JPS60203728A - Ground improving device - Google Patents

Ground improving device

Info

Publication number
JPS60203728A
JPS60203728A JP1902084A JP1902084A JPS60203728A JP S60203728 A JPS60203728 A JP S60203728A JP 1902084 A JP1902084 A JP 1902084A JP 1902084 A JP1902084 A JP 1902084A JP S60203728 A JPS60203728 A JP S60203728A
Authority
JP
Japan
Prior art keywords
nozzle
excavation
pipe
ground
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1902084A
Other languages
Japanese (ja)
Other versions
JPS641606B2 (en
Inventor
Tatsuo Ito
達男 伊藤
Seiya Ogawa
小川 征也
Tadashi Morimoto
森本 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
NIT Co Ltd Japan
NIT Inc
Original Assignee
Mitsui Construction Co Ltd
NIT Co Ltd Japan
NIT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd, NIT Co Ltd Japan, NIT Inc filed Critical Mitsui Construction Co Ltd
Priority to JP1902084A priority Critical patent/JPS60203728A/en
Publication of JPS60203728A publication Critical patent/JPS60203728A/en
Publication of JPS641606B2 publication Critical patent/JPS641606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To enable formation of a large cavity through a single nozzle, by a method wherein a nozzle, through which high pressure excavating water is injected, is installed to the forward end part of an excavation pipe in a manner that it is made movable horizontally and constantly in a discharge direction through a parallel movement mechanism. CONSTITUTION:A nozzle 17b is installed to the forward end of an excavation pipe 15 of a ground improving device through a parallel movement mechanism 41 formed with plural links 41a, 41b, 41c, and 41d. After the nozzle is inserted through an excavated hole down to a specified depth, with the excavation pipe 15 rotated forwardly and reversely, high-pressure excavation water 29 is injected against a wall surface 32a through the nozzle 17b to form a cavity 32. With the backward movement of a wall surface 32a along with excavation, a hydraulic jack 41e is contracted. The nozzle 17b is protruded in a condition that it is maintained in a horizontal direction, and after excavation is completed, a ground improving agent is fed through the excavation pipe 15 to build an artificial ground.

Description

【発明の詳細な説明】 (a)1発明の技術分野 本発明は、地中にパイロット穴をIN ’1+Jした後
に、高圧水を水平方向に噴射して地中に円筒形の空洞を
形成し、その形成された空洞内にコンクリート等の地盤
改良剤を打設して新たな地盤を形成する地盤改造工法等
に適用するに好適な、地盤改造装置に関する。
Detailed Description of the Invention (a) 1 Technical Field of the Invention The present invention involves forming a cylindrical cavity in the ground by injecting high-pressure water horizontally after drilling a pilot hole in the ground. The present invention relates to a ground modification device suitable for application to a ground modification method, etc. in which a new ground is formed by pouring a soil improvement agent such as concrete into the formed cavity.

(b)、技術の背景 人工地盤の構築ζζ際しては、地中Zζ空洞を掘削して
、その部分をコンクリ−1・等の地盤改良剤で置換し、
結果的に地中に板状の強固な人工地盤を構築する工法が
提案されている(特開昭57−133918、特開昭5
8−24020、特開昭58−26115、FFIji
昭58−20819等)。
(b), Background of the technology When constructing an artificial ground ζζ, an underground Zζ cavity is excavated and that part is replaced with a ground improvement agent such as concrete 1.
As a result, a method of constructing a solid plate-shaped artificial ground underground has been proposed (Japanese Patent Laid-Open No. 57-133918, Japanese Patent Laid-open No. 57-133918,
8-24020, JP-A-58-26115, FFIji
(Sho 58-20819, etc.)

乙の工法においては、地盤の掘削を超 高圧水をノズルから噴射することにより行ってゆくが、
ノズルから協削ずべき空洞の壁面までの距離が掘削の進
行につれて長くなると、超高圧水による掘削能力が低下
してしまう。
In method B, the ground is excavated by injecting ultra-high pressure water from a nozzle.
As the distance from the nozzle to the wall of the cavity to be co-cut increases as excavation progresses, the excavation ability of ultra-high pressure water decreases.

(C)、従来技術と問題点 従って、こうした問題点を解決すへく、待rJFJ M
 58−240201とオイ−1: lt、通常のノズ
ルの他に、転回自在な攪拌翼の先端に別のノズルを設け
、空洞の径が小さいうちは、通常のノズルにより掘削を
行い、空洞の径が拡大しそれまでのノズルでは十分な掘
削能力を発揮することが困難になった場合には、攪拌翼
を転回きせる形で開いてその先端のノズルにより掘削を
行うようにした工法の提案がなされている。この方法で
は、ノズルに近距離掘削用のものと、遠路S掘削用のも
のと2種類必要とすることから、地盤改造装置の構造が
複雑になる欠点があり、しかも攪拌翼は通常では、掘削
管の軸心に沿った形で格納されており、使用時に傘のよ
うに広げて使うことから、空洞の高さとして攪拌翼の転
回に十分な距離を必要とし、余りに扁平な形状の空洞で
は、攪拌翼が格納位置から転回出来ず、掘削が不可能と
なる不都合があった。
(C), Prior art and problems Therefore, in order to solve these problems, please wait for JFJ M
58-240201 and Oi-1: In addition to the normal nozzle, another nozzle is installed at the tip of the rotatable stirring blade, and if the diameter of the cavity is small, excavation is performed with the normal nozzle, and the diameter of the cavity is In cases where it became difficult to demonstrate sufficient excavation capacity with the existing nozzle due to the expansion of the agitator, a method was proposed in which the stirring blade was rotated open and the nozzle at its tip was used to excavate. ing. This method requires two types of nozzles, one for short-distance excavation and one for long-distance S excavation, which has the disadvantage of complicating the structure of the soil modification device. Since it is stored along the axis of the tube and is spread out like an umbrella when in use, the height of the cavity must be sufficient for the rotation of the stirring blades, and if the cavity is too flat, However, there was an inconvenience that the stirring blade could not be rotated from the stored position, making it impossible to excavate.

