JPS60204694A - Crystal growth device by molecular ray - Google Patents

Crystal growth device by molecular ray

Info

Publication number
JPS60204694A
JPS60204694A JP6135784A JP6135784A JPS60204694A JP S60204694 A JPS60204694 A JP S60204694A JP 6135784 A JP6135784 A JP 6135784A JP 6135784 A JP6135784 A JP 6135784A JP S60204694 A JPS60204694 A JP S60204694A
Authority
JP
Japan
Prior art keywords
crucible
molecular beam
heater
molecular
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6135784A
Other languages
Japanese (ja)
Inventor
Yukio Chinen
幸勇 知念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6135784A priority Critical patent/JPS60204694A/en
Publication of JPS60204694A publication Critical patent/JPS60204694A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To control angle-dependent properties of intensity of atomic, molecular, or ionic rays released from a crucible, by attaching collimeters having through holes to the crucible having the interior packed with a raw material for atomic or molecular rays and the outer periphery on which a heater is wound. CONSTITUTION:The Langmuir's crucible 7 consisting of a high-purity material having reaction resistance is packed with the raw material 10 for atomic or molecular rays. The heater 6 is wound on the outer periphery of the crucible. The heater 6 heats the raw material 10 for atomic or molecular rays, evaporates or sublimates it, heats the crucible 7 mainly by heat radiation, and is held by the heater supporting member 13. The first, the second, and the third collimeters 20, 21, and 22 are set in the crucible 7. The collimeters 22 is provided with the plural disklike through-holes 23, and the through-hole 24 at the center, and the first collimeter 20 and the second collimeter 21 are concentrically provided with the plural through-holes 25 and 26, respectively.

Description

【発明の詳細な説明】 〔発明の技術分ψt〕 この発明は清浄な超高真空雰囲気中で基板上に原子・分
子・イオンビームを照射することにより、結晶成−Jk
を行なわせる分子線結晶成長装置装置に閏する。
[Detailed Description of the Invention] [Technical Portion of the Invention ψt] This invention enables crystal growth by irradiating atoms, molecules, and ion beams onto a substrate in a clean ultra-high vacuum atmosphere.
We will introduce a molecular beam crystal growth device that performs this process.

〔発明の技術的背景〕[Technical background of the invention]

7′〃浄な超高真空雰囲気中で、原子・分す・イオンビ
ームを発生せしめ、清浄化された基板上に発生ビームを
照射することにより、高品餉の結晶を成長させることが
できる。この手法を一般に「分子Iv結晶成長法」と呼
称し、これに用いられる装置を「分子a結晶成長装置」
と呼んでいる。
7' By generating an atom/ion beam in a clean ultra-high vacuum atmosphere and irradiating the generated beam onto a cleaned substrate, high quality soybean crystals can be grown. This method is generally called "Molecular Iv crystal growth method" and the equipment used for this is "Molecular A crystal growth apparatus".
It is called.

このような分子線結晶成長法の特徴は、成長させる結晶
の成長速度・成長;邸厚・組成・不純物分布を・1愼め
で高い精度で再現性よ< ’+1IIJ御できることに
ある。従って分子線結晶成長法は、半導体レーザやルミ
高周波[・ランジスタなどの高性能半導体素子の装作に
用いられている。
The feature of such a molecular beam crystal growth method is that the growth rate, growth, thickness, composition, and impurity distribution of the crystal to be grown can be controlled with high precision and reproducibility from the start. Therefore, the molecular beam crystal growth method is used for fabricating high-performance semiconductor devices such as semiconductor lasers and Luminescence high-frequency transistors.

ところで従来の分子線結晶成長装置Qの典型例を示すと
第1図のようになり、成長させる結晶の1.l、7成元
累の種類に対応した叔(5〜8個)の分子線発生源(分
子1踪発生セルとも云う)1と、この分子線発生7%i
、 3から放出させられた原子・分子・イオンビームが
入射−滞積する基イ〃保持1機、=M部1が主要な構ノ
戊部分である。同、清浄な雰囲気を作るために分子線発
生源旦と基板保持4虚構部1の周囲にガス吸着機能を有
する冷却シュラウド2が張りめぐらされている場合もあ
る。
By the way, a typical example of a conventional molecular beam crystal growth apparatus Q is shown in FIG. 1, 7 molecular beam generation sources (also referred to as molecule 1 missing generation cells) 1 corresponding to the types of molecular beam generation 7% i
, 3 is the main structural part. Similarly, in order to create a clean atmosphere, a cooling shroud 2 having a gas adsorption function may be placed around the molecular beam generation source and the virtual part 1 of the substrate holder 4.

