JPS60203743A - Hydraulic circuit for construction machinery such as hydraulic shovel - Google Patents

Hydraulic circuit for construction machinery such as hydraulic shovel

Info

Publication number
JPS60203743A
JPS60203743A JP59057405A JP5740584A JPS60203743A JP S60203743 A JPS60203743 A JP S60203743A JP 59057405 A JP59057405 A JP 59057405A JP 5740584 A JP5740584 A JP 5740584A JP S60203743 A JPS60203743 A JP S60203743A
Authority
JP
Japan
Prior art keywords
directional
valve
switching valve
hydraulic
pressure oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59057405A
Other languages
Japanese (ja)
Other versions
JPH047412B2 (en
Inventor
Masaharu Kawamoto
川本 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP59057405A priority Critical patent/JPS60203743A/en
Publication of JPS60203743A publication Critical patent/JPS60203743A/en
Publication of JPH047412B2 publication Critical patent/JPH047412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To enable to perform straight forward running even if other actuator is actuated during running of a machinery, by a method wherein, in a hydraulic circuit formed with two direction switching valve groups and 2 hydraulic pumps, a switching valve is disposed between the hydraulic pumps. CONSTITUTION:In the case of only running of the vehicle, a switching valve 6 is brought to a position A, and pressure oil is individually fed to direction switching valves 4d and 5c for running on both sides with the aid of hydraulic pumps 1 and 2. When an arm is actuated during running, the switching valve 6 is brought to a position B to operate it. In which case, pressure oil in the hydraulic pump 1 is distributed to lines 7 and 8, pressure oil in the hydraulic pump 2 is distributed to lines 9 and 10, and pressure oil from the 2 pumps is joined together to feed it to the direction switching valves 4d and 5c for running on both sides. With an arm being controlled, pressure oil, flowing through the line 7 of the pump 1, is fed to an arm direction switching valve 4b, but the lines 9 and 10 are in a communication state, and this causes uniformization of an amount of oil to running motors on both sides.

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は浦1.r:、ショベル等油圧回路に関し、特に
複数のアクチェータを備えていて、走行中に走行用以外
の他のアクチェータを作動させても直進走行しながら各
アクチェータも正常な作動を行うことができる油圧回路
に関するものである。 (発明の技術的背景) り 従来の油IIEショ勺ン〃向切換弁グループはLLにパ
ラレル接続されている。このため、負荷の軽いアーム等
のアクチェータを作動させた方の方向切換弁グループ中
の走行モータ側に供給される油漬が、他力の方向切換弁
グループの走行モータ側に供給される油量より少なくな
り蛇行する。又、負荷圧の高い他のアクチェータを作動
させる場合作動しないという問題があった。 以下第1図を参照してさらに詳しく上記問題点について
説明する。 第1図は従来の油圧ショベルの回路図である。 1は第1油圧ポンプ、2は第2油圧ポンプ、3は第1.
第2油圧ポンプ1.2を駆動する原動機である。4は第
1方向切換弁のグループで、旋回用方向切換弁4 a 
%アーム用方向切換弁4b1第2ブーム用方向切換弁4
cs左右の走行用の一方(以F人定行用として説明する
)の方向切換弁4dで構成されている。これら方向切換
弁の接続はパラレル接続となっている。 従って、各方向切換弁の順序が入れ換っても機能的にな
んら問題はない。5は第2の方向切換弁のグループで、
第1ブーム用方向切換弁5a、パケット用方向す換弁5
b、左右の走行用の他方(以下右走行用として説明する
)の方向切換弁5cで構成されており、同様にパラレル
接続となっている。したがって第1方向切換弁のグルー
プ七同様上記各方向切換弁の順序が入れ換っても機能的
になんら問題はない。 以上の様に構成された従来の油圧回路では以下に列挙し
たごとき不具合がある。 ■)直進走行中即ち左走行用方向9ノ換弁4dと右走行
用方向切換弁5Cとを同時に同方向に操作すると共に、
アームを操作しようとする場合、アーム用方向切換弁4
bと左走行用方向切換弁4dはパラレル接続となってい
るので、人定行用方向IJJ換弁4d側に比較して負荷
の軽いアーム用方向切換弁4b側に圧油が流れその分だ
け人定?」゛用方向切換弁に流わる11:、油が少くな
り左走行モータの速度が右走行モータの速度より遅くな
り、直jff’、走行ができなくなる。y!走行駆動匝
がアーム移動1.IEより低い場合には、アームシリン
ダにりえる圧力が不足し、アーム動作が出来なくなる。 1
(Technical field of the invention) The present invention is directed to Ura 1. r: Regarding hydraulic circuits such as excavators, in particular, hydraulic circuits that are equipped with multiple actuators and that allow each actuator to operate normally while traveling straight even if other actuators other than those for driving are activated while the vehicle is traveling. It is related to. (Technical Background of the Invention) In a conventional oil IIE pump, the directional valve group is connected in parallel to the LL. For this reason, the amount of oil supplied to the travel motor side of the directional control valve group that operates the actuator, such as the arm with a light load, is greater than the amount of oil supplied to the travel motor side of the directional control valve group operated by another force. It becomes less and meandering. Further, there is a problem in that the actuator does not operate when another actuator with a high load pressure is operated. The above problem will be explained in more detail below with reference to FIG. FIG. 1 is a circuit diagram of a conventional hydraulic excavator. 1 is a first hydraulic pump, 2 is a second hydraulic pump, 3 is a first hydraulic pump.
It is the prime mover that drives the second hydraulic pump 1.2. 4 is a group of first directional valves, including a turning directional valve 4 a
Directional switching valve for % arm 4b1 Directional switching valve for second boom 4
cs consists of one direction switching valve 4d for left and right travel (hereinafter explained as F-person regular travel). These directional valves are connected in parallel. Therefore, there is no functional problem even if the order of the directional control valves is changed. 5 is a second directional valve group;
First boom directional switching valve 5a, packet directional switching valve 5
b, the other direction switching valve 5c for left and right travel (hereinafter described as right travel), and similarly connected in parallel. Therefore, like the first directional valve group 7, there is no functional problem even if the order of the directional valves is changed. The conventional hydraulic circuit configured as described above has the following problems. ■) While traveling straight, that is, simultaneously operating the left direction 9 direction switching valve 4d and the right direction direction switching valve 5C in the same direction,
When attempting to operate the arm, use the arm directional control valve 4.
b and the left travel direction switching valve 4d are connected in parallel, so the pressure oil flows to the arm direction switching valve 4b side, which has a lighter load compared to the IJJ direction switching valve 4d side for people traveling, and the direction switching valve 4d for left travel is connected in parallel. Fixed? 11: The amount of oil flowing into the directional control valve decreases, and the speed of the left travel motor becomes slower than the speed of the right travel motor, making direct travel impossible. Y! The traveling drive box moves the arm 1. If it is lower than IE, there will be insufficient pressure in the arm cylinder and the arm will not be able to operate. 1