また、従来どおりに、通常のノズルを 用い、単に掘削水の噴出圧力を高める方法も考えられる
が、掘削水の圧力は、従来でも数百気圧であり、それを
一層高めるには、ポンプ、高圧液体供給管等の付帯設備
が大型化、高精密化してしまう欠点があった。
Another option is to simply increase the jetting pressure of drilling water using a normal nozzle, but the pressure of drilling water is still several hundred atmospheres, and in order to increase it even further, it is necessary to use a pump or high-pressure This method has the disadvantage that ancillary equipment such as liquid supply pipes becomes larger and more precise.

更に、第6図に、従来における別の提 案例を示す。この方法は、単一のノズル17を掘削管1
5に対して水平方向に転回自在に設けた場合であるが、
この方法はノズル17の数が1個で済む半面、ノズル1
7の吐出方向が定まらず円弧を描く乙とから、それによ
って掘削される空洞32も底部が円弧を描き、空洞32
の掘削後に修正掘削の必要が出る等、工程的な無駄が生
じる欠点があった。
Furthermore, FIG. 6 shows another conventional proposal example. This method uses a single nozzle 17
This is a case where it is provided so that it can be freely rotated in the horizontal direction with respect to 5.
Although this method requires only one nozzle 17,
Since the discharge direction of 7 is not determined and draws a circular arc, the cavity 32 excavated by this also has a bottom that draws a circular arc, and the cavity 32
This had the disadvantage of creating process waste, such as the need for corrective excavation after excavation.

(d)0発明の目的 本発明は、前述の欠点を解消すべく、 空洞の扁平形状に係わりなく、単一のノズルで大口径の
空洞の掘削が可能で、しかもポンプ等の付帯設備が小さ
くて済む、地盤改造装置を提供することを第1の目的と
しており、更にノズルの吐出方向を一定に保持し得る地
盤改造装置を提供することを第2の目的とするものであ
る。
(d) 0 Purpose of the Invention In order to eliminate the above-mentioned drawbacks, the present invention is capable of excavating a large-diameter cavity with a single nozzle, regardless of the flat shape of the cavity, and requires only a small amount of incidental equipment such as a pump. The first object of the present invention is to provide a ground modification device that can maintain a constant nozzle discharge direction, and the second purpose is to provide a ground modification device that can maintain a constant nozzle discharge direction.

(e)0発明の構成 即ち、本発明は、掘削管にノズルを、 平行運動4A JRを介して、水平方向に突出移動自在
かっ、ノズルの吐出方向が常に一定となるように設けて
構成される。
(e) 0 Structure of the Invention That is, the present invention is constructed by installing a nozzle in an excavation pipe so that it can be freely projected and moved in the horizontal direction through parallel motion 4A JR, and the discharge direction of the nozzle is always constant. Ru.

(以下余白) (f)0発明の実施例 以下、図面に基づき、本発明の実施例 を、具体的に説明する。(Margin below) (f) 0 Examples of the invention Examples of the present invention will be described below based on the drawings. will be explained in detail.

第1図は本発明による地盤改造装置の 一実施例を示す正面図、第2図は第1図の地盤改造装置
のノズル付近の拡大正面図、第3図は第2図のノズルを
伸長させた際の拡大正面図、第4図は本発明の別の実施
例を示す拡大正面図、第5図は第4図のノズルを伸長さ
せた際の拡大正面図である。
Fig. 1 is a front view showing one embodiment of the ground modification device according to the present invention, Fig. 2 is an enlarged front view of the vicinity of the nozzle of the ground modification device shown in Fig. 1, and Fig. 3 is an enlarged front view of the nozzle shown in Fig. 2 extended. FIG. 4 is an enlarged front view showing another embodiment of the present invention, and FIG. 5 is an enlarged front view when the nozzle of FIG. 4 is extended.