上記分子線発生源1を拡大して示すと、第2図のようζ
こイ14成され、7は坩堝である。この坩堝7は、「ラ
ングミュア型」と称される有底円筒形状のものが一般に
用いられている。そして余分な不純物ガスを放出しない
ように、坩堝7には耐反応性の高挑度材’15が使われ
ており、一般にはパイロリテック・ボロンナイトライド
(P−BN)か用いられる。このP−BNけ、気相成長
法で育成するため、’14堝の形状としてはラングミュ
ア摩が最も容易に得られる。このような坩堝7内には、
原子・分子緋原料IOが充填されている。そして、この
原料IOを加熱し妥発あるいは凋、7保させるための力
ロ熱ヒータ6が、上記坩堝7の外周に巷かれており、王
に熱幅射1軛により坩堝7を加熱する。pgこ熱効率を
高めるために、加熱ヒータ6の外側には、高純)Wの高
7晶耐熱金属である1>11えはタンタル箔などを数重
ねにした熱反射リフレクタ5が設けられている。又、上
記坩堝7の底部外側には、熱面対保護体9が配、設され
、この熱甫対保護坏9の先端に設けた熱′酊対8が坩堝
7の底面に接触している。
When the above-mentioned molecular beam source 1 is enlarged, as shown in Fig. 2, ζ
This is made up of 14, and 7 is a crucible. The crucible 7 generally has a cylindrical shape with a bottom and is called a "Langmuir type." In order to prevent the release of excess impurity gas, the crucible 7 is made of a highly reactive material '15, which is generally Pyrolitech boron nitride (P-BN). Since this P-BN is grown by the vapor phase growth method, the Langmuir shape is most easily obtained as the shape of the '14 pot. Inside such a crucible 7,
Filled with atomic and molecular scarlet raw material IO. A power-rotating heater 6 for heating the raw material IO and allowing it to cool down or cool down is placed around the outer periphery of the crucible 7, and heats the crucible 7 by continuous heat radiation. In order to increase the thermal efficiency, a heat-reflecting reflector 5 is provided on the outside of the heater 6, which is made of several layers of 1>11 tantalum foil or the like, which is a high-purity 7-crystalline heat-resistant metal. . Further, a thermal face protector 9 is provided on the outside of the bottom of the crucible 7, and a heat face protector 9 provided at the tip of the heat protector 9 is in contact with the bottom surface of the crucible 7. .

同、分子線発生源旦の内部、外部に適当な工夫を施すこ
とζこより、分子線発生源1から放出されるビームの原
子・分子・イオンの構成比を変えることができるが、特
別な目的でない限り、一般には有底円筒状の月j堝7を
加熱ヒータ6で加熱するたけの分子1発生υC,,!が
用いられる。
Similarly, the composition ratio of atoms, molecules, and ions in the beam emitted from the molecular beam source 1 can be changed by making appropriate modifications to the inside and outside of the molecular beam source 1. Generally, one molecule υC is generated by heating the bottomed cylindrical pot 7 with the heater 6, unless it is. is used.

この場合の原子−分子・イオンの・x11付は、原料I
Oと加熱温e+こよりほぼ定Tっている。
In this case, the ・x11 for atoms, molecules, and ions is the raw material I.
Since O and the heating temperature e+, T is almost constant.

動作時には、分子線発生源lから出射したビームはシャ
ッター4により開閉され、結晶を成長させる基数を夕持
し加熱する4号板保時機構部1に入射する。出射したビ
ームのうち、基板保育1プや絶世5ノで反射したり、基
板保持機構部Jに入射しなかった部分は、散体窒素で冷
却したシュラウド2に捕捉される。原料10が94や値
数のような高蒸気圧性の物質だと、この冷却シュラウド
2は系内の雰囲気を簀定化させるhT要な役割を果す。
During operation, the beam emitted from the molecular beam source 1 is opened and closed by the shutter 4, and enters the No. 4 plate time keeping mechanism section 1 that holds and heats the base for growing the crystal. Of the emitted beams, the portions that are reflected by the substrate holding mechanism 1 or the 5th beam or that do not enter the substrate holding mechanism section J are captured by the shroud 2 that is cooled with nitrogen sparge. When the raw material 10 is a high vapor pressure material such as 94 or 100%, the cooling shroud 2 plays an important role in keeping the atmosphere in the system constant.