【)直進走行中に旋回操作をする場合、旋回用方向切
換弁4aと左走行用方向切換弁4dはパラレル接続とな
っているため、左走行用方向切換弁4d側に比較して旋
回用方向切換弁4a側の方にLEE油が流れ、その分だ
け左走行用方向切換弁に流れる圧油が少くなり左走行モ
ータの速度が右走行モータ速度に比べ遅くなり直進走行
ができなくなる。又走行駆動圧が旋回駆動圧より低い場
合には、旋回モータにケえる圧力が不足し、旋回動作が
できなくなる。 l)直進走行中にパケットを操作する場合、パケット用
方向切換弁5bと右走行用方向切換弁5cはパラレル接
続となっているため、右走行用方向切換弁5c側に比較
して負荷の軽いパケット用方向切換弁5b側に流れ、そ
の分だけ右走行用方向切換弁に流れる圧油が少くなり右
走行モータの速度が左走行モータの速度に比べて遅くな
り直進走行が不5fとなる。又走行駆動圧がパケット移
動圧より低い場合にはバうノドシリンダに4える圧力が
不足しパケット動作ができない。 ■)直進走行中にブームを操作する場合、第1ブーム用
方向切換弁5aと右走行用方向切換弁5cとが、又第2
のブーム用方向切換弁4Cと左走行用方向切換弁4dと
が各々パラレル接続となっているため、左右の走行用方
向切換弁に流れる圧油は等しくなるが、走行態勤王がブ
ーム移動圧より低い場合、第1.第2ブーム用方向切換
弁4c及び5a側にはブームを上げるために充分なし圧
油をIjえることができないので、ブームシリンダが伸
びない事態が生ずる。 (発明の目的) 本発明は上述した種々の問題点を)イ決ずべくなされた
もので、走t]−中に他のアクチェータを作動させた場
合でも、直進走行が維持出来、しかも他のアクチェータ
も充分作動出来るような油圧回路を提f1(シようとす
るものである。 (発明の概要) イぐ発明は以上のような従来の油1f回路の不具合をI
W決するためになされたもので、アクチェータの11Z
′油の方向を制θ11する複数の方向切換弁のグループ
の内、1方の方向切換弁グループでは旋回用ノjlI′
ll17J換弁、ブーム用方向切換弁、第2のブーム用
方向切換弁等の少く表も一つと、一方の走行用方向9ノ
換弁を順次パラレル接続している。従って謬。 これらの方向リノ換弁の順序!入れ替っても機能的に問
題はない。そしてこの左右のうぢ定められた一方の走行
用方向切換弁(以下人定行用として説明する)に接続さ
れるパラレル通路に絞り及びロードチェック弁を介して
タンデム接続する。 又他方の方向切換弁のグループでは第1のブーム用方向
切換弁及びパケット用方向切換弁等の少くとも一つと他
方の走行用方向切換弁をパラレル接続している。従って
、これらの切換弁の順序が人ね替っても機能的には問題
はない。そして、この左右のうち定められた他方の走行
用方向切換弁(以F右走行用として説明する)に接続さ
れるパラレル通路に絞り及びロードチェック弁を介して
タンデム接続する。 そしてこれらの第1.第2方向切換弁グループには、該
切換弁グループと第1.第2油圧ポンプとの間に設りた
切換弁を介して各油11モボンブからの圧油は各方向切
換弁のグループの」二流と、絞り及びロードチェック弁
を介して接続されている左走行用方向切換弁の該弁とロ
ードチェック弁との間に各々供給され、かつ切換弁を切
換ると、一方の油IJEポンプからの圧油は第1.第2
の方向切換弁グループの上流に各々供給し、又他方の油
)Eポンプの1王油は第1.第2の方向すJ換弁グルー
プの左右の走行用方向切換弁とロードチェック弁との間
に各々供給できるようにしである。 (発明の実施例) 以下本発明の油圧ショベル等の建設機械の油圧回路の実
施例について説明する。第2図は本発明の第1実施例の
油圧回路図、第3図は本発明の第2実施例の油圧回路図
である。なおこれらの図において+)Ij述した第1図
に示す構成と同一構成については同一符号で示しである
ので説明を省く。 さて、第2図において、6は切換弁で第1.第2の油圧
ポンプ+、zt/hと第1.第2の方向9J換弁グルー
プ4,5との間に配設され一食切換弁6により油圧ポン
プ1.2と切換弁グループ4,5との接続を切換える。 なお、この切換弁の切換方法は、作業者の手による手動
操作、足によるペダルで 操作、又は電気式或は油圧穴〜すJ換えてもよい。 4fは左走行用方向切換弁4d川のパラレル通路にロー
ドチェック弁4eと直列に設けた絞り、5eは右走行用
方向切換弁5c用のパラレル通路にロードチェック弁5
dと直列に設けた絞りである。 12.13はリリーフ弁で油圧ポンプ1,2の最高圧力
を規制する。 この構成で、イ)切換弁がA位置(図示の状態)にある
場合には、第1の油圧ポンプ1の圧油は管路7を通って
第1の方向切換弁のグループ4の旋回用方向切換弁4 
a sアーム用方向切換弁4 b及び第2のブーム用方
向切換弁4c及び左走行用方向切換弁4dにパラレルに
供給されると共に、管路9を通って絞り4f7びロード
チェック弁4eを介してパラレル接続されている前記人
定1J川方向切換弁4dとロードチェック弁4e&の間
に供給されている。他方第2の油圧ポンプ2の圧油は管
路8を通って第2の方向切換弁のグループ5の第1のブ
ーム用方向切換弁5aJびバウノ;・用方向切換弁5b
及び右走行用方向切換弁5Cにバラ・・・に供給される
と共に、管路】0を通−て絞b5e及びロードチェック
弁5dを介してパラレル接続されている前に右走行用方
向切換弁5Cとロードチェック弁5dとの間に供給され
ている。 口)又リノ換弁をB位置に切換えた場合には、第1の油
圧ポンプ1の圧油は管路7を通って第1の方向切換弁の
グループ4の旋回用方向切換弁4asアーム用方向切換
弁4b、第2のブーム用方向切換弁4cs及び左走行用
方向切換弁4dに供給されると共に、管路8を通って第
2の方向切換弁のグループ5の第1のブーム用方向切換
弁5 a、 、 、<ケノト用方向切換弁5b及び右走
行用方向切換弁5cに各々パラレルに供給され、第2の
油圧ポンプ2の用油は管路9を通って第1の方向切換弁
のグループ4に絞り4f7Jびロードチェック弁4eを
介してパラレル接続されている左走行用方向切換弁4d
とロードチェック弁4eとの間に供給されると共に、管
路10を通って第2の方向切換弁のグループ5に絞り5
e&びロードチェック弁5dを介してパラレル接続され
ている右走行用方向切t’に弁5cとロードチェック弁
5dとの間に各々供給されている。 (作 用) 以上のように構成される油圧回路における作用について
説明する。 A)切換弁6を第2図の如くA位置にした状態で、左走
行用方向切換弁4d及び右走行用方向9J換弁5cのみ
を同時に操作した場合は、従来の油圧回路と同様に第1
の油圧ポンプ1からの圧油は切換弁6を介して管路7及
び管路9に分配され、砦・路7を通過した圧油は第1の
方向切換弁のグループ4のセンターバイパス通路から絞
り4f/&びロードチェック弁4eを通ってパラレル接
続された左走行用方向切換弁4dに供給される。又管路
9を通過した圧油は左走行用方向切換弁4dとロードチ
ェック弁4eとの間に供給され、左走行用方向切換弁4
dに供給される。すなわち第1の油圧ポンプ1の圧油の
全量が左走行用方向切換弁4dに供給されることとなる
。又第2の油圧ポンプ2の圧油は切換弁6を介して管路
8、管路10に分配され、管路8を通過した圧油は第2
の方向切換弁のグループ5のセンターバイパス通路から
絞り5e/&びロードチェック弁5dを通ってパラレル
接続された右走行用方向切換弁5cに供給される。 又管路10を通過した圧油は右走行用方向切換弁5cと
ロードチェック弁5dとの間に供給され右走行用方向切
換弁5cに供給される。すなわち第2の油圧ポ゛ンプ2
の圧油も全量が右走行用方向切換弁5cに供給されるこ
ととなる。 B) 左走行用方向切換弁4d及び右走行用方向切換弁
5cを同一方向に操作して直進走行中に他の動作例えば
アーム動作を行なう場合、アーム用Jj向9J換弁4b
を右又は左に切換えると、従来のA11l−:回路で説
明した様に第1の油圧ポンプ1からの11;油がアーム
に供給され、その分だけ左走行モータに供給さねるI−
E MI+が少くなり左走行モータの速度が低ドし蛇行
する。 そこでアーム用方向切換弁41)を操作する前に、切換
弁6を図示の位装置からB位置に切換える。 まず、uJ換弁6をB位+iに切換えた状態でアーム用
方向切換弁4bを操作する前の各油1]:、ポンプのI
I:、浦の流れを説明すると第1の油1−Eポンプ1の
圧油は切換弁6を介して管路7及び危・路8に分配され
管路7を通過した圧油は第1の方向切換弁のグループ4
のパラレル通路から絞り4f及びロードチェック弁4e
を通ってパラレル接続された左走行用方向切換弁4dに
供給され、管路8を通過した圧油は第2の方向切換弁の
グループ5のパラレル通路から絞り5e及びロードチェ
ック弁5dを通ってパラレル接続された右走行用方向切
換弁5cに供給される。又、第2の油圧ポンプ2からの
圧油は切換弁6を介して管路9及び管路10に分配され
管路9を通過した圧油はロードチェック弁4eと左走行
用方向切換弁4dとの間から左走行用方向切換弁4dに
供給され、管路10を通過した圧油はロードチェック弁
5dと右走行用方向切換弁5cとの間から右走f−j用
方向切換弁5Cに供給される。つまり第1の油圧ポンプ
1のIE油と第2の油圧ポンプ2の1−F、油は合流し
て左走行用方向切換弁4d及び右走行用方向切換弁5C
にパラレルに供給されることとなる。この時、ポンプI
。 2からの油量が左右の走行モータに等分されないように
みえるが、走行体であるクローラ自身の持つ本質的な直
1f(、性に依り、全曲11kが等分されif進定走行
保たれる。 この仄坤からアーム用方向すJ換弁4bを操作すると、
油圧ポンプ1からの圧油は切換弁6を介して管路7及び
管路8に分配され、管路7を通過した[」−:油は第1
の方向[2J換弁のグループ4中のアーム用方向切換弁
4bに供給される。又管路8を通必したIE油は第2の
方向切換弁のグループ5のパラレル通路から絞り5 e
 XMびロードチェック弁5dを介して右走行用)j面
切換弁5cに供給きわる。又油IJ玉ポンプ2からの圧
油は切換弁6を介して管路9及び管路】0に分配され、
管路9を通過した圧油はロードチェック弁4eと左走行
用方向切換弁4〔1との間から左走行用方向切換弁4d
に走行用方向切換弁5cに供給される。 この際、前述した油圧ポンプlからの圧油の内、管路8
を通過した圧油の分は管路9.]0が切換弁6を介して
互に連通しているので、左走行用方向切換弁4dにも分
配され、走行体であるクローラ自身の持つ本質的な直進
性により左右の走行モータに油量が均等に分配され直進
走行が保たれる。 この時、アームの駆動圧が低いと油圧ポンプ1の圧油は
全IRアームに供給さね、油圧ポンプ2の圧油は左lシ
7デモータに均等に分配されるのでアームを動かしなが
ら直−通性は保てる。 文通にアームの駆動しEが走行駆動圧より高い場合は、
絞り5eによりアームの駆動圧を確保し、アームを動か
ず以外の余剰油は前述した如く、左右の走行モータに均
等に分配されるのでアームを動かしながら直進性を保つ
ことができる。 C)次に直進走行しながらha;回動作、ブーム動作成
はバケット動作等をする場合、いずれも切換、 壺 弁6を操作することで直進性を保ちなから他アクチュエ
ータの動作が可能であるが、上述の説明と基本的に同一
であるので省略する。 第3図は第2の実施例を示すもので、これは第2図に示
す実施例と基本的には同−構成であるが、シ゛4なる点
は第1の実施例では−J換弁6の操作方法が手動であっ
たのを第2の実施例ではパイロット用により自動的に切
換えを↑jなわせたことにある。 以下、相違点につき、その構成を述べる。 l牛はパイロットポンプ11の最高圧力を規制するりリ
ーフ弁、15は右走行用方向切換弁5cと連動する走行
補助切換弁、I6は左走行用方向切換弁4dと連動する
走行補助切換弁、17は前記パイロットポンプI■と走
行補助切換弁15とを接続する管路、18.19は走行
・補助切換弁15と16とを接続する管路である。2o
は前記走行糸 補助9ノ換弁16と走行に対し独1r性を佼する少くと
も一つのアクチェータを作動させた時にその方向切換弁
と連動する補助17J換弁21とを結ぶ管路、22は補
助切換弁21と11[J記切換弁6の操作部とを結ぶ管
路である。 次にその作BJを説明する。 A)直進走行のみを1jなう場合は、左走行用方向切換
弁4dをAの状態(あるいはB)に、又右走行用方向切
