JPS60204810A - Method and device for producing ultrafine metallic particle - Google Patents

Method and device for producing ultrafine metallic particle

Info

Publication number
JPS60204810A
JPS60204810A JP5922784A JP5922784A JPS60204810A JP S60204810 A JPS60204810 A JP S60204810A JP 5922784 A JP5922784 A JP 5922784A JP 5922784 A JP5922784 A JP 5922784A JP S60204810 A JPS60204810 A JP S60204810A
Authority
JP
Japan
Prior art keywords
metal particles
dry ice
ultrafine metal
collection plate
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5922784A
Other languages
Japanese (ja)
Inventor
Takashi Ogiya
扇谷 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP5922784A priority Critical patent/JPS60204810A/en
Publication of JPS60204810A publication Critical patent/JPS60204810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce ultrafine metallic particles having high quality at a high yield by introducing a small amt. of carbon dioxide into a vacuum chamber, forming a dry ice film on a capturing plate and sticking the ultrafine metallic particles generated from a heating furnace thereon. CONSTITUTION:The inside of a chamber 1 connected to a vacuum pump 6 is evacuated to a vacuum and a metal is melted to evaporate with a heating furnace 2 is said chamber to generate ultrafine metallic particles. On the other hand, a small amt. of carbon dioxide is introduced through a carbon dioxide introducing pipe 5 into the chamber and a capturing plate 3 disposed to face the furnace 2 is cooled by a refrigerant in a refrigerant conduit pipe 4 to form a dry ice film 7 thereon. The above-mentioned ultrafine metallic particles are stuck to and captured by said film 7 and thereafter the dry ice is sublimated to obtain the ultrafine metallic particles. The ultrafine metallic particles are stuck in laminated layers via the dry ice film by repeating plural times the formation of the film 7 and sticking of the ultrafine metallic particles by the above-mentioned method, by which the ultrafine metallic particles are recovered with the higher efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度磁気記録材料、導電性塗料、焼結促進材
料、触媒等として使用される粒径数ミクロン以下の金属
超微粒子を高収率で、かつ高品質に製造する方法とその
装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for producing ultrafine metal particles with a particle size of several microns or less for use as high-density magnetic recording materials, conductive paints, sintering promotion materials, catalysts, etc. The present invention relates to a method and apparatus for manufacturing at a high rate and with high quality.

(従来技術) 上記金属超微粒子の一般的な製造方法には、ガス中蒸発
法があり、これは真空排気したチャンバー内にアルゴン
、水素、ヘリウム等の不活性あるいは還元性の雰囲気ガ
スを10〜250Torrの圧力で導入した後、該チャ
ンバー内底部に設(プだ加熱炉内で鉄などの金属を溶融
蒸発させて金属超微粒子を飛び出させ、それを前記雰囲
気ガスに衝突させて冷却及び減速し前記加熱炉の上方に
設けた捕集板に付着させ、その後、該付着した金属超微
粒子をブラシ等で掻き取って回収するものである。そし
て、この場合、金属超微粒子の粒径は雰囲気ガス濃度に
よって制御される。即ち雰囲気ガス濃度が低くチャンバ
ー内が高真空のときは、金属から飛び出した金属超微粒
子は相互に高温状態のまま衝突して粒径が大きくなって
から雰囲気ガスに衝突して捕集板に付着するので平均粒
径は大となり、また逆に雰囲気ガス濃度が高くチャンバ
ー内が低真空のときは速かに雰囲気ガスに衝突して捕集
板に付着するので小さな粒径の金属超微粒子が得られる
。このようなガス中蒸発法の如き従来の製造方法では種
々の粒径の金属超微粒子を製造できるが、次のような欠
点、不都合がある。
(Prior art) A general method for producing the above-mentioned ultrafine metal particles is the in-gas evaporation method, in which an inert or reducing atmosphere gas such as argon, hydrogen, helium, etc. After being introduced at a pressure of 250 Torr, a metal such as iron is melted and evaporated in a heating furnace installed at the bottom of the chamber to eject ultrafine metal particles, which are cooled and decelerated by colliding with the atmospheric gas. The ultrafine metal particles are deposited on a collection plate provided above the heating furnace, and then collected by scraping the adhered ultrafine metal particles with a brush or the like.In this case, the particle size of the ultrafine metal particles is determined by the atmospheric gas It is controlled by the concentration.In other words, when the atmospheric gas concentration is low and the chamber is in a high vacuum, the ultrafine metal particles that fly out of the metal collide with each other while still in a high temperature state, and the particle size increases before colliding with the atmospheric gas. On the other hand, when the atmospheric gas concentration is high and the chamber is under low vacuum, the particles quickly collide with the atmospheric gas and adhere to the collection plate, resulting in a small particle size. Although ultrafine metal particles of various particle sizes can be produced using conventional manufacturing methods such as the evaporation method in gas, they have the following drawbacks and inconveniences.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