地盤改造装置1は、第1図に示すように、クローラクレ
ーン等の移動重機2を有しており、移動型4A2には運
転席2a、クローラ2b、2b等が設けられている。ま
た、移動重機2には柱状のリーダ3が支持フレーム5を
介して立設されており、リーダ3にはガイドレール3a
が図中上下方向に形成されている。ガイドレール3aに
は、掘削管保持回転装置6が昇降自在に設けられており
、掘削管保持回転装置6には他端がウィンチ(図示せず
。)に巻き掛けられたワイヤ7の一端が接続されている
。従って、ウィンチを正逆方向に駆動してワイヤ7を繰
り出し、又は繰り込むことにより、掘削管保持回転装置
6はリーダ3のガイドレール3aに沿って上下方向、即
ち矢印CXD方向に自由に移動する乙とが出来る。
As shown in FIG. 1, the ground modification device 1 includes a mobile heavy machine 2 such as a crawler crane, and a mobile type 4A2 is provided with a driver's seat 2a, crawlers 2b, 2b, etc. Further, a pillar-shaped leader 3 is erected on the mobile heavy equipment 2 via a support frame 5, and a guide rail 3a is attached to the leader 3.
are formed in the vertical direction in the figure. A drilling pipe holding and rotating device 6 is provided on the guide rail 3a so as to be movable up and down, and one end of a wire 7, the other end of which is wound around a winch (not shown), is connected to the drilling pipe holding and rotating device 6. has been done. Therefore, by driving the winch in the forward and reverse directions to pay out or retract the wire 7, the excavation pipe holding and rotating device 6 freely moves in the vertical direction, that is, in the direction of the arrow CXD, along the guide rail 3a of the leader 3. I can do it with O.

掘削管保持回転装置6には、チャック 9がt原則管保持回転装置6に内蔵されたモータ等の回
転駆動手段10により矢印A1B方向に回転自在に設け
られており、またチャック9には、掘削管15を構成す
る中空筒状のロッド13が、把持固定自在に貫通設置さ
れており、ロッド13の上下両端には接続用のフランジ
13a、13’aが形成されている。ロッド13の、第
1図下方には、複数のロッド13がフランジ13aを介
してボルト等の締結手段により直列に接続されており、
このフランジ結合により掘削管15は、たとえ掘削管1
5が矢印A1B方向に正逆回転しても各ロッド13間の
接続に、ネジによる接続に際して生じるような緩みが生
しるようなことは無い。掘削管15の下端は外部に開放
された開口15aを形成しており、更に下端には掘削用
のビット16が装着されている。また、ピッ′)・16
のやや上方には超音波測距センサ19、平行運動機構4
1が設けられている。
The excavation pipe holding/rotating device 6 is provided with a chuck 9 rotatable in the direction of arrow A1B by a rotary drive means 10 such as a motor built in the principle pipe holding/rotating device 6. A hollow cylindrical rod 13 constituting the tube 15 is inserted through the tube 13 so as to be freely graspable and fixed, and flanges 13a and 13'a for connection are formed at both upper and lower ends of the rod 13. A plurality of rods 13 are connected in series at the lower part of the rod 13 in FIG. 1 via flanges 13a by fastening means such as bolts.
This flange connection allows the excavation pipe 15 to
Even when the rods 5 are rotated forward and backward in the direction of arrow A1B, the connections between the rods 13 do not become loose as would occur when connecting with screws. The lower end of the excavation pipe 15 forms an opening 15a open to the outside, and a drilling bit 16 is attached to the lower end. Also, Pi')・16
Slightly above the ultrasonic range sensor 19 and parallel movement mechanism 4
1 is provided.

平行運動機構41は、第2図に示すように、複数のリン
ク41 a、 4 l b、 4 ] c、 41dを
有しており、リンク41aと41bの回転中心とリンク
41cと41dの回転中心間には油圧ジヤツキ41eが
上下両側に突出自在に設けられたラム41f、41fの
先端を枢着させた形で設けられている。
As shown in FIG. 2, the parallel motion mechanism 41 has a plurality of links 41 a, 4 l b, 4 c, and 41 d, and the rotation center of the links 41 a and 41 b and the rotation center of the links 41 c and 41 d are A hydraulic jack 41e is provided in between, with the tips of rams 41f, 41f protruding from both the upper and lower sides pivotally mounted.

リンク41bと41dの図中左方先端にはノズル17が
その吐出口17bを水平方向に向けた形で枢着されてお
り、ノズル17には可撓性を有する高圧液体供給管20
が接続されている。高圧液体供給管20ば掘削管15の
軸心方向、即ち第1図上方へ向けて、掘削管15外周に
治った形で伸延設置され、その先端は掘削管保持回転装
置6下部にまで達し、そこで可撓性を有するフレキシブ
ルチューブ22に接続されている。
A nozzle 17 is pivotally attached to the left end of the links 41b and 41d with its discharge port 17b facing horizontally, and a flexible high-pressure liquid supply pipe 20 is attached to the nozzle 17.
is connected. The high-pressure liquid supply pipe 20 is extended in the axial direction of the excavation pipe 15, that is, upward in FIG. There, it is connected to a flexible tube 22 having flexibility.

一方、掘削管15の上端には、同様に可撓性を有する′
フレキシブルチューブ25が接続されている。
On the other hand, at the upper end of the excavation pipe 15, a
A flexible tube 25 is connected.