換弁5cをAの状態(あるいはB)に切換えるとパイロ
ットポンプ11からの圧油ハ走行補助切換弁15を介し
て管路19(又は管路+8)に導ひかれ、走行補助切換
弁16を介して管路20を経て補助切換弁21に達する
。しかしこの時他のアクチェータは動作をしていないた
め補助切換弁21はAの状態に維持(遮断)され管路2
2に圧油は導かれないため、切換弁6はへの状態を保持
しつづける。従って011記した第2図の実施例で説明
したA)項と同様の作動で従来の油圧回路と同様の作動
となる。 本 B)直進走行と同時に独立性を要する他のアクチェータ
、例えばアームを作動させる場合にはアーム用切換弁4
bの操作に連動して補助切換弁21はB位置に切換わり
、圧油は″FIli助切換弁21を介して管路22を通
り切換弁6の操作部に導びかれ切換弁6を8位14に切
換える。従って、前述した第2図の実施例におけるB)
項と同じ状態となり、同項で説明したと同様に作動する
。これはアーム以外の他のアクチェータの場合も同様で
ある。 C)左走行用方向切換弁4dをAの状態(あるいはB)
にし、右走行用方向9J換弁5cをBの状態(あるいは
A)にした場合、パイロットポンプ11のIJ:、i+
1+は走行hli IJJJすJ換弁15を介して麿・
路18(v、は管路10)に導かれるが、走行補助切換
弁I6はブロックされるので管路20にパイロットを 陶は導かれず、切換弁6は切換わらない。従って従来の
油圧回路と同じ機能となる。 D)片側の走行操作をした場合も前記第2図の実施例の
C)項で説明したように<′な・路20にはパイロット
ポンプ11からの圧油は導かわないので従来のall+
:li’jl路と同じ機1′7ヒである。 (発明の効果) 本発明の油圧回路は−に記のようなj4.+(成である
ので、直進走イjをしながら走行以外の他のアクチェー
タを作動させる場合に、切換弁を9)換えねば第1、第
2の油圧ポンプのうら、一方の油圧ポンプからの圧油を
他のアクチェータと独立して左右の走行モータへ均等に
分配すると共に、他の一方の油圧ポンプからの圧油を走
行以外の各種アクチェータに対し走行に優先して供給す
るようにしだので1蛇行することなく、直進走行しなが
ら走行以外の各種のアクチェータの作動も確実に行い能
率良い作業を保障することができる。
[) When performing a turning operation while traveling straight, the turning direction switching valve 4a and the left running direction switching valve 4d are connected in parallel, so the turning direction is different from the left running direction switching valve 4d side. The LEE oil flows toward the switching valve 4a side, and the pressure oil flowing to the left travel direction switching valve decreases by that amount, and the speed of the left travel motor becomes slower than the right travel motor speed, making it impossible to travel straight. If the running drive pressure is lower than the swing drive pressure, there will be insufficient pressure for the swing motor, making it impossible to swing. l) When operating the packet while traveling straight, the packet directional switching valve 5b and the right-hand directional switching valve 5c are connected in parallel, so the load is lighter compared to the right-hand directional switching valve 5c. The pressure oil flows to the packet directional switching valve 5b side, and the pressure oil flowing to the right running directional switching valve decreases by that amount, and the speed of the right running motor becomes slower than the speed of the left running motor, and straight running becomes impossible. Furthermore, if the traveling driving pressure is lower than the packet moving pressure, there is insufficient pressure in the bow cylinder, and the packet operation cannot be performed. ■) When operating the boom while traveling straight, the first boom directional switching valve 5a and the right running directional switching valve 5c
Since the boom directional control valve 4C and the left running directional control valve 4d are connected in parallel, the pressure oil flowing to the left and right running directional control valves is equal, but the driving state is higher than the boom moving pressure. If it is low, the first. Since sufficient pressure oil cannot be supplied to the second boom directional control valves 4c and 5a to raise the boom, a situation occurs in which the boom cylinder cannot be extended. (Objective of the Invention) The present invention has been made to solve the above-mentioned various problems.Even if other actuators are operated during running, straight running can be maintained, and even if other actuators are operated, This invention aims to provide a hydraulic circuit that allows the actuator to operate sufficiently. (Summary of the Invention)
This was done to determine W, and the actuator's 11Z
'Of the plurality of directional valve groups that control the direction of oil θ11, one directional valve group has a turning nozzle jlI'
At least one of the 117J switching valves, the boom directional switching valve, the second boom directional switching valve, and one of the 9 traveling direction switching valves are connected in parallel in sequence. Therefore, it is a mistake. These directional reno diversion valves order! There is no functional problem even if they are replaced. Then, it is connected in tandem via a throttle and a load check valve to a parallel passage connected to one of the left and right travel direction switching valves (hereinafter described as a passenger travel direction switching valve). In the other group of directional control valves, at least one of the first boom directional control valve, the packet directional control valve, etc. and the other travel directional control valve are connected in parallel. Therefore, there is no functional problem even if the order of these switching valves is changed. Then, it is connected in tandem via a throttle and a load check valve to a parallel passage connected to the other of the left and right running direction switching valves (hereinafter described as F right running direction switching valve). And the first of these. The second directional valve group includes the directional valve group and the first directional valve group. The pressure oil from each oil 11 mobomb is connected to the second flow of each directional valve group through the switching valve installed between the second hydraulic pump and the left-hand running through the throttle and load check valve. When the switching valves are switched, the pressure oil from one oil IJE pump is supplied between the first and second directional switching valves and the load check valve. Second