〔1tぢ七]支予阿の出j、ムA点〕 上記従来のランクミュア型坩堝7は1.′晶鞘度の或−
Jを;II4厚制イ1tilを指向する分子間結晶成長
法にとっては、下記のような入点をイJしている。
[1t 7] The above conventional Lanckmuir crucible 7 has 1. 'The degree of crystal sheath -
For the intermolecular crystal growth method that aims at II4 thickness control, the following entry points are considered.

(1)ランクミュア型坩堝7に充填された原料1゜を蒸
づ色ざヤ“原子・分子ビームを作り1目堝7の[;14
0filX7 aから基鈑方向に放出させた場合に、こ
のビームの強耽(原子・分子ビーム密度に対176する
)Oこは、放出方向によって鮒化するf自j用依存恒°
がある。このビーム強r化の角j丸依存性は、蒸発した
原子・分子ビームがラングミュアノliv坩堝7の内壁
7bに伸工突し放射紛状に再?菓発する現家から勺3じ
ている。ランクミュア型”!4堝7より放出した原子・
分子ビーム強度は)、し版上で不均一になり、一様な1
1α厚を1ひることは困’i!iliである。
(1) Steam the raw material 1° filled in the Lancmuir type crucible 7 to create an atomic/molecular beam in the first crucible 7 [;14
When emitted from 0fil
There is. This dependence of the beam intensity on rounded corners is due to the fact that the evaporated atomic/molecular beam collides with the inner wall 7b of the Langmuir crucible 7 and regenerates into radiation powder. I have been working for three years from my current home where I live. Rankmuir type”! Atoms emitted from 4-hole 7.
The molecular beam intensity) becomes non-uniform on the plate, and becomes uniform 1
It is difficult to subtract 1α thickness by 1! It is ili.

■ ランクミュア型す■堝7からの原子−分子ビームが
山、度依存性をもつのは、坩堝7の内壁7bと原子−分
子ビームが相互作用を有するためであるから、充填され
た原料10の表面と開口137 aとの距離e%′#j
堝7の内径2rにより、第3図に示したような角助依存
性の変化が存在する。従って、加木110の涸渇と共に
原子・分子ビーム強度が変化すイ)ことになり、分子線
結晶成長上東按な問題きなっている。
■ The reason why the atom-molecule beam from the Rankmuir crucible 7 has peak-degree dependence is because the atom-molecule beam interacts with the inner wall 7b of the crucible 7. Distance between surface and opening 137a e%'#j
Depending on the inner diameter 2r of the basin 7, there is a change in dependence on the angle as shown in FIG. Therefore, as the Kagi 110 is depleted, the intensity of the atomic/molecular beam changes (a), which poses a serious problem in molecular beam crystal growth.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、坩堝から放出される原子・分子・イ
オンビームの強I(の角;(依存性を所望の目的に沿う
ようζこf1jlJ御することができる分子欅結晶成ジ
装f?cを提供するこみである。
The purpose of this invention is to develop a molecular crystallization system that can control the angle of the strong I(angle) of atoms, molecules, and ion beams emitted from a crucible to meet a desired purpose. It is a place that provides c.

〔発明の概、磨〕 この発明は、坩堝内ζζ1つ以上のみ孔を有する1つ以
上のコリメータを設けた分イW”j! ri:l”j晶
成−1,−装置である。
[Summary of the invention, polishing] The present invention is a crystallization device including one or more collimators having only one or more holes in the crucible.

〔発明の実施例〕[Embodiments of the invention]

この発明の分子紛精晶成Jそ装置も、従来と同様に、端
敬保持機構部に対問して複数の分子線発生源力杼己設さ
れ、必袈oこル゛6じ清浄な雰囲気を作るために、上記
基板保持機構部と分子線発生源の周囲には、ガス吸対・
効能を有する冷却シュラウドが設けられている。
The molecular powder crystallization apparatus of the present invention also has a plurality of molecular beam generation source power shafts installed in the end-holding mechanism section, as in the prior art, and it is necessary to keep the vessel as clean as possible. In order to create an atmosphere, gas absorbers are installed around the substrate holding mechanism and the molecular beam generation source.
An effective cooling shroud is provided.

