JPS60203731A - Moving mechanism for nozzle in ground improving device - Google Patents

Moving mechanism for nozzle in ground improving device

Info

Publication number
JPS60203731A
JPS60203731A JP1902684A JP1902684A JPS60203731A JP S60203731 A JPS60203731 A JP S60203731A JP 1902684 A JP1902684 A JP 1902684A JP 1902684 A JP1902684 A JP 1902684A JP S60203731 A JPS60203731 A JP S60203731A
Authority
JP
Japan
Prior art keywords
nozzle
excavation
water
pipe
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1902684A
Other languages
Japanese (ja)
Other versions
JPS641607B2 (en
Inventor
Seiya Ogawa
小川 征也
Tsutomu Tanaka
勉 田中
Hajime Imanishi
肇 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
NIT Co Ltd Japan
NIT Inc
Original Assignee
Mitsui Construction Co Ltd
NIT Co Ltd Japan
NIT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd, NIT Co Ltd Japan, NIT Inc filed Critical Mitsui Construction Co Ltd
Priority to JP1902684A priority Critical patent/JPS60203731A/en
Publication of JPS60203731A publication Critical patent/JPS60203731A/en
Publication of JPS641607B2 publication Critical patent/JPS641607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To cause a nozzle to be protruded in a horizontal direction in response to the pressure of excavating water, by a method wherein a hydraulic cylinder, which actuates a parallel movement mechanism for supporting the nozzle, is communicated with a circuit which feeds the excavating water to the nozzle. CONSTITUTION:A nozzle 1 is attached to the forward end of an excavation pipe 3 through a parallel movement mechanism 2, and a hydraulic cylinder 17 (5), which actuates the parallel movement mechanism 2, is communicated with an excavating water feed circuit 20. In formation of a cavity in earth, with the excavation pipe 3 rotated, ultra-high pressure water is fed through the circuit 20, and excavation is effected through injection of high-pressure water through the nozzle 1. When, with the progress of excavation, an excavating wall surface is moved backward, by increasing the feed pressure of the high-pressure water in the circuit 20 to higher than a given value, a ram 17a is raised against elasticity of a spring 21. This causes the nozzle 1 to be protruded in the direction of the excavating wall surface in a condition to be kept in a horizontal direction to shorten a distance to the wall surface, resulting in the possibility to improve excavation capacity.

Description

【発明の詳細な説明】 (n)0発明の技術分舒 本発明は、地中にパイロット穴を掘削 した。後に、高圧水を水平方向に噴射して地中に円筒形
の空洞を形成し、その形成された空洞内にコンク、リー
ト等の地盤改良材を1]設して新たな地盤を形成する地
盤改造工法等に適用するに好適な地盤改造装置における
、ノズルの移動機構に関する。
DETAILED DESCRIPTION OF THE INVENTION (n) Technical distribution of the invention In the present invention, a pilot hole is drilled underground. Later, high-pressure water is injected horizontally to form a cylindrical cavity in the ground, and ground improvement materials such as concrete and REET are installed in the cavity to form a new ground. The present invention relates to a nozzle movement mechanism in a ground modification device suitable for application to modification methods, etc.

(b)、技術の背景 人工地盤の構築に際しては、地中に空 洞を掘削して、その部分をコンクリート等の地盤改良材
で置換し、結果的に地中に板状の強固な人工地盤を構築
する工法が提案されている(特開昭57−133918
、特開昭58−24020、特開昭58−2=、−61
15、特開昭58−120819等)。
(b), Background of the technology When constructing an artificial ground, a cavity is excavated underground and the hollow part is replaced with ground improvement material such as concrete, resulting in a plate-shaped solid artificial ground underground. A construction method has been proposed for constructing the
, JP-A-58-24020, JP-A-58-2=, -61
15, Japanese Unexamined Patent Publication No. 58-120819, etc.).

この工法においては、地盤の掘削を超 高圧水をノズルから噴射することにより行ってゆくが、
ノズルから掘削すべき空洞の壁面までの距離が掘削の進
行につれて長くなると、超高圧水による掘削能力が低下
してしまう。
In this construction method, the ground is excavated by injecting ultra-high pressure water from a nozzle.
As the distance from the nozzle to the wall of the cavity to be excavated increases as excavation progresses, the excavation ability of ultra-high pressure water decreases.