地盤改造装置1は以上のような構成を 有するので、地盤改造装置1を用いて人工地盤を構築す
るには、まず掘削管保持回転装置6をリーダ3のガイド
レール3aに沿って矢印C方向に引き上げ、掘削管保持
回転装置6内の回転駆動手段10を駆動して、チャック
9を例えばA方向に回転駆動させる。チャック9が回転
すると、チャック9に把持された掘削管15もA方向に
回転し、掘削管15先端のビット16は、掘削管保持回
転装置6及び掘削管15の重昆により第1図下方に向け
て掘削を開始する。掘削管保持回転装置6がリーダ3に
治ってD方向に移動し、掘削管15従ってビット16が
下方に進むにつれて、土壌中にはC,D方向にビット1
6の軌跡としてのパイロット穴26が掘削形成される。
Since the ground modification device 1 has the above configuration, in order to construct an artificial ground using the ground modification device 1, first move the excavation pipe holding and rotation device 6 along the guide rail 3a of the leader 3 in the direction of arrow C. The chuck 9 is pulled up, and the rotation driving means 10 in the excavation pipe holding and rotation device 6 is driven to rotate the chuck 9, for example, in the A direction. When the chuck 9 rotates, the drilling pipe 15 gripped by the chuck 9 also rotates in the direction A, and the bit 16 at the tip of the drilling pipe 15 is moved downward in FIG. Start drilling towards the target. As the excavation pipe holding rotation device 6 moves in the D direction on the leader 3, and the excavation pipe 15 and therefore the bit 16 move downward, the bit 1 is disposed in the soil in the C and D directions.
A pilot hole 26 as a locus of 6 is drilled and formed.

パイロット穴26には泥水27を給水し、その静水圧に
よりパイロット穴26の崩壊を防ぐとともに、図示しな
いサクションポンプによりフレキシブルチューブ25を
介してパイロット穴26中の泥水27を、ビット16に
よって生じる掘削土砂と共にスラリー化した形で、を原
則管開口1.5aから掘削管15内部の各ロッド13を
通してパイロット穴26外部に吸い上げ排出する。排出
された泥水27は共に吸引した土砂を分離した後に、パ
イロット穴26に戻され、継続的に掘削に使用される。
The pilot hole 26 is supplied with muddy water 27 to prevent the pilot hole 26 from collapsing due to its hydrostatic pressure, and the muddy water 27 in the pilot hole 26 is pumped through the flexible tube 25 by a suction pump (not shown) to remove the excavated earth and sand generated by the bit 16. In principle, the slurry is sucked up and discharged from the pipe opening 1.5a through each rod 13 inside the excavation pipe 15 to the outside of the pilot hole 26. The discharged muddy water 27 is returned to the pilot hole 26 after separating the suctioned earth and sand, and is continuously used for excavation.

を原型に際して、掘削管15を回転駆動するチャック9
は回転駆動手段10により、360°の角度範囲で正転
と逆転を繰り返17ながら掘削を継続していくが、掘削
管15は360°以」二回転することば無いので掘削管
15上部にフランジ13aを介して固定的に接続された
フレキシブルチューブ25からの泥水27の排出は、フ
レキシブルチューブ25に極度のねしれを与えることな
く、円滑に行われる。
A chuck 9 that rotationally drives the excavation pipe 15 is used as a prototype.
The rotary driving means 10 continues to excavate by repeating forward and reverse rotations 17 within an angular range of 360 degrees, but since the excavation pipe 15 does not rotate more than 360 degrees, a flange is attached to the top of the excavation pipe 15. The muddy water 27 is smoothly discharged from the flexible tube 25 which is fixedly connected via the flexible tube 13a without causing excessive twisting to the flexible tube 25.

なお、パイロット穴26のI原則中は、平行運動機構4
1の油圧ジヤツキ41eは第2図に示すように、そのラ
ム41.f 、 41fが共に伸長した状態となってお
り、従って、平行運動機構41はノズル17を掘削管J
5側に折り畳んだ状態となっている。
In addition, during the I principle of the pilot hole 26, the parallel motion mechanism 4
1, the hydraulic jack 41e has its ram 41.1 as shown in FIG. f and 41f are both in an extended state, so the parallel movement mechanism 41 moves the nozzle 17 into the excavation pipe J.
It is in a state where it is folded to the 5th side.

こ°の状態で(よ、ノズル17の先端から掘削管15の
軸心までの距離L1はパイロン)・穴26の半径よりも
小さいので、ビット16及びta削管15によるパイロ
ット穴26のt原則は、ノズル17が掘削中のパイロッ
ト穴26の壁面に接触する乙となく円滑に行われる。
In this state (the distance L1 from the tip of the nozzle 17 to the axis of the drilling pipe 15 is the pylon), the radius of the hole 26 is smaller than the radius of the hole 26, so the principle of drilling the pilot hole 26 with the bit 16 and the drilling pipe 15 is This is carried out smoothly without the nozzle 17 coming into contact with the wall surface of the pilot hole 26 being excavated.