上記分子線発生源は、この発明では杷4図Oこ示ずよう
に構成され、従来例(第2図)と同一箇所は同一符号を
付すこと【こする。即ち、パイロリゾツク・ボロンナイ
トライド(P−BN)のような耐反応性の高純度材料か
らなるラングミュア型坩堝7内lこは、原子・分子線原
料IOが充填されている。この坩堝7の外周には加熱ヒ
ータ6か巻かれている。この加熱ヒータ6は上記原子・
分子線原料10を加熱し蒸発あるいは昇華させるための
もので、主に熱輻射線により坩堝7を加熱するが、この
・発明では■示のようにヒータ保持体13に保持されて
いる。このヒータ保持体13はパイロリゾツク・ボロン
ナイトライド(P−BN)からなり、内面に螺旋状溝を
有し、このイ゛4内に上記加熱ヒータ6か固定されてい
る。この加熱ヒータ6つまりヒータ保持体13の外側に
は、熱反射リフレクタ12が配設されている。この熱反
射リフレクタ12は2重構造の有底筒状にして、底部1
.2ajこは両端に冷却媒体供給バイブ18と冷却媒体
排出バイブ19が成句けられ、上記供給バイブ18を通
して内部【こ冷却媒体16が充填されているっそして上
記j氏都12aをに−j:iE& l、て棒状の熱電対
保護体9が挿入され、この熱電対保、f→体9の先端に
設けた熱電対8が上記坩堝7の底面tこ接している。又
、上記底部12aを貫通して上記加熱ヒータ6の一端が
挿入され、この一端は更に加熱ヒータ相電流供給体ノ4
に接続さイtている。
In the present invention, the above-mentioned molecular beam generation source is constructed as shown in Fig. 4, and the same parts as in the conventional example (Fig. 2) are given the same reference numerals. That is, a Langmuir type crucible 7 made of a reaction-resistant, high-purity material such as pyrolyzol boron nitride (P-BN) is filled with atomic/molecular beam raw material IO. A heater 6 is wound around the outer periphery of the crucible 7. This heater 6 has the above-mentioned atoms and
It is for heating the molecular beam raw material 10 to evaporate or sublimate it, and the crucible 7 is mainly heated by thermal radiation, but in this invention it is held by a heater holder 13 as shown in (2). The heater holder 13 is made of pyroresin boron nitride (P-BN) and has a spiral groove on its inner surface, and the heater 6 is fixed within the heater holder 13. A heat reflective reflector 12 is disposed outside the heater 6, that is, the heater holder 13. This heat reflection reflector 12 has a double structure and has a cylindrical shape with a bottom.
.. A cooling medium supplying vibrator 18 and a cooling medium discharging vibrator 19 are arranged at both ends of the 2aj, and the cooling medium 16 is filled inside through the supplying vibrator 18. A rod-shaped thermocouple protector 9 is inserted, and the thermocouple 8 provided at the tip of the thermocouple protector 9 is in contact with the bottom surface of the crucible 7. Further, one end of the heater 6 is inserted through the bottom portion 12a, and this one end is further connected to the heater phase current supply member 4.
It is connected to.

父、上肥吐部12aを修週してリフレクタ支持体15が
挿入されている。伺、11は熱伝導遮蔽リングである。
The reflector support 15 has been inserted after repairing the upper discharge part 12a. 11 is a heat conduction shielding ring.

史にこの発明では、上記士1堝7内に円板状の第1.第
2.第3のコリメータ20,21.22が配設されてい
る。谷コリメータ20,21゜22は坩堝7と同様にパ
イロリゾツク・ボロンナイトライド(P−BN)からな
り、それぞれ第5図に示すように構成されている。
Historically, in this invention, a disk-shaped first holder is provided in the first chamber 7. Second. A third collimator 20, 21, 22 is arranged. The valley collimators 20, 21 and 22 are made of pyrolithic boron nitride (P-BN) like the crucible 7, and are each constructed as shown in FIG.

即ち、渠3のコリメータ22は原料10の突沸による粒
状物の放出を抑制する役目と、蒸発ビーム強度分布を滑
らかな分布にする役目を有するように、円板状にして複
数の円形透孔23を同心円状に配置しである。透孔23
は8個であるが、この透孔23の個数は透孔23の径2
r。
That is, the collimator 22 of the conduit 3 has a disk shape and has a plurality of circular through holes 23 so as to suppress the release of particulate matter due to bumping of the raw material 10 and to smooth the evaporation beam intensity distribution. are arranged concentrically. Through hole 23
is 8, but the number of through holes 23 is equal to the diameter 2 of the through holes 23.
r.