The 1st royal oil of the E pump is supplied to the upstream of the directional control valve group, and the 1st royal oil of the E pump is supplied to the 1st. The second direction J switching valve group is designed so that it can be supplied between the left and right traveling direction switching valves and the load check valve, respectively. (Embodiments of the Invention) Hereinafter, embodiments of a hydraulic circuit for a construction machine such as a hydraulic excavator according to the present invention will be described. FIG. 2 is a hydraulic circuit diagram of a first embodiment of the present invention, and FIG. 3 is a hydraulic circuit diagram of a second embodiment of the present invention. Note that in these figures, the same components as those shown in FIG. Now, in FIG. 2, 6 is the switching valve 1. The second hydraulic pump +, zt/h and the first. The connection between the hydraulic pump 1.2 and the switching valve groups 4, 5 is switched by the single-serving switching valve 6, which is disposed between the second direction 9J switching valve groups 4, 5. The switching method of this switching valve may be manual operation by the operator's hands, operation using a pedal with the foot, or electric type or hydraulic type. 4f is a throttle provided in the parallel passage of the left-hand travel direction switching valve 4d with the load check valve 4e, and 5e is a load check valve 5 in the parallel passage for the right-hand travel direction change-over valve 5c.
This is a diaphragm installed in series with d. 12.13 is a relief valve that regulates the maximum pressure of the hydraulic pumps 1 and 2. With this configuration, a) when the switching valve is in the A position (the state shown in the figure), the pressure oil of the first hydraulic pump 1 is passed through the pipe 7 to the turning valve of the group 4 of the first directional switching valve; Directional switching valve 4
a It is supplied in parallel to the directional switching valve 4b for the S arm, the second directional switching valve 4c for the boom, and the directional switching valve 4d for left running, and also passes through the conduit 9 through the throttle 4f7 and the load check valve 4e. It is supplied between the load check valve 4e& and the 1J river direction switching valve 4d, which are connected in parallel. On the other hand, the pressure oil of the second hydraulic pump 2 passes through the conduit 8 to the first boom directional valve 5aJ and the boom directional valve 5b of the second directional valve group 5.
and the right-hand direction change-over valve 5C, and are connected in parallel through the conduit 0 to the right-hand direction change-over valve 5C and the right-hand direction change-over valve 5C. 5C and the load check valve 5d. ) Also, when the reno switching valve is switched to position B, the pressure oil of the first hydraulic pump 1 passes through the pipe 7 to the swing directional switching valve 4as arm direction of the group 4 of the first directional switching valve. It is supplied to the switching valve 4b, the second boom directional switching valve 4cs, and the left running directional switching valve 4d, and also passes through the conduit 8 to the first boom directional switching valve of group 5 of the second directional switching valve. The valves 5 a, , , are supplied in parallel to the directional switching valve 5b for kenote and the directional switching valve 5c for right travel, and the oil for the second hydraulic pump 2 passes through the pipe 9 to the first directional switching valve. A directional control valve 4d for left travel is connected in parallel to group 4 of the throttle 4f7J and a load check valve 4e.
and the load check valve 4e, and through the conduit 10 to the second group 5 of directional valves 5.
The fuel is supplied between the valve 5c and the load check valve 5d, which are connected in parallel to each other via the load check valve 5d. (Function) The function of the hydraulic circuit configured as described above will be explained. A) When only the left running direction switching valve 4d and the right running direction switching valve 5c are operated at the same time with the switching valve 6 in the A position as shown in FIG.
The pressure oil from the hydraulic pump 1 is distributed to the line 7 and line 9 via the switching valve 6, and the pressure oil that has passed through the fort/line 7 is distributed from the center bypass passage of group 4 of the first directional valve. It passes through the throttle 4f and the load check valve 4e and is supplied to the left travel direction switching valve 4d which is connected in parallel. Further, the pressure oil that has passed through the pipe line 9 is supplied between the left travel direction changeover valve 4d and the load check valve 4e, and the left travel direction changeover valve 4
d. That is, the entire amount of pressure oil from the first hydraulic pump 1 is supplied to the left travel direction switching valve 4d. Further, the pressure oil of the second hydraulic pump 2 is distributed to the pipe line 8 and the pipe line 10 via the switching valve 6, and the pressure oil that has passed through the pipe line 8 is distributed to the second pipe line 8 and the pipe line 10 via the switching valve 6.
