JPS60204253A - Magnetic circuit structure of linear pulse motor - Google Patents

Magnetic circuit structure of linear pulse motor

Info

Publication number
JPS60204253A
JPS60204253A JP6036484A JP6036484A JPS60204253A JP S60204253 A JPS60204253 A JP S60204253A JP 6036484 A JP6036484 A JP 6036484A JP 6036484 A JP6036484 A JP 6036484A JP S60204253 A JPS60204253 A JP S60204253A
Authority
JP
Japan
Prior art keywords
cores
pair
scale
magnetic
pulse motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6036484A
Other languages
Japanese (ja)
Inventor
Toshiyoshi Maruyama
利喜 丸山
Hiroshi Nakagawa
洋 中川
Yutaka Maeda
豊 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP6036484A priority Critical patent/JPS60204253A/en
Priority to US06/717,081 priority patent/US4661730A/en
Publication of JPS60204253A publication Critical patent/JPS60204253A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To reduce the irregularity of a thrust in a linear pulse motor by winding coils on a pair of cores disposed in parallel, and disposing a pair of permanent magnets perpendicularly to the pair of cores, thereby shortening the size of a slider in the moving direction. CONSTITUTION:A pair of cores 4, 5 are disposed in parallel along the longitudinal or lateral direction of a scale 1, and coils 2, 3 are respectively wound on the cores 4, 5. A pair of permanent magnets 6a, 6b are disposed perpendicularly to the pair of cores 4, 5, and the both ends of the magnets 6a, 6b are mounted at both ends of the pair of cores 4, 5.

Description

【発明の詳細な説明】 この発明は一次側磁束発生装置(以下スライダと称す)
の移動方向の寸法の短縮化と推力のばらつきの低減化を
図ったリニアパルスモータの磁気回路構造に関する。
[Detailed Description of the Invention] This invention relates to a primary side magnetic flux generator (hereinafter referred to as a slider).
The present invention relates to a magnetic circuit structure for a linear pulse motor that aims to shorten the dimensions in the direction of movement and reduce variations in thrust force.

周知の様にリニアパルスモータはスライダに供給される
パルス信号に基づき、スライダまたは二次−スケール(
以下単にスケールと称す)をステップ状に歩進動作させ
るものであり、その磁気回路の構成は第1図に示す4り
である。この図において、1は長尺状の板体によって構
成されるスケールであり、その上面には凹凸状の歯gl
a、1a・・・が長手方向へ等間隔に形成されている。
As is well known, a linear pulse motor operates on a slider or quadratic scale (
The magnetic circuit (hereinafter simply referred to as a scale) is moved in a stepwise manner, and its magnetic circuit has the configuration shown in FIG. In this figure, 1 is a scale composed of a long plate, and its upper surface has uneven teeth.
a, 1a, . . . are formed at equal intervals in the longitudinal direction.

このスケール1の上面にはローラ等からなる支持a構と
、コイル2および3が各々巻回されたコ字状コア4およ
び5と、コア4と5の間に図示する極性で着磁された永
久磁石6とからなるスライダ7が載置されている。この
場合、支持横構によりスライダ7はスケール1の長手方
向へ移動自在となっておシ、また、コア4,5の磁極4
a、4b、5a15bの各下面と歯部1aの上面との間
には所定の間隙が各々形成されている。また、磁極4a
と4bおよび磁極5aと5bは各々スケール1の歯部1
aのピッチに対し、位相的に1/2ピツチずれた間隔で
配(直され、さらにコア4と5は1/4ピツチずれた間
隔で配置されている。そしてコイル2゜3に所定のパル
ス信号を順次供給することにより、コイル2.3が発生
する磁束と、永久磁束6が発生する磁束とが各磁極4 
a + 4 b + 5 a + 5 bにおいて順次
加減され、スケール1に対するスライダ7の磁気的安定
位置が順次移動し、これによりスライダ7がスケール1
の長手方向に沿って移動する。すなわち、−相励磁方式
を例にして説明すると、 ■コイル2に端子2aから2bへ所定の電流を流した場
合、コイル2が発生する磁束(図に示す点線A)と永久
磁石6が発生する磁束(図に示す実線B)とが磁極4a
において相加わり、磁極4bにおいて互いに打ち消し合
うので磁極4aと歯部1aとが上下に対向した位置が磁
気的に安定した位置となる。
On the upper surface of this scale 1, there is a support structure consisting of rollers, etc., U-shaped cores 4 and 5 around which coils 2 and 3 are wound, and magnetized between the cores 4 and 5 with the polarity shown in the figure. A slider 7 consisting of a permanent magnet 6 is mounted. In this case, the slider 7 is movable in the longitudinal direction of the scale 1 due to the horizontal support structure, and the magnetic poles 4 of the cores 4 and 5 are
Predetermined gaps are formed between the lower surfaces of the teeth a, 4b, and 5a15b and the upper surface of the toothed portion 1a. In addition, the magnetic pole 4a
and 4b and the magnetic poles 5a and 5b are toothed part 1 of scale 1, respectively.
With respect to the pitch of a, cores 4 and 5 are arranged at intervals of 1/2 pitch shifted in phase (rearranged), and cores 4 and 5 are arranged at intervals of 1/4 pitch shifted from each other. By sequentially supplying signals, the magnetic flux generated by the coil 2.3 and the magnetic flux generated by the permanent magnetic flux 6 are distributed to each magnetic pole 4.
a + 4 b + 5 a + 5 b, the magnetically stable position of the slider 7 relative to the scale 1 moves sequentially, and as a result, the slider 7 is adjusted to the scale 1.
move along the longitudinal direction. That is, to explain using the -phase excitation method as an example, ■ When a predetermined current is passed through the coil 2 from the terminals 2a to 2b, the magnetic flux generated by the coil 2 (dotted line A shown in the figure) and the permanent magnet 6 are generated. The magnetic flux (solid line B shown in the figure) is the magnetic pole 4a.
, and cancel each other out at the magnetic pole 4b, so that the position where the magnetic pole 4a and the tooth portion 1a vertically face each other becomes a magnetically stable position.