即ち、 (1)発生した金属超微粒子と雰囲気ガスとの衝突割合
が低く、大部分は雰囲気ガスに衝突せずに高温のまま捕
集板に達して該捕集板に蒸着してしまうため、原料の金
属から(qられる金属超微粒子の割合(収率)は雰囲気
ガス濃度が高い場合でもせいぜい10%と極めて低く、
このため所望量の金属超微粒子を得るには、その10@
程度の原料金属を溶融蒸発させねばならず加熱コストが
かかり、製造した金属超微粒子は高価になること、+2
)小径の金属超微粒子を得るためチャンバー内の雰囲気
ガス濃度を高めると、金属の蒸発速度は著しく抑制され
て生産スピードが落ちること、(3)一方、大径の金属
超微粒子を得るためチャンバー内の雰囲気ガス濃度を低
くすると、前記(1)の欠点が更に大となり収率が低下
すること、(4)金属超微粒子が雰囲気ガスに衝突する
過程で該雰囲気ガスの原子を包含し汚染される虞れがあ
ること、 (5)金属超微粒子の回収がブラシ等で掻き取るという
癲械的な構成であるため回収しにくく、また完全回収が
困難であること等の種々の欠点があった。
That is, (1) The collision rate between the generated ultrafine metal particles and the atmospheric gas is low, and most of them do not collide with the atmospheric gas and reach the collection plate at high temperature and are deposited on the collection plate. The proportion (yield) of ultrafine metal particles from the raw metal is extremely low, at most 10%, even when the atmospheric gas concentration is high.
Therefore, in order to obtain the desired amount of ultrafine metal particles,
+2
) If the atmospheric gas concentration in the chamber is increased to obtain small-diameter ultrafine metal particles, the evaporation rate of the metal will be significantly suppressed and the production speed will be reduced. If the concentration of the atmospheric gas is lowered, the drawbacks of (1) above will be further exacerbated and the yield will be reduced; and (4) ultrafine metal particles will be contaminated by containing atoms of the atmospheric gas in the process of colliding with the atmospheric gas. (5) Recovery of ultrafine metal particles is difficult due to the mechanical structure of scraping them off with a brush, etc., and complete recovery is difficult.

(問題点を解決するための手段) 本発明はガス中蒸発法の前記(1)〜(5)の欠点をす
べて解決して収率を向上し、しかも高品質の金属超微粒
子を製造する方法およびその装dに関するものである。
(Means for Solving the Problems) The present invention solves all of the drawbacks (1) to (5) of the in-gas evaporation method, improves the yield, and produces high-quality ultrafine metal particles. and its design.