It is supplied from the center bypass passage of group 5 of the directional control valves through the throttles 5e/& and the load check valves 5d to the right-hand directional control valve 5c connected in parallel. Further, the pressure oil that has passed through the pipe 10 is supplied between the right travel direction changeover valve 5c and the load check valve 5d, and is then supplied to the right travel direction changeover valve 5c. That is, the second hydraulic pump 2
The entire amount of pressure oil is also supplied to the right travel direction switching valve 5c. B) When operating the left running directional switching valve 4d and the right running directional switching valve 5c in the same direction to perform other operations, such as arm operation, while the vehicle is running straight, the arm JJ direction 9J switching valve 4b
When switching to the right or left, oil from the first hydraulic pump 1 is supplied to the arm as explained in the conventional A11l-:circuit, and that amount is not supplied to the left travel motor.
EMI+ decreases and the speed of the left travel motor decreases, causing it to meander. Therefore, before operating the arm directional switching valve 41), the switching valve 6 is switched from the illustrated position to the B position. First, with the uJ switching valve 6 switched to position B+i, each oil 1]:, the pump I
To explain the flow of the first oil 1-E pump 1, the pressure oil from the first oil 1-E pump 1 is distributed to the pipe 7 and the oil passage 8 via the switching valve 6, and the pressure oil that has passed through the pipe 7 is distributed to the first oil 1-E pump 1. Group 4 of directional valves
from the parallel passage to the throttle 4f and load check valve 4e.
The pressure oil that has passed through the pipe line 8 is supplied from the parallel passage of the second directional valve group 5 through the throttle 5e and the load check valve 5d. It is supplied to the parallel-connected right travel direction switching valve 5c. Further, the pressure oil from the second hydraulic pump 2 is distributed to the pipe line 9 and the pipe line 10 via the switching valve 6, and the pressure oil that has passed through the pipe line 9 is distributed to the load check valve 4e and the left travel direction switching valve 4d. Pressure oil is supplied from between the load check valve 5d and the right-hand direction change-over valve 4d to the left-hand direction change-over valve 4d, and the pressure oil that has passed through the pipe 10 is supplied to the right-hand direction change-over valve 5C from between the load check valve 5d and the right-hand direction change-over valve 5c. supplied to In other words, the IE oil of the first hydraulic pump 1 and the oil 1-F of the second hydraulic pump 2 are merged into the left travel direction switching valve 4d and the right travel direction change valve 5C.
will be supplied in parallel. At this time, pump I
. It seems that the amount of oil from 2 is not divided equally between the left and right running motors, but depending on the nature of the crawler itself, the entire track 11k is divided equally and if it maintains a constant running. When the arm directional J switching valve 4b is operated from this position,
The pressure oil from the hydraulic pump 1 was distributed to the pipe line 7 and the pipe line 8 via the switching valve 6, and passed through the pipe line 7.
direction [2J is supplied to the arm directional switching valve 4b in group 4 of switching valves. In addition, the IE oil that has passed through pipe 8 is passed through the parallel passage of group 5 of the second directional control valve to throttle 5 e.
It is supplied to the j-plane switching valve 5c (for right travel) via the XM and load check valve 5d. Moreover, the pressure oil from the oil IJ ball pump 2 is distributed to the pipe line 9 and the pipe line 0 via the switching valve 6,
The pressure oil that has passed through the pipe line 9 is transferred from between the load check valve 4e and the left travel direction changeover valve 4 [1] to the left travel direction changeover valve 4d.
is supplied to the traveling direction switching valve 5c. At this time, among the pressure oil from the above-mentioned hydraulic pump l, pipe line 8
The pressure oil that has passed through pipe 9. ] 0 communicate with each other via the switching valve 6, it is also distributed to the left travel direction switching valve 4d, and the amount of oil is distributed to the left and right travel motors due to the inherent straightness of the crawler itself, which is a traveling body. is evenly distributed to keep the vehicle running straight. At this time, if the drive pressure of the arm is low, the pressure oil from the hydraulic pump 1 will not be supplied to all the IR arms, and the pressure oil from the hydraulic pump 2 will be evenly distributed to the left l side 7 demotor, so while moving the arm, the pressure oil will not be supplied to all the IR arms. Facultability can be maintained. If the arm drive pressure E is higher than the traveling drive pressure,