(C)、従来技術と問題点 第3図はノズルの移動機構の最近の提 案例を示す図である。(C), Prior art and problems Figure 3 shows the latest proposal for the nozzle movement mechanism. It is a figure showing an example.

従って、こうした問題点を解決すべく 最近では、第3図に示すように、ノズル1をパンタグラ
フ等の平行運動41m 4R2を介して掘削管3に設置
し、油圧シリンダ5により平行運動機構2を駆動させる
ことにより、ノズル1を図中水平方向に突出移動自在に
設け、ノズル1を掘削中の空洞壁面に近づける乙とによ
り、ノズル1からの掘削水の噴出圧力が低くても大口径
の空洞の掘削を一可能ならしめようとする提案がなされ
ている。
Therefore, in order to solve these problems, recently, as shown in FIG. By making the nozzle 1 movable in the horizontal direction in the figure, and by bringing the nozzle 1 close to the wall of the cavity being excavated, even if the pressure of the excavated water ejected from the nozzle 1 is low, it can be used in large-diameter cavities. Proposals have been made to make drilling possible.

しかし、こうした場合、平行運動機構 2を駆動する油圧シリンダ5の駆動用に圧油を供給する
必要が有り、圧油ホース6が掘削管3に沿って掘削管3
に固定する形で敷設されることになる。ところが、掘削
管3は通常、その掘削時には回転運動を行なうので、掘
削管3と共に回転状態にあろ圧油ホース6に外部から圧
油を供給するためには、スイベルジョイン1−等の複雑
な継手を介して圧油を供給する必要があり、地盤改造装
置13の構造が複雑化する欠点があった。
However, in such a case, it is necessary to supply pressure oil for driving the hydraulic cylinder 5 that drives the parallel motion mechanism 2, and the pressure oil hose 6 is connected to the excavation pipe 3 along the excavation pipe 3.
It will be installed in a fixed manner. However, since the excavation pipe 3 normally performs a rotational movement during excavation, in order to supply pressure oil from the outside to the pressure oil hose 6 which is in a rotating state together with the excavation pipe 3, a complicated joint such as a swivel joint 1 is required. It is necessary to supply pressure oil through the ground modification device 13, which has the disadvantage of complicating the structure of the ground modification device 13.

更に油圧シリンダ5に圧油を送るため の油圧ポンプ等が必要となり、付帯設備が大型化する不
都合があった。
Furthermore, a hydraulic pump or the like is required to send pressure oil to the hydraulic cylinder 5, which inconveniently increases the size of the incidental equipment.

(d)6発明の目的 本発明は、前述の欠点を解消すべく、 平行運動機構駆動用の圧油ポースが不要で、従って、ス
イベルジヨイント等の複雑な継手や油圧ポンプ等の特別
な付帯設備を必要としない簡略な構造の地盤改造装置の
提供が可能な、ノズルの移動機構を提供する乙とを目的
とするものである。
(d) 6 Purpose of the Invention In order to eliminate the above-mentioned drawbacks, the present invention eliminates the need for a pressure oil port for driving the parallel motion mechanism, and therefore eliminates the need for complicated joints such as swivel joints and special accessories such as hydraulic pumps. The purpose of the present invention is to provide a nozzle movement mechanism that can provide a ground modification device with a simple structure that does not require any equipment.

(e)0発明の構成 即ち、本発明は、掘削管にノズルを、 平行運動4m 枯を介して、水平方向に突出移動自在に
設けると共に、平行連動機構に該平行運動機構を駆動す
る水圧駆動手段を設りす、更に前記水圧駆動手段とノズ
ルへの掘削水供給回路を接続して構成される。
(e) Configuration of the 0 invention, that is, the present invention provides a nozzle in an excavation pipe so that it can freely protrude and move in the horizontal direction through a parallel movement of 4 m, and a hydraulic drive that drives the parallel movement mechanism in a parallel interlocking mechanism. The hydraulic driving means is further connected to an excavation water supply circuit to the nozzle.

(以下余白) (f)0発明の実施例 以下、図面に基づき、本発明の実施例 を、具体的に説明する。(Margin below) (f) 0 Examples of the invention Examples of the present invention will be described below based on the drawings. will be explained in detail.