■同様にコイル3に端子3bから3aへ所定の一流を流
した場合、磁極5aと歯部1aとが上下に対向した位置
が磁気的に安定した位置となる。
(2) Similarly, when a predetermined current is passed through the coil 3 from the terminals 3b to 3a, the position where the magnetic pole 5a and the toothed portion 1a are vertically opposed becomes a magnetically stable position.

■同様にコイル2に端子2bから2aへ所定の電流を流
した場合、磁極4bと歯部1aとが上下に対向した位置
が磁気的に安定した位置となる。
(2) Similarly, when a predetermined current is passed through the coil 2 from the terminal 2b to the terminal 2a, the position where the magnetic pole 4b and the tooth portion 1a are vertically opposed becomes a magnetically stable position.

■同様にコイル3に端子3aから3bへ所定の電流を流
した噛合磁極5bと歯部1aとが上下に対向した位置が
磁気的に安定した位置となる。
(2) Similarly, the position where the meshing magnetic pole 5b, in which a predetermined current is passed through the coil 3 from the terminals 3a to 3b, and the tooth portion 1a vertically face each other becomes a magnetically stable position.

以上の■、■、■、■の各励磁モードの順にパルス励磁
を順次繰シ返すことによって、スライダ7が図面右方向
へ移動し、また、■、■、■、■の各励磁モードの順に
パルス励磁を順次繰シ返すことによって、スライダ7が
図面左方向へ移動する。なお、スライダ7を固定してス
ケール1を移動させる様にしてもよい。
By sequentially repeating the pulse excitation in the order of the above excitation modes ■, ■, ■, ■, the slider 7 moves to the right in the drawing, and also in the order of the excitation modes ■, ■, ■, ■. By sequentially repeating the pulse excitation, the slider 7 moves to the left in the drawing. Note that the slider 7 may be fixed and the scale 1 may be moved.

ところで、従来のリニアパルスモータの磁気回路構造は
コイル2および3が発生する磁束と、永久磁石6が発生
する磁束の両者がスケール1をその長手方向に沿って貫
通する構造であった。したがって、コア4.永久磁石6
(永久磁石6をコア4.5の上面に着磁する場合は非磁
性部材)およびコア5をスライダ7の移動方向に沿って
傾卒直列に配置しなければならず、スライダ7の移動方
向の寸法が長くなってしまう欠点があった。また、永久
磁石6から磁極4 a r 5 bまでの磁路の長さと
、磁極4b+5aiでの磁路の長さとが異なるため、磁
極4a、5bと磁極4 b + 5 aとを貫通する磁
束蝋が異なり、上述した■〜■の各励磁モード母に推力
がばらついてしまう欠点があった。
By the way, the magnetic circuit structure of the conventional linear pulse motor is such that both the magnetic flux generated by the coils 2 and 3 and the magnetic flux generated by the permanent magnet 6 pass through the scale 1 along its longitudinal direction. Therefore, core 4. Permanent magnet 6
(If the permanent magnet 6 is magnetized on the upper surface of the core 4.5, it is a non-magnetic member) and the core 5 must be arranged in parallel in the direction of movement of the slider 7. There was a drawback that the dimensions were long. Furthermore, since the length of the magnetic path from the permanent magnet 6 to the magnetic pole 4 a r 5 b is different from the length of the magnetic path at the magnetic pole 4 b + 5 ai, the magnetic flux passing through the magnetic poles 4 a, 5 b and the magnetic pole 4 b + 5 a However, there was a drawback that the thrust force varied among the excitation modes (1) to (2) described above.