本発明の第1発明は加熱炉上方の捕集板にドライアイス
被膜を形成し、真空中で金属を蒸発させて該被膜に金属
超微粒子を凝縮付着させた模、該ドライアイス被膜を昇
華して金属超微粒子を得る方法であり、第2発明は、第
1発明方法実施中にすでに付着した金属超微粒子の上に
更にドライアイス被膜を形成して金属超微粒子を付着さ
lることを繰り返して、金属超微粒子をドライアイス被
膜で順次サンドインチ状に積層にし、最後にドライアイ
ス被膜を昇華して金属超微粒子を得る方法であり、第3
発明は、前記第1及び第2発明の方法を実施する装置の
発明であって、真空排気′@置と連通している密閉チャ
ンバー内に、下方に加熱炉を配設すると共に、上方に前
記加熱炉に対向して平面を形成しかつ冷却手段を配設し
だ捕集板と、該捕集板の下面に炭酸ガスを供給して吹き
つける炭酸ガス導入管とを配設ぜしめてなることを特徴
とするものである。
The first aspect of the present invention is to form a dry ice coating on a collection plate above a heating furnace, evaporate metal in a vacuum, condense and adhere ultrafine metal particles to the coating, and then sublimate the dry ice coating. The second invention is a method for obtaining ultrafine metal particles by repeatedly forming a dry ice film on the ultrafine metal particles already attached during the method of the first invention to adhere the ultrafine metal particles. This is a method in which ultrafine metal particles are sequentially layered in a sandwich-like manner with a dry ice coating, and finally the dry ice coating is sublimated to obtain ultrafine metal particles.
The invention is an invention of an apparatus for carrying out the methods of the first and second inventions, in which a heating furnace is disposed below in a closed chamber communicating with a vacuum exhaust system, and a heating furnace is disposed above. A collection plate having a flat surface facing the heating furnace and provided with a cooling means, and a carbon dioxide gas introduction pipe for supplying and blowing carbon dioxide gas to the lower surface of the collection plate. It is characterized by:

(実施例) 以下、第1図乃至第4図を用いて本発明を詳述する。(Example) The present invention will be described in detail below using FIGS. 1 to 4.

第1図は本発明の製造方法を実施する金属超微粒子製造
装置の一例を示す断面図、第2図は捕集板と炭酸ガス導
入管を説明する斜視図、第3図及び第4図はそれぞれ第
1.第2の発明方法の説明図で、共にドライアイス被膜
周辺を拡大して示したものである。
FIG. 1 is a sectional view showing an example of an ultrafine metal particle manufacturing apparatus that implements the manufacturing method of the present invention, FIG. 2 is a perspective view illustrating a collection plate and a carbon dioxide gas introduction pipe, and FIGS. 3 and 4 are 1st each. This is an explanatory diagram of the second method of the invention, and both diagrams show an enlarged view of the area around the dry ice coating.

第1図において、気密に形成したチャンバー1内の底部
には抵抗加熱、誘導加熱、電子線ビーム等適宜な加熱手
段を有する加熱炉2が、その上方には該加熱炉2に対向
して平面を形成した捕集板3が設けられている。なお、
捕集板3は第2図では円板状としたが形状は任意で良い
。そして、捕集板3の上面に密接して冷媒導通管4が、
同じく下面に近接してリング状に形成された炭酸ガス導
入管5が配設され、該リング状部には捕集板3の下面に
向けて多数のノズル51が開口されている。
In FIG. 1, a heating furnace 2 having an appropriate heating means such as resistance heating, induction heating, or an electron beam is located at the bottom of a chamber 1 formed airtight, and above the heating furnace 2 is a flat surface facing the heating furnace 2. A collection plate 3 is provided. In addition,
Although the collection plate 3 is shown in a disk shape in FIG. 2, it may have any shape. Then, a refrigerant conduction pipe 4 is installed in close contact with the upper surface of the collection plate 3.
Similarly, a ring-shaped carbon dioxide gas introducing pipe 5 is disposed close to the lower surface, and a large number of nozzles 51 are opened in the ring-shaped portion toward the lower surface of the collection plate 3.

更に真空ポンプ6が、弁61.排気管62を介してチャ
ンバ−1に連接している。
Furthermore, the vacuum pump 6 is connected to the valve 61 . It is connected to the chamber 1 via an exhaust pipe 62.