こうして一定の深さだけパイロット穴 26を1屈削し、掘削管保持回転装置6がリーダ3の下
方にまで達すると、回転駆動手段10の駆動を停止して
掘削動作を停止させると共に、チャック9による1屈削
管15の把持を中止し、掘削管15の上端のフレキシブ
ルチューブ25を外して新たにロッド】3を接続する。
In this way, when the pilot hole 26 is cut to a certain depth and the drilling pipe holding and rotating device 6 reaches below the leader 3, the driving of the rotational drive means 10 is stopped to stop the drilling operation, and the chuck 9 1. Stop holding the bent pipe 15, remove the flexible tube 25 at the upper end of the excavated pipe 15, and connect a new rod 3.

そこで、掘削管保持回転装置6のみをリーダ3に沿って
C方向に引き上げて、当該新たに接続されtxロッド1
3部分を介して掘削管15を把持する。
Therefore, only the excavation pipe holding and rotating device 6 is pulled up in the C direction along the leader 3, and the newly connected tx rod 1 is
Grip the excavation pipe 15 through three parts.

次いてフレキシブルチューブ25を新たに接続されたロ
ッド13の上端に固定接続し、この状態て再度を原則管
保持回転装置6の回転駆動手段10 re駆動してパイ
ロット穴26の1屈削を開始する。こうして、パイロッ
ト穴26が徐々にD方向に形成されてゆき、深さがDP
にまで達したところで、ビット16による掘削を止めて
、掘削管体持回転装W6を掘削管15と共にLlだけ引
き上げる。そこで、今度はフレキシブルチューブ22か
ら超高圧水29を、高圧液体供給管20を介してノズル
17から噴出させる。
Next, the flexible tube 25 is fixedly connected to the upper end of the newly connected rod 13, and in this state, the rotary drive means 10 of the tube holding and rotating device 6 is driven again to start cutting the pilot hole 26 once. . In this way, the pilot hole 26 is gradually formed in the D direction, and the depth becomes DP.
When the excavation by the bit 16 is reached, the excavation by the bit 16 is stopped, and the excavation pipe body holding rotary device W6 is pulled up by Ll together with the excavation pipe 15. Therefore, this time, ultra-high pressure water 29 is ejected from the nozzle 17 from the flexible tube 22 via the high-pressure liquid supply pipe 20.

この時、掘削管保持回転装置6をt余々にD方向に降下
させつつ、前述と同様に掘削管15を360°に亙り正
逆方向に往復回転させてゆくと、地盤31中には超高圧
水29により円筒形の空洞32が形成されてゆく 。
At this time, when the excavation pipe holding rotation device 6 is lowered in the direction D by an excessive amount of t, and the excavation pipe 15 is rotated reciprocatingly in the forward and reverse directions over 360 degrees as described above, there are A cylindrical cavity 32 is formed by the high pressure water 29.

ノズル17から噴出する超高圧水29 の18!削能力は、ノズル17の吐出口17bから水平
方向に距離が離れるにつれて低下するので、掘削中の空
洞32の直径が、掘削の進行につれて拡込してゆくにし
たがって、油圧ジヤツキ41(3を駆動してラム4If
、41fを等速度で、第2図矢印E方向に後退させる。
Ultra-high pressure water spouting from nozzle 17 29 18! The cutting ability decreases as the distance from the discharge port 17b of the nozzle 17 increases in the horizontal direction. Ram 4If
, 41f at a constant speed in the direction of arrow E in FIG.

すると、平行運動機構41のリンク41 n、 41 
b、 41 c、 41dを介してノズル17はその吐
出口17bが水平方向を維持した状態のまま、C方向、
即ち空洞32の掘削中の壁面32a方向に突出し、第3
図に示すようにノズル17先端と掘削管15軸心との距
離がL2に達するまで突出移動する。すると、ノズル1
7と被掘削面である空洞壁面32aとの距離Xが、それ
までのノズル17の格納状態に比して大幅に短縮され、
ノズル17からの超高圧水29による掘削能力は格段に
改善され、大きな直径を有する空洞32を円滑にかつ確
実に掘削成形することが出来る。
Then, the links 41 n, 41 of the parallel motion mechanism 41
b, 41c, and 41d, the nozzle 17 is moved in the C direction, while its discharge port 17b remains in the horizontal direction.
That is, the third
As shown in the figure, the nozzle 17 protrudes and moves until the distance between the tip of the nozzle 17 and the axis of the excavation pipe 15 reaches L2. Then, nozzle 1
7 and the cavity wall surface 32a, which is the surface to be excavated, is significantly shortened compared to the previous storage state of the nozzle 17,
The excavation ability of the ultra-high pressure water 29 from the nozzle 17 is significantly improved, and a cavity 32 having a large diameter can be smoothly and reliably excavated and formed.