この発明は上述した事情に鑑み必ライダの移動方向の寸
法の短縮化を図ると共に、推力のばらつきの低減を図っ
たリニアパルスモータの磁気回路構造を提供するもので
、スケールの長手方向若しくは幅方向に沿って瓦埴に平
行に配置された1対のコアと、前記1対のコアに各々巻
回されたコイルと、前記1対のコアに対して直角に配置
され、各両端部が前記1対のコアの各両端部に各々取シ
付けられた1対の永久磁石とを具備することを特徴とし
ている。
In view of the above-mentioned circumstances, the present invention provides a magnetic circuit structure for a linear pulse motor that aims to shorten the dimensions of the required rider in the moving direction and reduce variations in thrust. a pair of cores arranged parallel to the tile wall along the tile, a coil wound around each of the pair of cores, and a coil arranged perpendicularly to the pair of cores, both ends of which It is characterized by comprising a pair of permanent magnets respectively attached to both ends of the pair of cores.

以下、図面を参照し、この発明の実施例について説明す
る。第1図はこの発明の一実施例によるリニアパルス壬
−りの磁気回路構造の構成を示す図であり、第1図と対
応する部分には同一の符号が付されている。この図にお
いてスケール1の上面の歯部1 a+1 a r・・・
はスケ−1の;嘔方向中央部において、各々2分割され
、歯部1 &/ 、 1 a/、・・・と歯部1 tL
Z 1 &Z・・・とになっており、歯部1a′。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a magnetic circuit structure including a linear pulse according to an embodiment of the present invention, and parts corresponding to those in FIG. 1 are given the same reference numerals. In this figure, tooth portion 1 a+1 a r... on the top surface of scale 1.
is divided into two parts at the central part of the scale 1 in the horizontal direction, and tooth parts 1 &/ , 1 a/, . . . and tooth parts 1 tL
Z 1 &Z..., and the tooth portion 1a'.

1a′、・・・は歯部1a’tia″、・・・に対して
1/4ピツチ(図に示すC)ずつずれた状轢で形成され
ている。また、コア4と5はスケール1の長手方向に沿
って互いに平行に配置され、かつコア4の磁i・。
1a', . . . are formed in a manner shifted by 1/4 pitch (C shown in the figure) with respect to the tooth portions 1a'tia'', . The magnetic fields i. of the core 4 are arranged parallel to each other along the longitudinal direction of the core 4.

極4a*4bの各下面が歯部1 &’+ 1 a’、・
・・の各上面と各々上下に対向し、コア5の磁極5aj
sbの各下面が歯部1a’、la″、・・・の各上面と
各々上下に対向する様に配置されている。また、コア4
および5の各一端部には永久磁石6aの両端部が図に示
す極性で着磁されており、コア4および5の各他端部に
は永久磁石6bの両端部が永久磁石6aと平行にかつ同
じ極性で着磁されている。この4合、永久磁石6aと6
bは共にスケール1の長手方向に対して直角に配置され
ている。これにより、コイル2および3が発生する磁束
は従来と同様にスケール1をその長手方向に沿って霞通
ずるが、永久磁石6aおよび5 hが発生する磁束はス
ケール1の長手方向と直角な方向すなわちスケール10
幅方向に沿って貫通ずる。
Each lower surface of pole 4a * 4b is toothed part 1 &'+ 1 a',・
The magnetic poles 5aj of the core 5 are vertically opposed to each upper surface of the core 5.
The lower surfaces of the cores sb are arranged so as to vertically face the upper surfaces of the toothed portions 1a', la'', . . . .
At one end of each of cores 4 and 5, both ends of a permanent magnet 6a are magnetized with the polarity shown in the figure, and at each other end of cores 4 and 5, both ends of a permanent magnet 6b are magnetized in parallel with the permanent magnet 6a. and are magnetized with the same polarity. These 4 pairs, permanent magnets 6a and 6
b are both arranged at right angles to the longitudinal direction of the scale 1. As a result, the magnetic fluxes generated by the coils 2 and 3 pass through the scale 1 along its longitudinal direction as in the conventional case, but the magnetic fluxes generated by the permanent magnets 6a and 5h pass in the direction perpendicular to the longitudinal direction of the scale 1, that is. scale 10
It penetrates along the width direction.

