film cooling slots
JPH0463901A (en) Gas turbine cooling blade
JPS603404A (en) Cooled blade of gas turbine
JPS59122704A (en) Gas turbine blade
JP2006336651A (en) Aerofoil having inside fluid passage
WO2019245546A1 (en) Cooled turbine blade assembly, corresponding methods for cooling and manufacturing