第1図は本発明によるノズルの移動機 構の一実施例が適用された、地盤改造装置の一例を示す
正面図、第2図は第1図におけるノズルの移動機構の流
体回路図である。
FIG. 1 is a front view showing an example of a ground modification device to which an embodiment of the nozzle moving mechanism according to the present invention is applied, and FIG. 2 is a fluid circuit diagram of the nozzle moving mechanism in FIG. 1.

地盤改造装置13は、第1図に示すよ うに、地盤面9上に立設された櫓状の支持手段12を有
しており、支持手段12には掘削管3の駆動装置11が
設置されている。
As shown in FIG. 1, the ground modification device 13 has a tower-shaped support means 12 erected on the ground surface 9, and a drive device 11 for the excavation pipe 3 is installed on the support means 12. ing.

駆動装置11には、掘削管1−゛が駆動装置11により
回転駆動自在に設けられており、j原則管3の図中下端
にはビット15が設けられている。ビット15の上方に
は、本発明によるノズルの移動機構16を構成するパン
タグラフ機構等の′平行運動機構2が設けられており、
平行M!l1IJ機構2には水圧駆動手段である水圧シ
リンダ17が、上下方向に突出駆動自在に設けられたラ
ム17aを機構2を構成するリンクの一部にその先端を
枢着させた形で設けられている。平行運動機構2には、
ノズル1が該平行運動機構2により図中左右、即ち水平
方向に突出移動自在に設けられている。
A drilling pipe 1-' is provided in the driving device 11 so as to be rotatably driven by the driving device 11, and a bit 15 is provided at the lower end of the basic pipe 3 in the figure. Above the bit 15, a parallel movement mechanism 2 such as a pantograph mechanism, which constitutes the nozzle movement mechanism 16 according to the present invention, is provided.
Parallel M! The l1IJ mechanism 2 is provided with a hydraulic cylinder 17, which is a hydraulic drive means, in the form of a ram 17a which is provided so as to be freely protrusive and driveable in the vertical direction, and whose tip is pivoted to a part of the link constituting the mechanism 2. There is. The parallel motion mechanism 2 has
A nozzle 1 is provided so as to be able to protrude and move from side to side in the drawing, that is, in the horizontal direction, by means of the parallel movement mechanism 2.

ノズルl及び水圧シリンダ17は、第 2図に示すように、掘削管3の軸心方向に平行に、即ち
第1図上下方向に、掘削管3に固定される形で敷設され
た掘削水供給回路である超高圧掘削水供給回路20に接
続しており、水圧シリンダ17はその内部に前述のラム
17.aが図中上下方向に移動自在Cζ設けられている
。ラム17aの上方にはスプリング21が縮設されてお
り、スプリング21はラム17aを常時矢印入方向、即
ち下方に付勢している。
As shown in FIG. 2, the nozzle l and the hydraulic cylinder 17 are an excavation water supply installed in a manner fixed to the excavation pipe 3 in parallel to the axial direction of the excavation pipe 3, that is, in the vertical direction in FIG. The hydraulic cylinder 17 has the above-mentioned ram 17. A is provided with Cζ that is movable in the vertical direction in the figure. A spring 21 is contracted above the ram 17a, and the spring 21 always urges the ram 17a in the direction of the arrow, that is, downward.

なお、掘削管3によって掘削されるパ イロット穴4の上端部には、スタンドパ・イブ8が地i
30に圧入され、かつ掘削管3の周囲を被覆する形で設
置されている。
Note that a stand pipe 8 is attached to the ground at the upper end of the pilot hole 4 drilled by the drilling pipe 3.
30 and is installed so as to cover the circumference of the excavation pipe 3.