と所望のビーム強度分布により増減することが可能であ
る。ψ、に中心には、2r3’の径を有する透孔24が
設けられ、r3とr3′の大小関係は内径2r3の透孔
23の個数、配置半径によって決まる。
can be increased or decreased depending on the desired beam intensity distribution. A through hole 24 having a diameter of 2r3' is provided at the center of ψ, and the size relationship between r3 and r3' is determined by the number and arrangement radius of the through holes 23 having an inner diameter of 2r3.

上記第1のコリメータ20と第2のコリメータ21ζこ
は、それぞれ直径が2rH,2r2の透孔25.26が
同心円状に4個穿設されている。
The first collimator 20 and the second collimator 21ζ are provided with four concentric holes 25 and 26 having diameters of 2rH and 2r2, respectively.

この実施夕11ではrl>r2であるが、透孔25゜2
6の個数、配置半径、e、 、 12. g、の関係に
よっては(、4r2も可能である。上記eIは坩堝7の
開口部7aと第1のコリメータ20との距離、e2は第
1のコリメータ21と第2のコリメータ21との距離、
e3は第2のコリメータ21と第3のコリメータ22と
の距離であるが、このg、 、 g、 、 e、の距離
関係は放出されるビーム強度分布などのように制御する
かによって決まるが、各コリメータ20,21.22の
透孔個数、配置半径、孔径等犯パラメータと硬い相関が
ある。
In this implementation example 11, rl>r2, but the through hole 25°2
Number of 6, arrangement radius, e, 12. Depending on the relationship between g and
e3 is the distance between the second collimator 21 and the third collimator 22, and the distance relationship between g, , g, , and e is determined by controlling the emitted beam intensity distribution, etc. There is a strong correlation with optical parameters such as the number of through holes, arrangement radius, and hole diameter of each collimator 20, 21, and 22.

’1+ h + ’sO位置ic各コ’J l 920
 、21゜22を設置するには、次の関係式を用いれば
よい。即ち、坩堝7の・Jf:部径2RN%開口部径2
RO%坩堝長e。とコリメータ(径2R61、)の位j
+′(lxの関係は で定まる径2Rxのコリメータを用意下れはよいことに
なる。気相成長法で製作された坩堝2は、一般OこRO
>RNのテーパー形状を肩しているため、lxの設定は
容易に行なえる。
'1 + h + 'sO position ic each column' J l 920
, 21°22, the following relational expression may be used. That is, ・Jf of crucible 7: portion diameter 2RN% opening diameter 2
RO% crucible length e. and the position of the collimator (diameter 2R61,)
+'(lx relationship is determined by
>Since it supports the tapered shape of RN, lx can be easily set.

向、與4図、第5図で示した実、@例では、第3コリメ
ータ22の孔径は原料10の蒸発蒸気圧がほぼ平衡状態
に近くなるように小さく設計されているため、原料1θ
の涸渇状態ζこよらず、加熱温度のみにより蒸発蒸気圧
が制御できる。父、第1のコリメータ26と第2のコリ
メータ21の各透孔25.26の孔4i 2 r + 
、 2 r2とd孔側数、配置半傳、コリメータ間隔e
2は、蒸発ビームの強度分布が裁板上でほは均一になる
ように定められている。
In the example shown in Figures 4 and 5, the hole diameter of the third collimator 22 is designed to be small so that the evaporation vapor pressure of the raw material 10 is close to the equilibrium state, so that the raw material 1θ
The evaporation vapor pressure can be controlled only by the heating temperature, regardless of the depletion state ζ. Hole 4i 2 r + of each through hole 25.26 of first collimator 26 and second collimator 21
, 2 r2 and d number of hole sides, arrangement half-tone, collimator interval e
2 is determined so that the intensity distribution of the evaporation beam becomes more or less uniform on the cutting board.

次に、第6図(a)〜(flはコリメータの他の実施例
を示したものである。即ち、(a) 、 (b)はそれ
ぞれ同一径の円形透孔27,2Bを軸対称に配置したコ
リメータ29,30である。(c)は異径の円形透孔3
1.32を軸対称ζこ配置したコリメータ33である。
Next, FIGS. 6(a) to (fl) show other embodiments of the collimator. That is, FIGS. 6(a) and 6(b) show circular through holes 27 and 2B of the same diameter, respectively, axially symmetrically. The collimators 29 and 30 are arranged.(c) shows the circular through holes 3 with different diameters.
This is a collimator 33 in which 1.32 is arranged axially symmetrically.