以上の構成において、磁極4a+4bおよび5a。In the above configuration, magnetic poles 4a+4b and 5a.

5bが歯部1a′および1a″に対して1/4ピツチず
つずれた位置に磁気的安定点を待つ様にコイル2.3に
所定のパルス信号を順次供給することによりスライダ7
がスケール1の長手方向に沿って頓次1/4ピッチずつ
移動する。
By sequentially supplying a predetermined pulse signal to the coil 2.3, the slider 7
moves along the longitudinal direction of scale 1 in 1/4 pitch increments.

次に、この発明の他の実施例について、第3図を参照し
て説明するっこの図において上述した一実施例と鴨なる
点は歯s 11L’ + 1 a’ r・・・を歯部1
a′。
Next, another embodiment of the present invention will be explained with reference to FIG. 1
a′.

1a′、・・・に対して1/2ピツチ(図に示すD)ず
つずらした状態に形成し、コア4.5をスケール1の幅
方向に、また、永久磁石5a l 6bをスケール1の
長手方向に各々配置した点でろる。これにより、コイル
2および3が発生する磁束はスケールlをその幅方向に
沿って暖通し、永久磁石6aおよび6bが発生する磁束
はスケール1をその長手方向に沿って貫通する。
1a', ..., by 1/2 pitch (D shown in the figure). The points are arranged in the longitudinal direction. Thereby, the magnetic flux generated by the coils 2 and 3 warms the scale 1 along its width direction, and the magnetic flux generated by the permanent magnets 6a and 6b penetrates the scale 1 along its longitudinal direction.

上述した実施例によれば、コア4および5が並列に配置
されているため、従来のスライダ7と比較してその移動
方向の寸法を短くすることができ、また、永久磁石6a
から磁極4a 、5aまでの磁路の長さと、永久磁石6
bから磁極4b I 5bまでの磁路の長さが全て同一
となり、各磁極4a+4b+5a+5bを貫通する永久
磁石6 a + 6 bの磁束綾が均一となるため推力
のばらつきが減少する。
According to the embodiment described above, since the cores 4 and 5 are arranged in parallel, the dimension in the moving direction can be shortened compared to the conventional slider 7, and the permanent magnet 6a
to the magnetic poles 4a and 5a, and the length of the magnetic path from the permanent magnet 6 to the magnetic poles 4a and 5a.
The lengths of the magnetic paths from b to the magnetic poles 4b I 5b are all the same, and the magnetic flux of the permanent magnets 6 a + 6 b passing through each magnetic pole 4 a + 4 b + 5 a + 5 b is uniform, so that variations in thrust force are reduced.

なお、上述した実施例においてはスケール1上の歯m 
1 a’に対して歯部1a’を所定ピッチずらし形成し
たが、これら歯部1a′と1a′をずらさずに形成し、
コア4に対してコア5を所定ピッチずらして配置する様
にしてもよい。
In addition, in the embodiment described above, the teeth m on the scale 1
Although the teeth 1a' were formed to be shifted by a predetermined pitch from 1a', these teeth 1a' and 1a' were formed without shifting,
The core 5 may be shifted from the core 4 by a predetermined pitch.

以上説明した様に、この発明によれば、スケールの長手
方向若しくは幅方向に沿って互いに平行に配置された1
対のコアと、LII記1対のコアに各々巻回されたコイ
ルと、III記1対のコアに対して直角に配置され、各
両端部が前記1対のコアの各両端部に各々敗り付けられ
た1対の永久磁石とを設けたので、スライダの移動方向
の寸法を短略することができると共に推力のばらつきを
低減することができる杓点が得られる。
As explained above, according to the present invention, the scales are arranged parallel to each other along the longitudinal direction or the width direction of the scale.
a pair of cores, a coil wound respectively around the pair of cores described in LII, and a coil arranged perpendicularly to the pair of cores described in III, each end being connected to each end of the pair of cores. Since a pair of permanently attached permanent magnets are provided, it is possible to shorten the dimension of the slider in the moving direction and to obtain a ladle point that can reduce variations in thrust force.