地盤改造装置13は以上のような構成 を有するので、地盤改造装置13により地盤30中に人
工地盤等を構築するための穴を掘削する際には、駆動装
置11により堀hIl管3を回転させて、ビット15に
よりパイロット穴4を第1図下方に向けて堀りりしてゆ
く。ビット15による掘削はパイロット穴4の深さがD
Pに達するまで行われるが、ビット15による掘削中は
、超高圧I層剤水供給回路20には何らの1屈削水も供
給されることは無いので、水圧シリンダ17のラム1’
7aは、ピストン17bがスプリング21の圧力によっ
て、第2図A方向に押圧されることにより、その入方向
への突出状態を維持する。従って平行連rJJJ機構2
は局削管3側に折り畳まれたままの状態を維持し、ノズ
ル1も掘削管3側の格納位置に保持された形で掘削が行
われる。この状態では、ノズル1の先端から掘削管3の
軸心までの距[Llはパイロット穴4の半径よりも小さ
いので、ビット15及び掘削管3によるパイロット穴4
の掘削は、ノズル1がI原則中のパイロット穴4の壁面
に接触することなく円滑に行われる。
Since the ground modification device 13 has the above configuration, when the ground modification device 13 excavates a hole for constructing an artificial ground etc. in the ground 30, the drive device 11 rotates the trench hIl pipe 3. Then, use the bit 15 to drill the pilot hole 4 downward in FIG. When drilling with bit 15, the depth of pilot hole 4 is D.
However, during excavation with the bit 15, no water is supplied to the ultra-high pressure I layer agent water supply circuit 20, so the ram 1' of the hydraulic cylinder 17
The piston 7a maintains its protruding state in the input direction by pressing the piston 17b in the direction A in FIG. 2 by the pressure of the spring 21. Therefore, parallel chain rJJJ mechanism 2
excavation is carried out with the nozzle 1 maintained in its folded state on the side of the cutting pipe 3 and the nozzle 1 also held in the retracted position on the side of the drilling pipe 3. In this state, since the distance [Ll] from the tip of the nozzle 1 to the axis of the drilling pipe 3 is smaller than the radius of the pilot hole 4, the pilot hole 4 formed by the bit 15 and the drilling pipe 3 is
The drilling is performed smoothly without the nozzle 1 coming into contact with the wall surface of the pilot hole 4 in the I principle.

ビット15による掘削が深さDPに達すると、その後は
掘削“管3を回転させつつノズル1から超高圧水18を
周囲の地盤30に噴射してパイロット穴4の周囲に円筒
状の空洞22を形成するが、掘削に際して発生した掘削
土砂はパイロット穴4内部に充填された泥水25と共に
スラリー化した形で、掘削管3下部から掘削管3内部を
通って外部に排出される。
When the drilling bit 15 reaches the depth DP, the drilling pipe 3 is rotated and ultra-high pressure water 18 is injected from the nozzle 1 into the surrounding ground 30 to form a cylindrical cavity 22 around the pilot hole 4. However, the excavated soil generated during excavation is discharged from the lower part of the excavation pipe 3 to the outside through the inside of the excavation pipe 3 in the form of a slurry together with the muddy water 25 filled inside the pilot hole 4.