(d)は中心に正6角形透孔34を配置し、その周辺に
軸対称にして且つ同心円状に円形透孔35を配置したコ
リメータ36である。(e)は異径の円形透孔37,3
8.39を不均一に分布させたコリメータ40である。
(d) is a collimator 36 in which a regular hexagonal through-hole 34 is arranged at the center, and circular through-holes 35 are arranged concentrically and axially symmetrically around the hexagonal through-hole 34 . (e) shows circular through holes 37, 3 with different diameters.
8.39 is a collimator 40 with non-uniform distribution.

(f)は中心に正4角形透孔41を配置し、その周辺ζ
こ軸対称にして且つ同心円状に正3角形透孔42を配置
したコリメータ43である。このようにコリメータの孔
形状、配置模様、孔の数は多種多様であり、ビーム強度
分布の制御の自由度を極めて高くすることができる。従
って、透孔は複数をこ限らず1つでもよい。
In (f), a regular square through hole 41 is arranged in the center, and the surrounding area ζ
This is a collimator 43 in which regular triangular through holes 42 are arranged concentrically and symmetrically about this axis. As described above, the collimator has a wide variety of hole shapes, arrangement patterns, and number of holes, and the degree of freedom in controlling the beam intensity distribution can be extremely increased. Therefore, the number of through holes is not limited to a plurality, and may be one.

又、コリメータは必ずしも円板である必要はなく、第7
図に示したような複数の円形透孔44を肩する有底円筒
のコリメータ45でも同様な効果を期待することができ
る。
In addition, the collimator does not necessarily have to be a disc, and the collimator is not necessarily a disc.
A similar effect can be expected with a collimator 45 that is a cylinder with a bottom and covers a plurality of circular through holes 44 as shown in the figure.

父、坩堝7内に設けるコリメータは、複数に限らず1つ
でもよい。
The number of collimators provided in the crucible 7 is not limited to a plurality of collimators, but may be one.

同、この発明の分子線結晶成長装置は、上記分子線発生
源以外は上記従来例(第1図)と同様構成ゆえ、詳細な
説明を省略する。
Similarly, the molecular beam crystal growth apparatus of the present invention has the same structure as the conventional example (FIG. 1) except for the above molecular beam generation source, so detailed explanation will be omitted.

さて一般に分子線結晶成長法では、燐や硫黄のような高
蒸気圧物質を扱うのは苦手である。
Generally speaking, molecular beam crystal growth is not good at handling high vapor pressure substances such as phosphorus and sulfur.

即ち、燐の場合は付着係数が小さいため、分子線結晶成
長装置内で散乱したり、系内に残留したりする。しかし
、この発明による分子線強度の制御によって基板以外の
領域に放出される割合を殆ど無くすことができ、上記問
題は大幅に改善された。父、硫黄は系を前加熱処理する
温f(200〜250°C)テI O−3〜10−2f
i圧に達し、結晶成長に用いられるビーム強度lこ到達
する。しかし、この発明ではコリメータ20゜21.2
2を設けることζこより、ビーム強度を抑制することが
できるため、上記問題は克服できる。上記実施例では成
長時の硫黄用の坩堝温度は500〜600℃にまで上げ
なければならなかったが、原料10の加熱脱ガスによる
純化も行なえるようになり、生成結晶の品質も向上した
That is, in the case of phosphorus, since the adhesion coefficient is small, it is scattered within the molecular beam crystal growth apparatus or remains within the system. However, by controlling the molecular beam intensity according to the present invention, it is possible to almost eliminate the proportion of the molecular beam emitted to areas other than the substrate, and the above problem has been significantly improved. Father, sulfur is preheated to the system at a temperature of f (200-250 °C) TeI O-3 to 10-2f.
i pressure is reached, and beam intensity l used for crystal growth is reached. However, in this invention, the collimator is 20°21.2
Since the beam intensity can be suppressed by providing ζ, the above problem can be overcome. In the above embodiment, the temperature of the crucible for sulfur during growth had to be raised to 500 to 600°C, but it became possible to purify the raw material 10 by heating and degassing it, and the quality of the produced crystals was improved.