上述の如き装置により第1の発明方法を説明すると、ま
ず真空ポンプ6を運転し、水分及びほこり等を除去しつ
つチャンバー1内を10〜1O−6T orr程度の高
真空にする。次に冷媒導通管4に液体窒素(沸点的−1
96℃)等の低温冷媒を導通して捕集板3の下面を冷却
すると共に炭酸ガス導入管5のノズル51を介して該捕
集板3下簡に少量の炭酸ガスを噴出してトラップさせて
ドライアイス被l17を形成する。ついで、加熱炉2内
の金属を溶解蒸発させて金属超微粒子を飛びださせると
、金属超微粒子はドライアイス被膜7に衝突して冷却さ
れ、第3図の如く金属超微粒子8は被膜7の表面に凝結
して付着する。このようにして、適当量の金属超微粒子
8をドライアイス被膜7に付着させた後、原料金属の蒸
発を停止し、併せて真空ポンプ6も停止する。次に捕集
板3下方に受け皿(図示せず)を適宜配置すると共に冷
媒磨通管4に冷媒に代えて加温ガスを導通してドライア
イス被87を昇華すると、これに付着していた金属超微
粒子8は落下して受け皿内に回収される。
To explain the first method of the invention using the above-mentioned apparatus, first, the vacuum pump 6 is operated, and the inside of the chamber 1 is brought to a high vacuum of about 10 to 1 O-6 Torr while removing moisture, dust, etc. Next, liquid nitrogen (boiling point -1
A low-temperature refrigerant such as 96° C.) is conducted to cool the lower surface of the collection plate 3, and a small amount of carbon dioxide is ejected to the bottom of the collection plate 3 through the nozzle 51 of the carbon dioxide gas introduction pipe 5 to trap it. to form a dry ice coating 117. Next, when the metal in the heating furnace 2 is melted and evaporated to eject ultrafine metal particles, the ultrafine metal particles collide with the dry ice coating 7 and are cooled, and the ultrafine metal particles 8 are absorbed into the coating 7 as shown in FIG. Condenses and adheres to surfaces. After a suitable amount of ultrafine metal particles 8 are deposited on the dry ice coating 7 in this manner, the evaporation of the raw metal is stopped, and the vacuum pump 6 is also stopped. Next, a saucer (not shown) is appropriately arranged below the collection plate 3, and heated gas is passed through the refrigerant polishing tube 4 instead of the refrigerant to sublimate the dry ice coating 87, and the dry ice coating 87 is sublimated. The ultrafine metal particles 8 fall and are collected in the tray.

なお、上記方法において、金属超微粒子8の粒径は捕集
板3と加熱炉2との距離によりv4ftJできる。
In the above method, the particle size of the ultrafine metal particles 8 can be set to v4ftJ depending on the distance between the collection plate 3 and the heating furnace 2.

即ち、加熱炉2と捕集板3との距離が長いと、高温の金
属超微粒子相互の衝突の機会が増大して大径の、逆に短
い程小さな粒径の金属超微粒子が得られる。なお、チャ
ンバー1内に導入するガスとしては、低温で固化し、か
つ昇温に伴って液化を経ることなく直接気化する昇華性
のものが好ましく、このような性質を有するガスであれ
ば任意のガスが使用できるが、一般的には炭酸ガスが好
適である。また、ドライアイス被M7が形成されない部
分に付着した金属超微粒子は後に回収できないのでドラ
イアイス被17は捕集板3下面全体に均一に、かつ速か
に形成されるように炭酸ガス導入管5を捕集板3下面に
近接すると共に該導入管5のノズル51開口位置を捕集
板3下面に向け、炭酸ガスが捕集板3下面全体に直接吹
付【プられるようにすると良い。更に、炭酸ガス導入管
5は移動できるように構成すれば捕集板3下面全体が金
属超微粒子の付着に利用でき、より効果的である。
That is, when the distance between the heating furnace 2 and the collection plate 3 is long, the chance of collision between high-temperature ultrafine metal particles increases, and ultrafine metal particles with a large diameter can be obtained, and conversely, the shorter the distance, the smaller the particle size. The gas introduced into the chamber 1 is preferably a sublimation gas that solidifies at low temperatures and evaporates directly without liquefaction as the temperature rises; any gas having such properties may be used. Although gases can be used, carbon dioxide gas is generally preferred. In addition, since ultrafine metal particles adhering to the portion where the dry ice coating M7 is not formed cannot be recovered later, the carbon dioxide gas introduction pipe 5 is arranged such that the dry ice coating 17 is uniformly and quickly formed on the entire lower surface of the collection plate 3. It is preferable that the nozzle 51 of the introduction pipe 5 is placed close to the bottom surface of the collection plate 3 and the opening position of the nozzle 51 of the introduction pipe 5 is directed toward the bottom surface of the collection plate 3 so that carbon dioxide gas can be directly blown onto the entire bottom surface of the collection plate 3. Furthermore, if the carbon dioxide gas introduction tube 5 is configured to be movable, the entire lower surface of the collection plate 3 can be used for the attachment of ultrafine metal particles, which is more effective.