ノズル1からの超高圧水18の噴出は、超高圧掘削水供
給回路20を介して超高圧状態の水をノズル1に供給す
ることにより行われるが、超高圧掘削水供給回路20は
−水圧シリンダ17にも接続しているので、超高圧掘削
水供給回路20内の超高圧水18はノズル1に供給され
ると同時に水圧シリンダ17にも供給される。水圧シリ
ンダ17に供給される超高圧水18は、その圧力が所定
の圧力値P以下の場合は、ピストン17bをスプリング
21の弾性に抗してB方向に移動させる乙とが出来ず、
従って、ノズル1は退避状態のまま掘削動作を継続する
。しかし、掘削の進行に伴って円筒状の空洞22がパイ
ロット穴4の周囲に形成され、ノズル1と掘削中の空洞
壁面2211との距離が長くなり、ノズル1の掘削能力
が低下すると、超高圧掘削水供給回路20を介した超高
圧水18の供給圧力を所定値P以上に上げる。すると、
ノズル1からの超高圧水工8の噴出圧力が増してそれだ
け1屈削能力が向上する一方で、それまでスプリング2
1の弾性によってA方向に突出状態にあったラム17a
は、圧力Pを超えた超高圧水18により、スプリング2
1の弾性に抗する形でピストン17b゛と共にB方向、
即ち上方に移動し、平行運rAJ機構2をその折り畳み
状態から、第1図想像線に示すように、伸長状態に変化
させる。これにより、ノズル1はその吐出口1aが水平
方向を維持した状態のまま、G方向、即ち掘削中の壁面
22’a方向に、ノズル1先端と掘削管3軸心との距離
がL2に達するまで突出移動する。すると、ノズル1と
被掘削面である空洞壁面22aとの距離Xが、それまで
の、ノズル1の格納状態に比して大幅に短縮され、ノズ
ル1からの超高圧水18による1屈削能力は格段に改善
され、大きな直径を有する空洞22を円滑にかつ確実に
]回前成形することが出来る。
The ultra-high pressure water 18 is ejected from the nozzle 1 by supplying ultra-high pressure water to the nozzle 1 via an ultra-high pressure drilling water supply circuit 20. 17, the ultra-high pressure water 18 in the ultra-high pressure excavation water supply circuit 20 is supplied to the nozzle 1 and also to the hydraulic cylinder 17 at the same time. If the pressure of the ultra-high pressure water 18 supplied to the hydraulic cylinder 17 is below a predetermined pressure value P, the piston 17b cannot be moved in the direction B against the elasticity of the spring 21.
Therefore, the nozzle 1 continues the excavating operation while remaining in the retracted state. However, as the excavation progresses, a cylindrical cavity 22 is formed around the pilot hole 4, and the distance between the nozzle 1 and the cavity wall surface 2211 being excavated becomes longer, reducing the excavation ability of the nozzle 1. The supply pressure of the ultra-high pressure water 18 via the excavation water supply circuit 20 is increased to a predetermined value P or higher. Then,
While the jetting pressure of the ultra-high pressure water pipe 8 from the nozzle 1 increases and the cutting ability of the spring 2 increases accordingly,
The ram 17a was in a protruding state in the direction A due to the elasticity of the ram 17a.
is caused by the ultra-high pressure water 18 exceeding the pressure P.
direction B along with the piston 17b in a manner that resists the elasticity of
That is, it moves upward and changes the parallel transport rAJ mechanism 2 from its folded state to its extended state as shown by the imaginary line in FIG. As a result, the distance between the tip of the nozzle 1 and the 3rd axis of the excavation pipe reaches L2 in the G direction, that is, in the direction of the wall surface 22'a during excavation, while the discharge port 1a of the nozzle 1 maintains the horizontal direction. move protrudingly. Then, the distance X between the nozzle 1 and the cavity wall surface 22a, which is the surface to be excavated, is significantly shortened compared to the previously stored state of the nozzle 1, and the cutting capacity of the ultra-high pressure water 18 from the nozzle 1 is increased. is significantly improved, and cavities 22 with large diameters can be preformed smoothly and reliably.

所定の大きさの空洞22が形成された ところで、超高圧掘削水供給回路20からの超高圧水1
8のノズル1−\の供給を停止すると、ノズル1からの
超高圧水18の噴〜出は停止し、掘削作業は終了する。
When the cavity 22 of a predetermined size is formed, the ultra-high pressure water 1 from the ultra-high pressure excavation water supply circuit 20 is
When the supply of the nozzle 1-\ of No. 8 is stopped, the jetting of the ultra-high pressure water 18 from the nozzle 1 is stopped, and the excavation work is completed.

なお、超高圧掘削水供給回路20からの超高圧水18の
供給が停止されると、ラム17aはスプリング21によ
りA方向に突出移動し、それまで突出状態にあった平行
運動機構2をノズル1と共に、第1図実線に示す格納状
態に戻す。
Note that when the supply of the ultra-high pressure water 18 from the ultra-high pressure excavation water supply circuit 20 is stopped, the ram 17a is moved to protrude in the A direction by the spring 21, and the parallel motion mechanism 2, which had been in the protruding state, is moved to the nozzle 1. At the same time, the storage state is returned to the stored state shown by the solid line in FIG.

次に、今度は掘削管3を回転させなが らノズル1を空洞22の下部からB方向に引き上げつつ
、掘削水供給回路20を介してノズル1から空洞22内
へ地盤改良材を高圧で噴射して空洞22内を地盤改良材
で満たず(なお、f!削管3をトレミー管として用い、
空洞22及びパイロッI・穴4中にコンクリート等の地
盤改良材を充填しても良い。)。この際も、ノズル1を
適宜G1)(方向に移動させつつ改良材を噴出させるこ
とにより、空洞22内に効率よくかつ確実に改良材を充
填することが出来る。
Next, while rotating the excavation pipe 3 and pulling up the nozzle 1 from the lower part of the cavity 22 in the direction B, the ground improvement material is injected at high pressure from the nozzle 1 into the cavity 22 via the excavation water supply circuit 20. The inside of the cavity 22 is not filled with soil improvement material (in addition, the f! cut pipe 3 is used as a tremie pipe,
The cavity 22 and the pilot hole I/hole 4 may be filled with a ground improvement material such as concrete. ). At this time, the improving material can be efficiently and reliably filled into the cavity 22 by moving the nozzle 1 appropriately in the direction G1 and ejecting the improving material.