又、コリメータ20,21.22の使用により、従来困
難であったGaIn、−xAsPx 、 ZnS等の混
晶結晶の成長が容易になり、分子線結晶成長法の適用1
娘囲を飛躍的に拡大することができた。
In addition, by using the collimators 20, 21, and 22, it becomes easier to grow mixed crystals such as GaIn, -xAsPx, and ZnS, which was previously difficult, and application of the molecular beam crystal growth method 1.
We were able to dramatically expand our daughter area.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、坩堝2内Oこ1つ以上の透孔23 
、 ’24 、25 、26を有する1つ以上のコリメ
ータ20,21.22を設けているので、次のような優
れた効果を有している。
According to this invention, there are one or more through holes 23 in the crucible 2.
, '24, 25, 26, the provision of one or more collimators 20, 21, 22 has the following excellent effects.

■ 分子線源から放出される原子・分子・イオンビーム
の強度分布を所望の目的に沿うように制御できる。
■ The intensity distribution of atoms, molecules, and ion beams emitted from a molecular beam source can be controlled to meet the desired purpose.

■ ラングミュア型坩堝では得られない熱平衡蒸気圧を
坩堝z内で制御することができる。
■ Thermal equilibrium vapor pressure, which cannot be obtained with a Langmuir crucible, can be controlled within the crucible z.

■ 燐や硫黄のような高蒸気圧物質のビーム強度をコリ
メータ20,21.22の挿入により制御することがで
きるため、分子線結晶成長で燐や硫黄の原料の扱いが容
易になった。
■ Since the beam intensity of high vapor pressure substances such as phosphorus and sulfur can be controlled by inserting collimators 20, 21, and 22, it has become easier to handle phosphorus and sulfur raw materials in molecular beam crystal growth.

■ コリメータ20,21.22の構造が惨めで簡単な
ため、安価にして巨つ容易に入手、組立が可能である。
- Since the structure of the collimators 20, 21, and 22 is simple and simple, they can be easily obtained and assembled at low cost.

■ コリメータ20,21,22ζこ設ける透孔23.
24,25.26の形状、数、配置及びコリメータ20
,21.22の数の組合せ自由度はほぼ無限であり、従
ってビーム強度分布も自由に設定できる。
■ Through holes 23 for the collimators 20, 21, 22ζ.
24, 25, 26 shape, number, arrangement and collimator 20
, 21, 22, the degree of freedom in combination of numbers is almost infinite, and therefore the beam intensity distribution can also be freely set.

■ GaIn、xAsPx、InP%ZnS等の結晶成
長が容易になった。
(2) Crystal growth of GaIn, xAsPx, InP%ZnS, etc. has become easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来及びこの発明を説明するために用いる分子
線結晶成長装置を示す断面図、第2図は従来の分子線結
晶成長装置に使用されている分子線発生源を示す断面図
、第3図は従来の分子線発生源から放出されたビームの
強度分布を示す特性曲線図、第4図はこの発明の一実施
例に係る分子線結晶成長装置の要部(分子線発生源)を
示す断面図、第5図はこの発明における分子線発生源に
使用するコリメータを示す斜視図、第6図(a)〜(f
lはコリメータの他の実施例を示す平面図、第7図はコ
リメータの別の他の実施例を示す斜視図である。 1・・・基板保持機構部、2・・・冷却シュラウド、!
・・・分子線発生源、4・・・シャッター、6・・・加
熱ヒータ、7・・・坩堝、8・・・熱電対、9・・・熱
電対保岐体、10・・・電子・分子線原料、12・・・
熱反射リフレクタ、20,21.22・・・コリメータ
、23.24,25.26・・・透孔。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第3図 第 4 図 M 5 図
FIG. 1 is a sectional view showing a conventional molecular beam crystal growth apparatus and a molecular beam crystal growth apparatus used to explain the present invention, FIG. 2 is a sectional view showing a molecular beam generation source used in a conventional molecular beam crystal growth apparatus, and FIG. Figure 3 is a characteristic curve diagram showing the intensity distribution of the beam emitted from a conventional molecular beam generation source, and Figure 4 shows the main parts (molecular beam generation source) of a molecular beam crystal growth apparatus according to an embodiment of the present invention. 5 is a perspective view showing a collimator used in the molecular beam generation source in this invention, and FIGS. 6(a) to (f)
1 is a plan view showing another embodiment of the collimator, and FIG. 7 is a perspective view showing another embodiment of the collimator. 1... Board holding mechanism section, 2... Cooling shroud,!
... Molecular beam source, 4... Shutter, 6... Heater, 7... Crucible, 8... Thermocouple, 9... Thermocouple hoki body, 10... Electron. Molecular beam raw material, 12...
Heat reflective reflector, 20, 21.22... collimator, 23.24, 25.26... through hole. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure M 5