なお、またチャンバー1内への炭酸ガス導入茄は捕集板
3下面の温度と面積、ドライアイスの蒸気圧、ドライア
イス被1117の厚み等を考慮して決めれば良く、そし
てドライアイス被膜7の厚みについては、経験上0.1
〜100nと1−ることが好ましい。
Furthermore, the amount of carbon dioxide gas to be introduced into the chamber 1 may be determined by considering the temperature and area of the lower surface of the collection plate 3, the vapor pressure of dry ice, the thickness of the dry ice coating 1117, etc. Regarding the thickness, based on my experience, it is 0.1
It is preferable that 1- to 100n.

実施例1 第1図に示す如き構成とした金属超微粒子製造装置で、
内容ff140Qのチャンバー1を10 Torrまで
真空排気した後、捕集板3上にドライアイス被膜7を形
成し、ついで鉄4gをモリブデンヒーターを使用した加
熱炉2中で約2000℃に加熱して全量溶融蒸発した。
Example 1 In an ultrafine metal particle manufacturing apparatus configured as shown in FIG.
After evacuating the chamber 1 with contents ff140Q to 10 Torr, a dry ice film 7 was formed on the collection plate 3, and then 4 g of iron was heated to about 2000°C in a heating furnace 2 using a molybdenum heater to remove the entire amount. It melted and evaporated.

ついでドライアイスを昇華せしめた結果、1.5gの金
属超微粒子を得た。以上から収率は37%であり、製造
された金属超微粒子は高品質のものであった。
Next, the dry ice was sublimed to obtain 1.5 g of ultrafine metal particles. From the above, the yield was 37%, and the produced ultrafine metal particles were of high quality.

次に第2の発明方法を第4図によって説明する。Next, the second invention method will be explained with reference to FIG.

この方法では前記した第1の発明方法で金属を蒸発捕集
終了後も続いて捕集板3の冷却を持続して第2回目の炭
酸ガスを導入し、すでに前工程でドライアイス被膜7上
に付着している金属超微粒子8上に新たなドライアイス
被膜7Aを形成せしめ、炭酸ガスの導入を停止して、第
2回目の金属を溶融蒸発せしめてその上に金属超微粒子
8Aを付着せしめる。これを繰り返ずことにより、以後
順次金属超微粒子をドライアイス被膜で何層にもサンド
イッチ状として積層に包んで金属超微粒子を捕集する。
In this method, even after the metal has been evaporated and collected in the first invention method described above, the collection plate 3 is continued to be cooled and a second carbon dioxide gas is introduced, and the dry ice coating 7 has already been covered in the previous step. A new dry ice film 7A is formed on the metal ultrafine particles 8 adhering to the metal, the introduction of carbon dioxide gas is stopped, the second metal is melted and evaporated, and the metal ultrafine particles 8A are adhered thereon. . By repeating this process, the ultrafine metal particles are successively wrapped in multiple layers of dry ice in a sandwich-like manner to collect the ultrafine metal particles.