こうして、地盤改良材を空洞22及び パイロット穴4内に充填さぜつつ掘削管3をB方向に引
き上げてゆくと、充填された改良材は凝固して地盤30
中には強固な人−工地盤が構築されることになる。
In this way, when the excavation pipe 3 is pulled up in the direction B while filling the ground improvement material into the cavity 22 and the pilot hole 4, the filled improvement material solidifies and the soil 30
A strong man-made foundation will be built inside.

−個所の人工地盤がJR築きれたところで、当該構築さ
れた人工地盤に隣接した位置にパイロット穴4を新たに
掘削して、空洞22を構築し、更に地盤改良材を充填し
て当該空洞22と先に構築された空洞22(既に地盤改
良材が充填固化している。)とを水平方向、に連続させ
て、人工地盤を拡張してゆく。
- Once the artificial ground has been constructed by JR, a pilot hole 4 is newly drilled at a position adjacent to the constructed artificial ground to construct a cavity 22, and the cavity 22 is further filled with soil improvement material. and the previously constructed cavity 22 (which has already been filled and solidified with the ground improvement material) are connected in the horizontal direction to expand the artificial ground.

なお、水圧シリンダ17のスプリング 21のバネ定数は、本実施例の場合は、所定の圧力値P
以上でスプリング21に抗して直ちにB方向にラム17
aをその全ストロークに亙り移動させ得る程度のもので
あり、従って、ノズル1は平行運動機構2が折り畳まれ
た格納状態が又(よ完全にG方向に突出しきった、突出
状態のいずれがの状態しか取ることが出来ないが、例え
ば、スプリング21のバネ定数を本実施例より大きく取
り、超高圧掘削水供給回路20がら供給される超高圧水
18の圧力の上昇・下降に伴って徐々に、その圧力値に
対応した形で、AまたはB方向に突出後退し得るように
構成することも可能である。すると、平行運動機構2上
のノズル1は、第1図の距離L1からL2の範囲て超高
圧水18の圧力に応してG111方向に移動し、ノズル
位置のよりキメの細かな制御が可能となる。
In this embodiment, the spring constant of the spring 21 of the hydraulic cylinder 17 is set to a predetermined pressure value P.
With the above, the ram 17 immediately moves in the direction B against the spring 21.
Therefore, the nozzle 1 is in a retracted state in which the parallel movement mechanism 2 is folded, and in an extended state (in which it is fully protruded in the G direction). For example, the spring constant of the spring 21 can be set larger than that of this embodiment, and as the pressure of the ultra-high pressure water 18 supplied from the ultra-high pressure excavation water supply circuit 20 increases and decreases, It is also possible to configure the nozzle 1 on the parallel movement mechanism 2 to move forward and backward in the direction A or B in a manner corresponding to the pressure value. The nozzle position is moved in the G111 direction according to the pressure of the ultra-high pressure water 18, allowing finer control of the nozzle position.

(g)0発明の効果 以上、説明したように、本発明によれ ば、ノズル1の平行運動機構2の駆動手段として水圧シ
リンダ17等の水圧駆動手段を設け、該水圧駆動手段に
ノズル1に接続された超高圧掘削水供給回路20等の掘
削水供給回路を接続したので、平行運動機構2の駆動手
段として油圧151g動手段を設けた場合のように、特
別の圧油ホースや油圧ポンプ等を従来からある掘削水供
給回路の他に設ける必要が無くなり、それに伴うスイベ
ルジョイン1−等も不要となるので、地盤改造装置13
全体の構造を簡略化することが可能となる。
(g) 0 Effects of the Invention As explained above, according to the present invention, a hydraulic drive means such as a hydraulic cylinder 17 is provided as a drive means for the parallel movement mechanism 2 of the nozzle 1, and the hydraulic drive means is provided with a hydraulic drive means for the nozzle 1. Since the excavation water supply circuit such as the connected ultra-high pressure excavation water supply circuit 20 is connected, special pressure oil hoses, hydraulic pumps, etc. are required as in the case where a hydraulic 151 g driving means is provided as the drive means of the parallel motion mechanism 2. It is no longer necessary to provide a water supply circuit in addition to the conventional excavation water supply circuit, and the accompanying swivel joint 1- etc. are also no longer required.
It becomes possible to simplify the entire structure.