なお、高圧液体供給管20は可撓性を 有するように形成されているので、ノズル17が水平方
向であるG、H方向に移動しても高圧液体供給管20と
ノズル17どの接続状態は良好に維持される。更に、空
洞32の切削に際して、掘削管15は3600の角度範
囲でしか回転しないので、掘削管15に設置された高圧
液体供給管20とフレキシブルチューブ22との接続状
態は、デユープ22がfa!削管15に絡まることなく
良好に維持され、超高圧水29の供給は円滑に行われ、
従って、空洞32の形成も何らの支障も生じること無く
行われる。なお、掘削中の空洞32の形状は、超音波測
距センサ19から空洞壁面32aに超音波33を発信さ
せてその反射波を捕捉し、超音波測距センサ19から壁
面32aまでの距離を計測ずろことにより正確に把握ず
ろことが出来る。
Note that since the high-pressure liquid supply pipe 20 is formed to have flexibility, even if the nozzle 17 moves in the horizontal directions G and H, the connection between the high-pressure liquid supply pipe 20 and the nozzle 17 remains good. will be maintained. Furthermore, when cutting the cavity 32, the excavation pipe 15 rotates only within an angle range of 3600 degrees, so the connection state between the high-pressure liquid supply pipe 20 installed in the excavation pipe 15 and the flexible tube 22 is such that the duplex 22 is fa! It is well maintained without getting entangled with the cut pipe 15, and the supply of ultra-high pressure water 29 is performed smoothly.
Therefore, the formation of the cavity 32 is also performed without any hindrance. The shape of the cavity 32 during excavation is determined by transmitting ultrasonic waves 33 from the ultrasonic distance measurement sensor 19 to the cavity wall surface 32a, capturing the reflected waves, and measuring the distance from the ultrasonic distance measurement sensor 19 to the wall surface 32a. It is possible to accurately grasp the situation by checking the details.

こうして、平行運動機構41を適宜、 掘削中の空洞32の直径に適合させる形で1申縮させる
ことにより、ノズル17をG1ト1方向に移動さぜ、ノ
ズル17の掘削能力を高度に維持しつつ作業を行ってゆ
(。
In this way, by appropriately retracting the parallel movement mechanism 41 by 1 in a manner that matches the diameter of the cavity 32 being excavated, the nozzle 17 is moved in the G1 direction and the excavation ability of the nozzle 17 is maintained at a high level. I'm going to work on it (.

所定の大きさの空洞32が地盤31中 に形成されたところで、今度は掘削管15を回転させな
がら一ノズル17を空洞32の下部からC方向に引き上
げつつ、フレキシブルチューブ22からノズル17ヘセ
メントミルク等の地盤改良剤を供給し、ノズル17がら
空洞32内へ地盤改良剤を高圧で噴射して空洞32内を
地盤改良剤で満たす(なお、掘削管15を)・レミー管
として用い、開口15aを介して空洞32及びパイロッ
)・穴26中にコンクリ−1・等の地盤改良剤を充填し
、でも良い。)。この際も、ノズル17を適宜G、H方
向に移動させつつ改良剤を噴出させることにより、空洞
32内に効率よくかつ確実に改良剤を充填する〜ことが
出来る。
Once a cavity 32 of a predetermined size has been formed in the ground 31, one nozzle 17 is pulled up from the bottom of the cavity 32 in the direction C while rotating the excavation pipe 15, and cement milk is poured from the flexible tube 22 into the nozzle 17. , etc., and inject the ground improving agent into the cavity 32 from the nozzle 17 at high pressure to fill the cavity 32 with the soil improving agent (the excavated pipe 15 is used as a Remy pipe, and the opening 15a is filled with the soil improving agent). A ground improvement agent such as concrete 1 may be filled into the cavity 32 and the pilot hole 26 through the hole 26. ). At this time as well, by spouting the improving agent while moving the nozzle 17 appropriately in the G and H directions, the improving agent can be efficiently and reliably filled into the cavity 32.

こうして、地盤改良剤を空洞32及び パイロット穴26内に充填させっつ掘削管15をC方向
に引き上げてゆくと、充填された改良剤は凝固して地盤
31中には強固な人工地盤が構築されることになる。
In this way, when the ground improvement agent is filled into the cavity 32 and the pilot hole 26 and the excavation pipe 15 is pulled up in the direction C, the filled improvement agent solidifies and a strong artificial ground is constructed in the ground 31. will be done.

−個所の人工地盤が構築されtコところで、移rfdJ
重4312を移動させて、当該構築された人工地盤に隣
接した位置にパイ四ツl−穴26を新たにt原則して、
空洞32を構築し、更に地盤改良剤を充填して当該空洞
32を先に構築されtコ空洞32(既に地盤改良剤が充
填固化している。)とを水平方向に連続させて、人工地
盤を拡張してゆく。
-By the way, artificial ground was constructed in some places, and the transfer RFDJ
Move the heavy weight 4312 and newly make four holes 26 in the position adjacent to the constructed artificial ground,
A cavity 32 is constructed, and a soil improvement agent is then filled, and the cavity 32 is horizontally connected to the previously constructed cavity 32 (the soil improvement agent has already been filled and solidified) to form an artificial ground. will be expanded.

なお、ノズル17の平行運動機$41 としては、ノズル17の超高圧水等の掘削水の吐出方向
が常に一定の方向を維持しつつ、ノズル1′7を水平方
向に突出移動させうる限り、どのような構成の機構を用
いてもよく、例えば、第4図及び第5図に示すように、
平行運動機構41として平行うランク機構を用い、油圧
ジヤツキ41eによりリンク41dを駆動して、リンク
41c先端に固定されたノズル17を距11LIからL
2にまで突出さぜるようにすることも当然可能である。
Note that the parallel movement machine $41 for the nozzle 17 can be used as long as the nozzle 1'7 can be moved horizontally while the discharge direction of excavation water such as ultra-high pressure water from the nozzle 17 always maintains a constant direction. Any structure of mechanism may be used, for example, as shown in FIGS. 4 and 5,
A horizontal rank mechanism is used as the parallel movement mechanism 41, and a hydraulic jack 41e drives the link 41d to move the nozzle 17 fixed to the tip of the link 41c from the distance 11LI to L.
Of course, it is also possible to make it protrude up to 2.