そして最後にすべてのドライアイス被膜を昇華して金属
超微粒子を回収するものである。このようにすると、次
々と付着する金属超微粒子を相互に接着させることなく
捕集づることができるので一定面積の捕集板で条斑の金
属超微粒子を製造することができる。なJ3、上記説明
において、1回毎の炭酸ガス導入量は少ない方が何回も
導入できて好ましいが少な過ぎるどドライアイ被膜が形
成されない部分又は薄過ぎる部分が生じ、該部分では金
属超微粒子が相互に接着してしまう等の不都合が生じる
ので前記第1の発明方法と同様にドライアイス被膜の厚
みを考慮する必要があることは勿論である。
Finally, all of the dry ice coating is sublimated to collect ultrafine metal particles. In this way, the ultrafine metal particles that adhere one after another can be collected without adhering to each other, so it is possible to produce ultrafine metal particles in stripes using a collection plate of a constant area. J3. In the above explanation, it is preferable that the amount of carbon dioxide gas introduced each time is small because it can be introduced many times, but if it is too small, there will be parts where the dry eye film is not formed or the dry eye film is too thin, and in those parts, the ultrafine metal particles It goes without saying that the thickness of the dry ice coating must be taken into consideration, as in the first method of the invention, since this may cause problems such as adhesion of the dry ice to each other.

〔発明の効果〕〔Effect of the invention〕

以上の如く第1発明によると、 (イ)金属の蒸発により生じた金属超微粒子は低温のド
ライアイス被膜で冷却されて該被膜に凝結付着し、従来
の如く蒸着してしまうことがないので確実に捕集され収
率は大となる。従って金属超微粒子製造に要する原料金
属は少くて済み、加熱コストが安くなり経済的である。
As described above, according to the first invention, (a) ultrafine metal particles generated by metal evaporation are cooled by a low-temperature dry ice coating and condense and adhere to the coating, and are not vapor-deposited as in the conventional method; is collected, resulting in a high yield. Therefore, the amount of raw material metal required for producing ultrafine metal particles is small, and the heating cost is low, making it economical.

(ロ)また、金属の蒸発を真空中で行うので蒸発速度が
速く生産スピードも向上する。
(b) Also, since the metal is evaporated in a vacuum, the evaporation rate is fast and the production speed is also improved.

(ハ)発生した金属超微粒子は捕集板に達するまでに気
体と衝突づることが極めて少ないので、該金属超微粒子
中に気体の原子を包含することがほとんどなく、従って
汚染のない、良質のものが得られる。
(c) Since the generated ultrafine metal particles have very few collisions with gas before reaching the collection plate, the ultrafine metal particles almost never contain gas atoms, and are therefore free of contamination and of high quality. You can get something.

(ニ)更に、金属超微粒子の回収は単にドライアイス被
膜を加温して昇華するだけで良いので簡便であり、また
完全回収が容易である。
(iv) Furthermore, the recovery of the ultrafine metal particles is simple and complete, as it is sufficient to simply heat the dry ice coating and sublimate it.

(ホ)また、ドライアイス被膜7は多少凹凸状に形成さ
れるので単なる平面より金属超微粒子を多数付着するこ
とができる。
(e) Moreover, since the dry ice coating 7 is formed in a somewhat uneven shape, a larger number of ultrafine metal particles can be attached than on a mere flat surface.

また、第2発明によれば、前記第1の発明方法での効果
を秦することは勿論のこと、ほかに金属超微粒子をドラ
イアイス被膜で何層にも積層していくので一定面積の捕
集板の使用効率が高められ実用的である。
In addition, according to the second invention, not only the effects of the first invention method are improved, but also the ultrafine metal particles are laminated in many layers with a dry ice coating, so that a fixed area can be captured. The efficiency of using the collecting board is increased and it is practical.