なお、ノズル1及び水圧駆動手段に接 続する掘削水供給回路の、ノズル1との接続部付近(よ
、ノズル1のG、■■力方向移動を許容し得る程度に、
ある程度の余長及び可撓性がめられる乙とば言うまでも
なく、従って、ノズル1との接続部分は、ある程度の撓
みを持−ったゴムボース等で構成することが望ましい。
In addition, near the connection part with the nozzle 1 of the excavation water supply circuit connected to the nozzle 1 and the hydraulic drive means (to the extent that movement of the nozzle 1 in the G and ■■ force directions is allowed,
Needless to say, a certain amount of extra length and flexibility is required, and therefore, it is desirable that the connection portion with the nozzle 1 be constructed of a rubber bow or the like with some degree of flexibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるノズルの移動機 構の一実施例が適用された、地盤改造装置の一例を示す
正面図、第2図は第1図におけろノズルの移動機構の流
体回路図、第3図はノズルの移動槻摺の最近の提案例を
示す図である。 1 ・ノズル 2 平行運動機構 3・ を原則管 4 ・パイロッ ト穴 13・・ 地盤改造装置 15・ ビット 16 ・・移動機構 17 水圧駆動手段(水圧シリンダ) 18・ 掘削水(超高圧水) 20− 掘削水供給回路 (超高圧掘削水供給回路) 30・・・地盤 出願人 三井建設株式会社 株式会社エヌ・アイ・ティ 代理人 弁理士 相[′lJ 呻二 第1図 旦 幻25) 第2図 G 手続補正書(方式) 昭和59年 5月14日 1 事件の表示 昭和59年特許願第19026号 2 発明の名称 地盤改造装置にわけるノズルの移動機構3 補正をする
者 事件との関係 特許出願人 住所 東京都千代田区岩本町3丁目10番1号氏名(名
称) 三井建設株式会社 代表者町田良治 住所 東京都町田市図師町1752番地氏名(名称) 
ニッサンフリーズ株式会社代表者 後 藤 元 宏 6 補正の対象 明細書全文 7 補正の内容 明細書の浄書(内容に変更なし)
FIG. 1 is a front view showing an example of a ground modification device to which an embodiment of the nozzle moving mechanism according to the present invention is applied, FIG. 2 is a fluid circuit diagram of the nozzle moving mechanism in FIG. 1, and FIG. FIG. 3 is a diagram showing a recently proposed example of moving nozzle sliding. 1 - Nozzle 2 Parallel movement mechanism 3 - Principle pipe 4 - Pilot hole 13 - Ground modification device 15 - Bit 16 - Movement mechanism 17 Water pressure drive means (hydraulic cylinder) 18 - Drilling water (ultra high pressure water) 20- Drilling water supply circuit (ultra-high pressure drilling water supply circuit) 30...Ground applicant Mitsui Construction Co., Ltd. N.I.T. Co., Ltd. Agent Patent attorney ['lJ Moeji Figure 1 Dangen 25] Figure 2 G Procedural amendment (method) May 14, 1980 1 Indication of the case 1988 Patent Application No. 19026 2 Name of the invention Nozzle moving mechanism classified as a ground modification device 3 Person making the amendment Relationship with the case Patent application Address 3-10-1 Iwamoto-cho, Chiyoda-ku, Tokyo Name (Name) Mitsui Construction Co., Ltd. Representative Ryoji Machida Address 1752 Zushi-cho, Machida-shi, Tokyo Name (Name)
Nissan Freeze Co., Ltd. Representative Motohiro Goto 6 Full text of the specification to be amended 7 Engraving of the specification of the amendment (no changes to the content)

Claims (1)