【図面の簡単な説明】 第1図は従来のリニアパルスモータの磁気回路構造の構
成を示す概略図、第2図は本発明の一実施例によるリニ
アパルスモータの磁気回路構造の構成を示す斜視図、第
3図は本発明の他の実施例の構成を示す斜視図である。 1・・・・・・スケール、la’、la’・・・・・・
歯al、2,3・・・・・・コイル、4,5・・・・・
・コアs6&+6b・・・・・・永久磁石、7・・・・
・・スライダ。 第1図 第2図
[Brief Description of the Drawings] Fig. 1 is a schematic diagram showing the configuration of the magnetic circuit structure of a conventional linear pulse motor, and Fig. 2 is a perspective view showing the configuration of the magnetic circuit structure of a linear pulse motor according to an embodiment of the present invention. 3 are perspective views showing the structure of another embodiment of the present invention. 1...Scale, la', la'...
Teeth al, 2, 3... Coil, 4, 5...
・Core s6&+6b...Permanent magnet, 7...
··Slider. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一次側磁束発生装置と長尺状の二次側スケールとの間に
形成された間隙に磁束を発生させることにより、前記−
次Ii+ll磁束発生洟置若しくは前記二次側スケール
を前記二次側スケールの長手方向に沿って移動させるリ
ニアパルスモータにおいて、咄記二次側スケールの長手
方向または1一方向に沿って互いに平行に妃、資された
1対のコアと、l4tI記1対のコアに各々巻回された
コイルと、前記1対のコアに対して直角に配置され、各
両端部が前記1対のコアの各両端部に各々取り付けられ
た1対の永久磁石とを具備することを特徴とするリニア
パルスモータの磁気回路構造つ
By generating magnetic flux in the gap formed between the primary magnetic flux generator and the elongated secondary scale, the -
In the linear pulse motor that moves the magnetic flux generation position or the secondary scale along the longitudinal direction of the secondary scale, the secondary scale is parallel to each other along the longitudinal direction or 1 direction. a pair of cores, a coil wound around each of the pair of cores, and a coil arranged perpendicularly to the pair of cores, each end of which is connected to each of the pair of cores; A magnetic circuit structure for a linear pulse motor characterized by comprising a pair of permanent magnets attached to each end.
JP6036484A 1984-03-28 1984-03-28 Magnetic circuit structure of linear pulse motor Pending JPS60204253A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6036484A JPS60204253A (en) 1984-03-28 1984-03-28 Magnetic circuit structure of linear pulse motor
US06/717,081 US4661730A (en) 1984-03-28 1985-03-28 Linear pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6036484A JPS60204253A (en) 1984-03-28 1984-03-28 Magnetic circuit structure of linear pulse motor

Publications (1)

Publication Number Publication Date
JPS60204253A true JPS60204253A (en) 1985-10-15

Family

ID=13140008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6036484A Pending JPS60204253A (en) 1984-03-28 1984-03-28 Magnetic circuit structure of linear pulse motor

Country Status (1)

Country Link
JP (1) JPS60204253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155757A (en) * 2010-01-27 2011-08-11 Mitsubishi Electric Corp Linear motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055852A (en) * 1983-08-31 1985-04-01 Fujitsu Ltd Polarized linear pulse motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055852A (en) * 1983-08-31 1985-04-01 Fujitsu Ltd Polarized linear pulse motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155757A (en) * 2010-01-27 2011-08-11 Mitsubishi Electric Corp Linear motor

Similar Documents

Publication Publication Date Title
US9071124B2 (en) Mover and linear motor
EP0334645B1 (en) Linear motor and linear driving device employing said linear motor
JPH0461588B2 (en)
US4803388A (en) Linear motor
JPS60204253A (en) Magnetic circuit structure of linear pulse motor
US7250696B2 (en) Linear motor and X-Y stage
JPS5827752B2 (en) straight electric machine
JPH0140596B2 (en)
JPH0747987Y2 (en) Pulse motor
JP2663533B2 (en) Pulse motor
JP2663576B2 (en) Pulse motor
JPH0681483B2 (en) Pulse motor
JPH0312055Y2 (en)
JPH11122903A (en) Linear motor
JPS60241767A (en) Linear pulse motor
JPS6395849A (en) Linear pulse motor
JPH0550227B2 (en)
JPH0785646B2 (en) Pulse motor
SU1376184A1 (en) Linear stepping motor
JPH0312058Y2 (en)
SU989314A1 (en) Linear displacement converter
SU1261061A1 (en) Linear d.c. electric motor
SU1247101A1 (en) Double-gap electric magnetic vibratory exciter
JPS60109756A (en) Linear pulse motor
JPS61203863A (en) Linear pulse motor