The drive pressure for the arm is secured by the throttle 5e, and the excess oil that does not move the arm is equally distributed to the left and right travel motors, as described above, so it is possible to maintain straight travel while moving the arm. C) Next, while traveling straight ha; When performing rotation operation, boom movement, bucket operation, etc., it is possible to operate other actuators without maintaining straightness by switching and operating the pot valve 6. However, since it is basically the same as the above explanation, it will be omitted. FIG. 3 shows a second embodiment, which has basically the same configuration as the embodiment shown in FIG. In the second embodiment, the operation method was manual, but in the second embodiment, the switching was made automatic for the pilot. The structure of the differences will be described below. 1 is a leaf valve that regulates the maximum pressure of the pilot pump 11; 15 is a travel auxiliary switching valve that is linked with the right directional switching valve 5c; I6 is a traction auxiliary switching valve that is linked with the left directional switching valve 4d; Reference numeral 17 denotes a conduit connecting the pilot pump I2 and the traveling assist switching valve 15, and 18 and 19 denotes a conduit connecting the traveling/auxiliary switching valves 15 and 16. 2o
22 is an auxiliary switching valve that connects the running yarn auxiliary 9 switching valve 16 and the auxiliary 17J switching valve 21 that operates in conjunction with the directional switching valve when at least one actuator that has a unique characteristic for running is activated. This is a pipe line that connects the valves 21 and 11 [J with the operating section of the switching valve 6. Next, I will explain the BJ work. A) When traveling only straight ahead, switch the left travel directional control valve 4d to state A (or B) and the right travel directional control valve 5c to state A (or B), and the pilot pump The pressure oil from 11 is led to pipe 19 (or pipe +8) via travel assistance switching valve 15, and reaches auxiliary switching valve 21 through travel assistance switching valve 16, pipe 20, and so on. However, at this time, since the other actuators are not operating, the auxiliary switching valve 21 is maintained in the state A (blocked) and the pipe line 2
Since pressure oil is not guided to 2, the switching valve 6 continues to maintain the state of . Therefore, the operation is the same as that of the conventional hydraulic circuit, which is the same operation as the item A) described in the embodiment shown in FIG. 2 marked with 011. B) When operating other actuators that require independence at the same time as straight traveling, for example, the arm switching valve 4
In conjunction with the operation b, the auxiliary switching valve 21 is switched to the B position, and the pressure oil is guided to the operating part of the switching valve 6 through the pipe 22 via the FIli auxiliary switching valve 21, and the switching valve 6 is switched to the position B. Therefore, B) in the embodiment of FIG. 2 described above.
It will be in the same state as the section above, and will operate in the same way as explained in the section. This also applies to actuators other than the arm. C) Set the left travel direction switching valve 4d to state A (or B)
When the right direction 9J switching valve 5c is set to B (or A), IJ of the pilot pump 11:, i+
1+ is traveling hli IJJJ through J exchange valve 15.
The pilot is guided to the line 18 (v), but the travel assist switching valve I6 is blocked, so the pilot is not guided to the line 20, and the switching valve 6 is not switched. Therefore, it has the same function as a conventional hydraulic circuit. D) Even when one side of the vehicle is operated, as explained in section C) of the embodiment shown in FIG.
:It's the same plane as the li'jl road, 1'7hi. (Effects of the Invention) The hydraulic circuit of the present invention has j4. + (Considering that, when operating other actuators other than traveling while traveling straight ahead, the switching valve must be changed 9). Pressure oil is distributed evenly to the left and right travel motors independently from other actuators, and pressure oil from the other hydraulic pump is supplied to various actuators other than travel with priority given to travel. While traveling straight without meandering, various actuators other than traveling can be operated reliably, ensuring efficient work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来型の油圧回路。 第2図は本発明の実施例回路。 第3図は同じく第2実施例回路。 図において; ] 第1油圧ポンプ 2 第2油圧ポンプ 3 原動機 4 第1方向切換弁グループ 4a 旋回用方向切換弁 4b アーム用方向切換弁 4c 第2ブーム用方向切換弁 4d 人定tう用方向切換弁 4e ロードチェック弁 4f 絞り 5 第2の方向切換弁グループ 5a 第1ブーム方向切換弁 5b バ今ノド用方向切換弁 5c 右走行用方向切換弁 5d ロードチェック弁 5e 絞り 6 第1切換ブr 7 ’、′’H゛路 8 凭・路 99″i°路 10 りn″路 11 バイUノトポ”ンブ 12 リリーフ弁 1コ3 リリーフ弁14リリーフ弁
 15 走行補助切換弁16 走行補助切換弁 17 
管路 18 管路 19 管路 20 管路 21 補助切換弁
Figure 1 shows a conventional hydraulic circuit. FIG. 2 shows an embodiment circuit of the present invention. FIG. 3 also shows the circuit of the second embodiment. In the figure: ] First hydraulic pump 2 Second hydraulic pump 3 Prime mover 4 First directional valve group 4a Directional switching valve for swing 4b Directional switching valve for arm 4c Second boom directional switching valve 4d Directional switching for human rotation Valve 4e Load check valve 4f Throttle 5 Second direction switching valve group 5a First boom direction switching valve 5b Directional switching valve 5c for right-hand drive direction switching valve 5d Load check valve 5e Throttle 6 First switching valve r 7 ',''H゛Road 8 Bench/Road 99''i°Road 10 Ri n''Road 11 Bi-U Notopo'' Nb 12 Relief Valve 1 Co. 3 Relief Valve 14 Relief Valve 15 Travel Assist Switching Valve 16 Travel Assist Switching Valve 17
Pipe line 18 Pipe line 19 Pipe line 20 Pipe line 21 Auxiliary switching valve