【特許請求の範囲】 先端にビットの装着された回転駆動 自在な掘削管を有し、前記ta!削管の先端部にノズル
を設けると共に、該掘削管に1原則水供給回路を前記ノ
ズルに接続させた形で設置し、前記掘削水供給回路を介
して前記ノズルに高圧掘削水を供給し、それにより前i
己ノズルから高圧を屈ne1水を噴出さゼで、パイロッ
ト穴周囲地盤の掘削を行う地盤改造装置において、前記
掘削管にnカ記ノズルを、平行運動機構を介して、水平
方向に突出移動自在に設けると共に、前記平行運fil
J機構に該平行運動機構を駆動する水圧駆動手段を設け
、更に前記水圧駆動手段と前記掘削水供給回路を接続し
て構成した地盤改造装置におけるノズルの移動機構。
[Scope of Claims] The ta! has a rotatable drilling pipe with a bit attached to its tip, and the ta! A nozzle is provided at the tip of the excavation pipe, and a water supply circuit is installed in the excavation pipe in a manner connected to the nozzle, and high-pressure excavation water is supplied to the nozzle via the excavation water supply circuit, Therefore, before i
In a ground modification device that excavates the ground around a pilot hole by ejecting high pressure water from its own nozzle, n nozzles are attached to the excavation pipe and can be moved horizontally to protrude through a parallel movement mechanism. and the parallel transport fil
A nozzle moving mechanism in a ground remodeling device, wherein a J mechanism is provided with a hydraulic drive means for driving the parallel movement mechanism, and the hydraulic drive means and the excavation water supply circuit are connected.
JP1902684A 1984-02-04 1984-02-04 Moving mechanism for nozzle in ground improving device Granted JPS60203731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1902684A JPS60203731A (en) 1984-02-04 1984-02-04 Moving mechanism for nozzle in ground improving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1902684A JPS60203731A (en) 1984-02-04 1984-02-04 Moving mechanism for nozzle in ground improving device

Publications (2)

Publication Number Publication Date
JPS60203731A true JPS60203731A (en) 1985-10-15
JPS641607B2 JPS641607B2 (en) 1989-01-12

Family

ID=11987950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1902684A Granted JPS60203731A (en) 1984-02-04 1984-02-04 Moving mechanism for nozzle in ground improving device

Country Status (1)

Country Link
JP (1) JPS60203731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034078A (en) * 2022-01-07 2022-03-02 ケミカルグラウト株式会社 Ground improvement device, and ground improvement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034078A (en) * 2022-01-07 2022-03-02 ケミカルグラウト株式会社 Ground improvement device, and ground improvement method

Also Published As

Publication number Publication date
JPS641607B2 (en) 1989-01-12

Similar Documents

Publication Publication Date Title
JP4670101B2 (en) Pre-boring precast concrete pile burying method.
JPS60203731A (en) Moving mechanism for nozzle in ground improving device
JP4359931B2 (en) Pile burying method by medium digging method
JP3609765B2 (en) Mud digging machine as a leading conductor for pipe propulsion burial
JP3905201B2 (en) Drilling rig
JP4048430B2 (en) Auger drilling head for bulb formation used in medium digging method
JPS594029B2 (en) Penetration piping method and equipment that simultaneously strengthens the consolidation of the ground
JP3739560B2 (en) Long distance propulsion method
JP3422557B2 (en) Underground propulsion method
JP2963066B2 (en) Well drilling method
JPH0629510B2 (en) Concrete pile foundation method and equipment used therefor
JPS6038516B2 (en) How to excavate a shaft in soft ground
JPS5833200Y2 (en) tunnel digging equipment
JPS60203728A (en) Ground improving device
JPS61155587A (en) Drilling nozzle apparatus
JPS627757Y2 (en)
JPH055392A (en) Bedrock improvement method and device thereof
JP3241898B2 (en) Method and apparatus for adjusting outer diameter of compacted body in forming columnar compacted body using telescopic pipe
JPS5894599A (en) Soil pressure type shield drilling method using water soluble high molecular substance
JPH11217991A (en) Drift excavation device
JP2865907B2 (en) Hardener injection method and hardener injection device
JPS6146636B2 (en)
JP2006249670A (en) Tunnelling machine
JPH086559B2 (en) Dry drilling head and dry drilling method in non-cutting method
JPS61109818A (en) Ground improver