さらに、第3発明は、以上の如く構成することによって
容易に金属超微粒子を製造することができる。
Furthermore, according to the third aspect of the invention, ultrafine metal particles can be easily produced by having the configuration as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する金属超微粒子装置の一実施例
の断面図、第2図は第1図の構成の一部分の斜視図であ
る。第3図、第4図はそれぞれ第1、第2の発明方法の
説明図で、共にドライアイス被膜7周辺を拡大して示し
たものである。 1はチ1/ンバー、2は加熱炉、3は捕集板、4は冷媒
導通管、5は炭酸ガス導入管、6は真空ポンプ、61は
弁、62は排気管、7,7Aはドライアイス被膜、8,
8Aは金属超微粒子である。 第1図 #b2図
FIG. 1 is a cross-sectional view of an embodiment of an ultrafine metal particle device embodying the present invention, and FIG. 2 is a perspective view of a portion of the configuration of FIG. 1. FIGS. 3 and 4 are explanatory views of the first and second methods of the invention, respectively, and both show the area around the dry ice coating 7 on an enlarged scale. 1 is a chamber, 2 is a heating furnace, 3 is a collection plate, 4 is a refrigerant conduit, 5 is a carbon dioxide gas introduction pipe, 6 is a vacuum pump, 61 is a valve, 62 is an exhaust pipe, 7 and 7A are dry Ice coating, 8,
8A is ultrafine metal particles. Figure 1 #b2 Figure

Claims (1)

【特許請求の範囲】 1、チャンバー内の加熱炉で金属を溶融蒸発させて生ず
る金属超微粒子を、該加熱炉上方に設けた捕集仮に捕集
した後回収する金属超微粒子の製造方法において、チャ
ンバー内を真空にした後、少量の炭酸ガスを導入すると
共に前記捕集板を冷却して該捕集板上にドライアイス被
膜を形成し、ついで金属を蒸発させて該ドライアイス被
膜に金属超微粒子を付着させた後、ドライアイスを昇華
して金属超微粒子を得ることを特徴とする金属超微粒子
の製造方法。 2、チャンバー内の加熱炉で金属を溶融蒸発させて生ず
る金属超微粒子を、該加熱炉上方に設けた捕集板に捕集
した後回収する金属超微粒子の製造方法において、チャ
ンバー内を真空にした後、少量の炭酸ガスを導入すると
共に前記捕集板を冷却して該捕集板上にドライアイス被
膜を形成し、ついで金属を蒸発させて該ドライアイス被
膜に金属超微粒子を付着させた後、適宜時間間隔でチャ
ンバー内に少Hの炭酸ガスを導入して前記ドライアイス
被膜上のすでに付着し゛ている金属超微粒子上にドライ
アイス被膜を形成して金属超微粒子を付着させることを
、順次繰り返し行って金属超微粒子をドライアイス被膜
を介して積層に付着させた後、ドライアイス被膜を昇華
して金属超微粒子を得ることを特徴とする金属超微粒子
の製造方法。 3、真空排気iA置と連通している密閉チャンバ−内に
、下方に加熱炉を配設すると共に、上方に前記加熱炉に
対向して平面を形成しかつ冷却手段を配設した捕集板と
、該捕集板の下面に炭酸ガスを供給して吹きつける炭酸
ガス導入管とを配設せしめてなることを特徴とする金属
超微粒子製造装置。
[Claims] 1. A method for producing ultrafine metal particles, in which ultrafine metal particles produced by melting and evaporating metal in a heating furnace in a chamber are temporarily collected and recovered by a collection device provided above the heating furnace, After evacuating the inside of the chamber, a small amount of carbon dioxide gas is introduced and the collection plate is cooled to form a dry ice film on the collection plate, and then the metal is evaporated and a metal superoxide is added to the dry ice film. A method for producing ultrafine metal particles, which comprises adhering the fine particles and then sublimating dry ice to obtain ultrafine metal particles. 2. In a method for producing ultrafine metal particles, in which ultrafine metal particles are produced by melting and evaporating metal in a heating furnace inside a chamber, the ultrafine metal particles are collected on a collection plate provided above the heating furnace, and then recovered. After that, a small amount of carbon dioxide gas was introduced and the collection plate was cooled to form a dry ice film on the collection plate, and then the metal was evaporated to adhere ultrafine metal particles to the dry ice film. After that, a small amount of hydrogen carbon dioxide gas is introduced into the chamber at appropriate time intervals to form a dry ice coating on the ultrafine metal particles already attached on the dry ice coating, and the ultrafine metal particles are attached to the dry ice coating. 1. A method for producing ultrafine metal particles, which comprises sequentially repeating the steps to adhere ultrafine metal particles to a stack via a dry ice coating, and then sublimating the dry ice coating to obtain ultrafine metal particles. 3. A collection plate in which a heating furnace is disposed below and a flat surface facing the heating furnace is disposed above and a cooling means is disposed in a sealed chamber communicating with the vacuum exhaust iA unit. and a carbon dioxide gas introducing pipe for supplying and blowing carbon dioxide gas to the lower surface of the collection plate.
JP5922784A 1984-03-27 1984-03-27 Method and device for producing ultrafine metallic particle Pending JPS60204810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5922784A JPS60204810A (en) 1984-03-27 1984-03-27 Method and device for producing ultrafine metallic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5922784A JPS60204810A (en) 1984-03-27 1984-03-27 Method and device for producing ultrafine metallic particle