Claims (1)

【特許請求の範囲】 (1)第1の油圧ポンプと第2の油圧ポンプの2個の油
圧ポンプ及びこれら油圧ポンプからの圧油によって駆動
される複数のアクチェータに供給される圧油の方向及び
流量を制御する第1の方向切換弁グループと第2の方向
切換弁グループとに分ijられた複数の方向切換弁を備
えた油圧ショベル等のf4を設機械の油圧回路に於て、
第1の方向切換弁のグループには旋回用方向切換弁、ア
ーム用方向切換弁及び第2のブーム用方向すJ換弁等の
少くとも一つと一力の走行用方向切換弁を順不同にパラ
レル接続し、一方の走行用方向切換弁に接続されるパラ
レル通路に絞り及びロートチェック弁を介してタンデム
接続し、かつ、第2の方向切換弁のグループは第1のブ
ーム用方向切換弁及びバケット用方向切換弁等の少くと
も一つと他方の走行用方向切換弁を順不同にパラレル接
続し、他方の走行用方向切換弁に接続されるパラレル通
路に絞り及びロードチェック弁を介してタンデム接続す
ると共に、前記第1.第2の油圧ポンプと第1゜第2の
方向切換弁のグループ七の間に第1.第2の油圧ポンプ
からの圧油を第1.゛第2の方向切換弁のグループの上
流と走行用方向切換弁と前記ロードチェック弁の間に夫
々供給iJ能な状態と第1第1の油圧ポンプからの圧油
を第1及び第2の方向切換弁グループの走行用方向切換
弁とロードチェック弁との間に各々供給可能な状態とに
すJ換nf能な切換弁を設りたことを特徴とする油1−
Eショベル等建設機械の油圧回路。 (11)左右の走行用方向切換弁と+lI4動する走行
層 補助切換弁と走行にλ=1して独立性を製するアクチェ
ータと連動する補助切換弁を設け、左右の走行用方向切
換弁を同方向に切換え、かつ走行に対し弯 独立性をさするアクチェータを少くとも一つ作動させた
時、走行補助切換弁及び補助切換弁を介してパイロット
ポンプからの[圧油を切換弁のパイロットボートに導く
ようにしたことを特徴とする特許請求のIWl、囲(1
)記載の油圧ンヨベル等建設機械の油圧回路。
[Scope of Claims] (1) Direction and direction of pressure oil supplied to two hydraulic pumps, a first hydraulic pump and a second hydraulic pump, and a plurality of actuators driven by pressure oil from these hydraulic pumps. In the hydraulic circuit of a hydraulic excavator or the like, which is equipped with a plurality of directional switching valves divided into a first directional switching valve group and a second directional switching valve group that control the flow rate,
The first directional valve group is connected in parallel in random order to at least one of the swing directional valve, the arm directional valve, the second boom directional J valve, etc., and the one-force travel directional valve. The second directional valve group is connected in tandem to the parallel passage connected to one travel directional valve through a throttle and funnel check valve, and the second directional valve group is connected to the first boom directional valve and the bucket directional valve. At least one of the directional switching valves etc. and the other directional switching valve for running are connected in parallel in random order, and connected in tandem to the parallel passage connected to the other directional switching valve for running via a throttle and load check valve, Said 1st. Between the second hydraulic pump and the group 7 of the 1st and 2nd directional valves. The pressure oil from the second hydraulic pump is transferred to the first hydraulic pump.゛A condition in which pressure oil from the first hydraulic pump can be supplied between the upstream of the second directional control valve group, the traveling direction control valve, and the load check valve, respectively, and the pressure oil from the first hydraulic pump is supplied to the first and second directional control valves. Oil 1-, characterized in that a switching valve capable of switching between the traveling direction switching valve and the load check valve of the directional switching valve group is provided so that the supply is possible.
Hydraulic circuit for construction machinery such as E-excavators. (11) A directional switching valve for left and right running, an auxiliary switching valve for running layer that moves +lI4, and an auxiliary switching valve that is linked with an actuator that creates independence with λ = 1 for running are provided, and the directional switching valve for left and right running is provided. When at least one actuator that switches in the same direction and provides curvature independence for travel is operated, pressure oil is transferred from the pilot pump to the pilot boat of the switching valve via the travel auxiliary switching valve and the auxiliary switching valve. IWl of the patent claim, which is characterized in that it leads to
) Hydraulic circuits for construction machinery such as hydraulic lifts.
JP59057405A 1984-03-27 1984-03-27 Hydraulic circuit for construction machinery such as hydraulic shovel Granted JPS60203743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057405A JPS60203743A (en) 1984-03-27 1984-03-27 Hydraulic circuit for construction machinery such as hydraulic shovel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057405A JPS60203743A (en) 1984-03-27 1984-03-27 Hydraulic circuit for construction machinery such as hydraulic shovel