Claims (1)

【特許請求の範囲】[Claims] (1) 少なくとも、基板保持機構部と、内部に原子・
分子線原料を充填した坩堝の外周に加熱ヒータを巻回し
、この加熱ヒータの外側に筒状の熱反射リフレクタを設
けてなる分子線発生源とを1復数個対向して配設した分
子線結晶成長装置alこおいて、上記坩堝内に、1つ以
上の透孔をイ」゛するコリメータを1つ以上設けたこと
を特徴とする分子線結晶成長装置。
(1) At least the substrate holding mechanism and the atoms and
A molecular beam system in which a heater is wound around the outer periphery of a crucible filled with a molecular beam raw material, and a molecular beam generation source is arranged facing each other, which is a cylindrical heat-reflecting reflector provided on the outside of the heater. A molecular beam crystal growth apparatus, characterized in that the crucible is provided with one or more collimators for forming one or more through holes.
JP6135784A 1984-03-29 1984-03-29 Crystal growth device by molecular ray Pending JPS60204694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6135784A JPS60204694A (en) 1984-03-29 1984-03-29 Crystal growth device by molecular ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6135784A JPS60204694A (en) 1984-03-29 1984-03-29 Crystal growth device by molecular ray

Publications (1)

Publication Number Publication Date
JPS60204694A true JPS60204694A (en) 1985-10-16

Family

ID=13168821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6135784A Pending JPS60204694A (en) 1984-03-29 1984-03-29 Crystal growth device by molecular ray

Country Status (1)

Country Link
JP (1) JPS60204694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123021A (en) * 1989-10-06 1991-05-24 Nec Corp Vacuum film forming device
EP0799330A1 (en) * 1994-12-22 1997-10-08 Northrop Grumman Corporation A method and apparatus for varying the flux of a molecular beam produced by a molecular beam epitaxy cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123021A (en) * 1989-10-06 1991-05-24 Nec Corp Vacuum film forming device
EP0799330A1 (en) * 1994-12-22 1997-10-08 Northrop Grumman Corporation A method and apparatus for varying the flux of a molecular beam produced by a molecular beam epitaxy cell
EP0799330A4 (en) * 1994-12-22 1998-04-15 Northrop Grumman Corp A method and apparatus for varying the flux of a molecular beam produced by a molecular beam epitaxy cell

Similar Documents

Publication Publication Date Title
US3627590A (en) Method for heat treatment of workpieces
US4901667A (en) Surface treatment apparatus
JPH06220619A (en) Mbe source using heater to achieve temperature gradient
JPH0116308B2 (en)
EP0795050B1 (en) Process and device for sublimation growing silicon carbide monocrystals
US20220195581A1 (en) Source arrangement, deposition apparatus and method for depositing source material
JPS60204694A (en) Crystal growth device by molecular ray
JP3070021B2 (en) Molecular beam cell and molecular beam epitaxy equipment for Si
JP3351477B2 (en) Solid laser crystal thin film forming method and solid laser crystal thin film forming apparatus
KR960032594A (en) Reaction chamber with standard high temperature wall
JP2016204735A (en) Ceramic structure and method for manufacturing ceramic structure
KR100466825B1 (en) Fabricating Technology for Thin Film Deposition system using pulsed Laser
WO2001027359A1 (en) Crystal growing device and method of manufacturing single crystal
Cheung Mechanism of laser-assisted evaporation of II-VI semiconductors
JPS584812B2 (en) How to get the best experience possible.
JPH0473285B2 (en)
JP2004225066A (en) Molecular beam cell
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JP2825974B2 (en) Molecular beam source container
JPH0393692A (en) Molecular beam epitaxy growth device
JPS5711899A (en) Molecular beam epitaxial growth
Czigány et al. Formation of a-Ge particles with nm dimensions and their behaviour during annealing
JPH0360913B2 (en)
JPH0878332A (en) Molecular-beam epitaxial growth device
JPS6293366A (en) Manufacture of boron nitride film