更に、を層重管保持回転装置6を支持ガイドするリーダ
3等のガイド手段は、必ずしも移動重機2等に装着され
ている必要は無いが、移動型vIt2にガイド手段が設
けられていると、多数のパイロット穴26を能率良く掘
削することが5J能となる。
Furthermore, the guide means such as the leader 3 for supporting and guiding the layered pipe holding and rotating device 6 does not necessarily need to be attached to the mobile heavy equipment 2 etc., but if the guide means is provided on the mobile type vIt2, Efficiently drilling a large number of pilot holes 26 results in 5J performance.

(g)6発明の効果 以上、説明したように、本発明によれ ば、掘削管15にノズル17を平行運動機構41を介し
て、水平方向に突出移動自在かつ、ノズル17の吐出方
向が常に一定となるように設けたので、ノズル17を掘
削時の空洞32の径に応じて適宜水平方向に移動させる
ことにより、ノズル17と掘削中の壁面32aとの距離
Xを短かく維持することが可能となり、大口径の空洞3
2を、ノズル17からの超高圧水等の掘削水の吐出圧力
を何ら上げる乙となく容易に1a!削することが出来、
ポンプ等の付帯設φlitが小型のもので済み、地盤改
造装置1全体の構成を簡略小型化することが出来る。更
に、従来の、攪拌翼を用いて通常のノズルとは別に設け
られたノズルを転回させて大口径の空洞を掘削する方法
に比して、空洞の扁平度に係わりなくノズルを自由に水
平方向に突出させることが出来るばかりか、単一−涯ノ
ズルで大口径の空洞を有効に掘削することが出来るよう
になり、簡単な構成で強力な掘削能力を発揮することが
可能となる。
(g) 6 Effects of the Invention As explained above, according to the present invention, the nozzle 17 can be moved horizontally to the excavation pipe 15 via the parallel movement mechanism 41, and the discharge direction of the nozzle 17 is always fixed. Since the distance X is set to be constant, the distance X between the nozzle 17 and the wall surface 32a during excavation can be kept short by moving the nozzle 17 in the horizontal direction as appropriate depending on the diameter of the cavity 32 during excavation. Large diameter cavity 3
2, 1a easily without increasing the discharge pressure of excavation water such as ultra-high pressure water from the nozzle 17! It is possible to remove
The incidental equipment φlit such as a pump can be small, and the overall configuration of the ground modification device 1 can be simplified and miniaturized. Furthermore, compared to the conventional method of excavating a large-diameter cavity by rotating a nozzle installed separately from a normal nozzle using a stirring blade, the nozzle can be freely moved horizontally regardless of the flatness of the cavity. Not only can the nozzle be made to protrude, but also a large-diameter cavity can be effectively excavated with a single nozzle, making it possible to demonstrate powerful excavation ability with a simple configuration.

更に、ノズル17の吐出方向は常に水 平方向に一定に維持されるので、第6図に示すノズル1
7を用いた場合のように、空洞32底部が円形に掘削さ
れるような不都合な事態の生しることが無く、信頼性の
高い地盤改造装置1の提供が可能となる。
Furthermore, since the discharge direction of the nozzle 17 is always maintained constant in the horizontal direction, the nozzle 1 shown in FIG.
7, the bottom of the cavity 32 is not excavated in a circular manner, and a highly reliable ground modification device 1 can be provided.