Publications (2)

Publication Number Publication Date
JPS60203743A true JPS60203743A (en) 1985-10-15
JPH047412B2 JPH047412B2 (en) 1992-02-10

Family

ID=13054726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057405A Granted JPS60203743A (en) 1984-03-27 1984-03-27 Hydraulic circuit for construction machinery such as hydraulic shovel

Country Status (1)

Country Link
JP (1) JPS60203743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389403U (en) * 1986-12-02 1988-06-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389403U (en) * 1986-12-02 1988-06-10

Also Published As

Publication number Publication date
JPH047412B2 (en) 1992-02-10

Similar Documents

Publication Publication Date Title
US4528892A (en) Hydraulic circuit system for construction machine
KR870000506B1 (en) Hydraulic circuit system for civil engineering and architectural machinery
JPH0232167B2 (en)
JPH0410536B2 (en)
JP2004027706A (en) Hydraulic circuit device for construction machinery
JPS60203743A (en) Hydraulic circuit for construction machinery such as hydraulic shovel
JPH11303808A (en) Hydraulic system of hydraulic drive type working vehicle
JPH0374292B2 (en)
JPH0352275Y2 (en)
KR100212220B1 (en) Drive working device of small excavator
JPH0143098B2 (en)
JPS584035A (en) Oil-pressure circuit for oil-pressure working machine
JPH0258412B2 (en)
JPS6321446Y2 (en)
JPH0643260Y2 (en) Hydraulic equipment for construction machinery
JPH0429815B2 (en)
JPH0248517Y2 (en)
JPH047414B2 (en)
JPS5961633A (en) Oil-pressure circuit for oil-pressure working machine
JP2624268B2 (en) Hydraulic drive for construction machinery
JPH0459414B2 (en)
JPH0429813B2 (en)
JPS60233235A (en) Hydraulic control circuit for self-running type hydraulic machine
JPH0643259Y2 (en) Hydraulic equipment for construction machinery
JPH0412335B2 (en)