Publications (1)

Publication Number Publication Date
JPS60204810A true JPS60204810A (en) 1985-10-16

Family

ID=13107275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5922784A Pending JPS60204810A (en) 1984-03-27 1984-03-27 Method and device for producing ultrafine metallic particle

Country Status (1)

Country Link
JP (1) JPS60204810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112711A (en) * 1985-11-11 1987-05-23 Mitsubishi Heavy Ind Ltd Method for producing and recovering ultrafine particle
JPH06145724A (en) * 1992-11-10 1994-05-27 Jgc Corp Production of ultrafine grain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133307A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Preparation of ultrafine particle
JPS60155609A (en) * 1984-01-25 1985-08-15 Daido Steel Co Ltd Production of pulverous metallic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133307A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Preparation of ultrafine particle
JPS60155609A (en) * 1984-01-25 1985-08-15 Daido Steel Co Ltd Production of pulverous metallic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112711A (en) * 1985-11-11 1987-05-23 Mitsubishi Heavy Ind Ltd Method for producing and recovering ultrafine particle
JPH06145724A (en) * 1992-11-10 1994-05-27 Jgc Corp Production of ultrafine grain

Similar Documents

Publication Publication Date Title
US2685124A (en) Method for hi-vac alloying and coated product
US3151971A (en) Vacuum vapor condensation process for producing fine metal powders
US3192064A (en) Coating
JPS60204810A (en) Method and device for producing ultrafine metallic particle
JPH0524988B2 (en)
KR20100116400A (en) Method and apparatus depositing trans-phase aerosol
US20110057358A1 (en) Method of production of solid and porous films from particulate materials by high heat flux source
JPS6320573B2 (en)
JPS60224706A (en) Production of ultrafine metallic particles
JPS6211896B2 (en)
JPS62112711A (en) Method for producing and recovering ultrafine particle
RU2685564C1 (en) Method of synthesis of metal nanoparticles by deposition on a porous carbon material
JPS58133307A (en) Preparation of ultrafine particle
JPS60155609A (en) Production of pulverous metallic powder
JPH07116596B2 (en) Thin film forming method and apparatus thereof
JP4982693B2 (en) Method for cleaning metal nanoparticles
JP3373357B2 (en) Ultrafine particles and method for producing the same
JP2505375B2 (en) Method and apparatus for forming compound film
CN209759572U (en) Selenium source heating device
JPS61117271A (en) Vapor deposition method with laser
Wagner et al. Thermal desorption of PTCDA on Cu (111)
JP3931222B2 (en) Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower
JP2505376B2 (en) Film forming method and apparatus
JP2001026883A (en) Film forming method and film forming device
JP2567794B2 (en) Ultrafine particle manufacturing method