なお、平行運動機構41が泥水27中 の掘削土砂を攪拌するので、掘削管15からの泥水27
及びS耐土砂の吸い上げ排出を容易に行うことができる
Note that since the parallel motion mechanism 41 stirs the excavated soil in the muddy water 27, the muddy water 27 from the excavated pipe 15
and S can easily suck up and discharge earth and sand,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による地盤改造装置の 一実施例を示す正面図、第2図は第1図の地盤改造装置
のノズル付近の拡大正面図、第3図は第2図のノズルを
伸長させた際の拡大正面図、第4図は本発明の別の実施
例を示す拡大正面図、第5図は第4図のノズルを伸長さ
せた際の拡大正面図、第6図は従来のノズルの提案例を
示す正面図である。 1・・・・・地盤改造装置 15・・・・・・掘削管 16・・・・・・ビット 17・・・・・・ノズル 29・・・・・・掘削水(超高圧水) 31・・・・・・地盤 41・・・・・平行運動機構 出願人 三井建設株式会社 株式会社エヌ・アイ・ティ 代理人 fp理士 泪1)伸二 第6図 手続補正書(方式) 1 事件の表示 昭和59年特許願第19020号 2 発明の名称 地盤改造装置 3 補正をする者 事件との関係 特許出願人 住所 東京都千代田区岩本町3丁目10番1号氏名(名
称) 三井建設株式会社 代表者町田良治 住所 東京都町田市図師町1752番地氏名(名称) 
ニッサンフリーズ株式会社代表者 後 藤 元 宏 6 補正の対象 明細書全文 7 補正の内容 明細書の浄書(内容に変更なし)
Fig. 1 is a front view showing one embodiment of the ground modification device according to the present invention, Fig. 2 is an enlarged front view of the vicinity of the nozzle of the ground modification device shown in Fig. 1, and Fig. 3 is an enlarged front view of the nozzle shown in Fig. 2 extended. 4 is an enlarged front view showing another embodiment of the present invention, FIG. 5 is an enlarged front view of the nozzle shown in FIG. 4 when extended, and FIG. 6 is a conventional nozzle. FIG. 2 is a front view showing a proposed example. 1...Ground modification device 15...Drilling pipe 16...Bit 17...Nozzle 29...Drilling water (ultra high pressure water) 31. ...Ground 41...Parallel motion mechanism Applicant Mitsui Construction Co., Ltd. NIT Co., Ltd. Agent FP Physician Tomi 1) Shinji Diagram 6 Procedural Amendment (Method) 1 Indication of the case Showa 1959 Patent Application No. 19020 2 Name of the invention Ground modification device 3 Relationship with the case of the person making the amendment Patent applicant address 3-10-1 Iwamoto-cho, Chiyoda-ku, Tokyo Name (Name) Mitsui Construction Co., Ltd. Representative Machida Ryoji Address: 1752 Zushicho, Machida City, Tokyo Name:
Nissan Freeze Co., Ltd. Representative Motohiro Goto 6 Full text of the specification to be amended 7 Engraving of the specification of the amendment (no changes to the content)

Claims (1)

【特許請求の範囲】 先端にビットの装着された回転駆動自 在な掘削管を有し、前記掘削管の先端部にノズルを設け
、該ノズルから高圧laI削水を噴出させて、パイロッ
ト穴周囲地盤の掘削を行う地盤改造装置において、前記
掘削管に前記ノズルを、平行連fdJ機4(ffを介し
て、水平方向に突出移動自在かっ、ノズルの吐出方向が
常に一定となるように設けて構成した地盤改造装置。
[Claims] It has a rotatable drilling pipe with a bit attached to its tip, a nozzle is provided at the tip of the drilling pipe, and high-pressure laI cutting water is spouted from the nozzle to drill the ground around the pilot hole. In the ground remodeling equipment for excavating, the nozzle is installed in the excavation pipe so that it can be freely projected and moved in the horizontal direction via a parallel FDJ machine 4 (FF), and the discharge direction of the nozzle is always constant. ground modification equipment.
JP1902084A 1984-02-04 1984-02-04 Ground improving device Granted JPS60203728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1902084A JPS60203728A (en) 1984-02-04 1984-02-04 Ground improving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1902084A JPS60203728A (en) 1984-02-04 1984-02-04 Ground improving device

Publications (2)

Publication Number Publication Date
JPS60203728A true JPS60203728A (en) 1985-10-15
JPS641606B2 JPS641606B2 (en) 1989-01-12

Family

ID=11987789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1902084A Granted JPS60203728A (en) 1984-02-04 1984-02-04 Ground improving device

Country Status (1)

Country Link
JP (1) JPS60203728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553175B1 (en) * 1999-05-31 2006-02-21 주식회사 동아환경기술개발 Method for creating improved ground and apparatus for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553175B1 (en) * 1999-05-31 2006-02-21 주식회사 동아환경기술개발 Method for creating improved ground and apparatus for the same

Also Published As

Publication number Publication date
JPS641606B2 (en) 1989-01-12

Similar Documents

Publication Publication Date Title
US4904119A (en) Process for placing a piling in the ground, a drilling machine and an arrangement for implementing this process
US4640649A (en) Method and apparatus for forming an underground solidification structure
JP2008106426A (en) Method for burying preboring-type precast concrete pile
JP2001003363A (en) Crushing treatment device for underground buried pile
JPS60203728A (en) Ground improving device
JP4359931B2 (en) Pile burying method by medium digging method
JPH0216814B2 (en)
JPS61109818A (en) Ground improver
JPH01226928A (en) Device for improving ground
CN110080679A (en) The control method of heading equipment and heading equipment
JP2000001847A (en) Formation method of underground pile and formation monitoring mechanism thereof
JPH0216813B2 (en)
JPH0579766B2 (en)
JP2005139863A (en) Ground improving body forming method and apparatus
JPS6131244B2 (en)
JP7395168B1 (en) Hoses winder and soil improvement machine for soil improvement materials
JP2001003362A (en) Pull-out device for underground buried pile
JPS641607B2 (en)
JP3031458B2 (en) Drilling method of crossing pit from existing pit and its rig
JPS61162626A (en) Underground excavating device
JPS6038516B2 (en) How to excavate a shaft in soft ground
JP2004162504A (en) Excavating machine
JP2006045773A (en) Underground jacking device
JP3241898B2 (en) Method and apparatus for adjusting outer diameter of compacted body in forming columnar compacted body using telescopic pipe
JPS63122886A (en) Excavating bit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees