JPS60202942A - Formation of thin-film - Google Patents

Formation of thin-film

Info

Publication number
JPS60202942A
JPS60202942A JP5824784A JP5824784A JPS60202942A JP S60202942 A JPS60202942 A JP S60202942A JP 5824784 A JP5824784 A JP 5824784A JP 5824784 A JP5824784 A JP 5824784A JP S60202942 A JPS60202942 A JP S60202942A
Authority
JP
Japan
Prior art keywords
reaction chamber
sample
film
plasma
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5824784A
Other languages
Japanese (ja)
Other versions
JPH0614522B2 (en
Inventor
Akira Haruta
亮 春田
Atsushi Hiraiwa
篤 平岩
Keizo Suzuki
敬三 鈴木
Kiichiro Mukai
向 喜一郎
Shigeru Nishimatsu
西松 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59058247A priority Critical patent/JPH0614522B2/en
Publication of JPS60202942A publication Critical patent/JPS60202942A/en
Publication of JPH0614522B2 publication Critical patent/JPH0614522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To improve coatability to a foundation stepped section by directly connecting a sample to a DC power supply or a RF power supply and increasing potential difference between plasma and the sample. CONSTITUTION:An Si substrate 12 on a sample base 11 is heated by a sheathed heater 13, a reaction chamber 7 is evacuated, and a reaction gas is introduced into the chamber 7. A mirror magnetic field is formed by a solenoid coil 14 and a permanent magnet 15, microwaves are generated by a magnetron 8 and propagated in a waveguide 9, and plasma is generated in a discharge tube 10 while RF voltage is applied to the base 11 by a RF power supply 16 and an silicon nitride film is shaped.

Description

【発明の詳細な説明】 〔発明の利用分野〕 不光明はマイクロ波励起プラズマを用いた薄膜形成方法
に係り、特に基板上の段差に苅して被覆江のず<’Iし
たtす膜の形成方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] Fukomei relates to a method of forming a thin film using microwave-excited plasma, and in particular, the method of forming a thin film using microwave-excited plasma. Regarding the forming method.

〔発明の背景〕[Background of the invention]

プラズマを用いた気相成長法(以下、プラズマCV I
J [C:hemical Vapor Deposi
tion]法とa己す)は、通常のCVD法と比べて低
温で良質の簿膜を形成することができる。そのため、プ
ラズマCV 1.1法で形成した窒化珪素1摸は、半導
体集積回路にj3いてチップパッシベーシJン膜および
多層配ARM構造の層間絶縁膜として用いられている(
 K 、M ukaj 他、 r A N ebr I
 ntegrationT+p、cl+noLoBy 
ThaL Enables ForlIlj、ng B
ondingPads on Active Area
sJ I E DM 1 9 8 1T echnic
al Di(HesL pp 62−65 )。従来、
この窒化珪素膜は主に、S i I−14とN H3を
反応ガスとして用い、平行平板電極もしくはコイルにJ
<F電圧を印加することによりプラズマを発生させ、膜
形成を行ってきた。しかし、近年、窒化珪素膜を使用し
たMO8+−ランジスタの特性が動作中に変動するとい
う現象が発見された (R、B 、 F aj、r他、
r T hreshold −V oljaBe T 
n5Lability inM OS F E T′s
 Due to Channcl HoL−J−1o1
eEm、1ssionJ I E E E: Tran
sa+Jions onElccLron Dcvic
es、Vol、、28,1981.pp83−94)。
Vapor phase growth method using plasma (hereinafter referred to as plasma CVI)
J [C: Chemical Vapor Deposit
tion] method and a self method) can form a film of good quality at a lower temperature than the normal CVD method. Therefore, a silicon nitride film formed by the plasma CV 1.1 method is used in semiconductor integrated circuits as a chip passivation film and as an interlayer insulating film in a multilayer ARM structure (
K, Mukaj et al., r A N ebr I
integrationT+p, cl+noLoBy
ThaL Enables ForlIlj, ng B
ondingPads on Active Area
sJ I E DM 1 9 8 1T technic
al Di (HesL pp 62-65). Conventionally,
This silicon nitride film mainly uses Si I-14 and N H3 as reaction gases, and J is applied to parallel plate electrodes or coils.
Film formation has been performed by generating plasma by applying <F voltage. However, in recent years, a phenomenon has been discovered in which the characteristics of MO8+- transistors using silicon nitride films fluctuate during operation (R, B, Faj, r et al.
r T threshold -V oljaBe T
n5Lability inMOS FET's
Due to Channel HoL-J-1o1
eEm, 1ssionJ IE E E: Tran
sa+Jions onElccLron Dcvic
es, Vol., 28, 1981. pp83-94).

こ九は、プラズマCVD法で形成した窒化珪素膜中に多
足に含まれる水素によるものである。
This is due to the large amount of hydrogen contained in the silicon nitride film formed by plasma CVD.

本発明者の一部は先に、合口普及しているプラズマCV
D装置とは異なり、マイクロ波によりプラズマを励起す
るプラズマCVD装置を用い、S i F 4とN2と
から成る混合ガスを反応ガスとして、水素含有ユの極め
て少ない窒化珪素膜を形成する方法を提案した(特願昭
57−108336)。上記発明の要黛を以下に説明す
る。水素含有量を減らずためには、水素を含まないハロ
ゲン化珪素を反応ガスとして用いる必要がある。しかし
、従来のように、Rli’放電型装置を用いたのではほ
とんど膜が成長しなかった。これは、通常用いられるS
 j H4に比へハロゲン化珪素は解離エネルギーが高
いため、分解しにくいことによる。分Mを促進させるた
めには、放電圧力を下げてプラズマ温度を−にげる必要
があるが、RF放電型装置では、力文電圧力を−1・げ
るとプラズマ密度が低下するため、かえって形成速度が
低下する。
Some of the inventors of the present invention have previously described the plasma CV that has become widespread.
Unlike the D device, we proposed a method of forming a silicon nitride film with extremely low hydrogen content using a plasma CVD device that excites plasma with microwaves and using a mixed gas of SiF4 and N2 as the reaction gas. (Patent application No. 57-108336). The main points of the above invention will be explained below. In order not to reduce the hydrogen content, it is necessary to use hydrogen-free silicon halide as the reaction gas. However, when the Rli' discharge type device was used as in the past, almost no film was grown. This is the commonly used S
j Compared to H4, silicon halide has a high dissociation energy and is therefore difficult to decompose. In order to accelerate M, it is necessary to reduce the plasma temperature by lowering the discharge pressure, but in an RF discharge type device, if the force is increased by -1, the plasma density decreases, so the formation Speed decreases.

しかし、マイクU波放電においては低圧力ドでもプラズ
マ密瓜の高い放電が得られるので、ハロゲン化珪素によ
る膜形成が可能となり、水素含有量の極めて少ない窒化
珪素膜が実現できる。
However, in the case of microphone U-wave discharge, a discharge with high plasma density can be obtained even at low pressure, so it is possible to form a film using silicon halide, and a silicon nitride film with extremely low hydrogen content can be realized.

しかし、上記方法を半導体集積回路における多層配録4
1)造の層間絶縁膜として適用しようとすると、以下の
問題点のあることが明らかになった。
However, the above method cannot be applied to multilayer interconnects in semiconductor integrated circuits.
1) When trying to apply the method as an interlayer insulating film, it became clear that there were the following problems.

すなわちAQ2店配線構造の層1?jl絶縁収として、
上述のマイクロ波を用いたプラズマCVD法(以下、μ
波プラズマCVD法と称す)によって兇化珪索膜を形成
したところ、第2層配線に断HjHが生じた。その原因
を調へるために、試イ°:1の断面形状を走査型電子顕
微鏡により観察した。すなわち、第1図に示したように
、Si基板J上に通″;:(゛の蒸着法およびリソグラ
フィー・ドライエツチング技術により厚さ0.9μm2
幅3μmの第1層Af!、配線2を形成した後、μ波プ
ラズマcVD法により、厚さ1.5μmの窒化珪素膜3
を形成し、更に第15八β配線と同様の方法で諒Afl
配線2と垂直方向に厚さ0.9μII+、幅3μmの第
2QAQ配線4を形成した。このようにすると、第1図
から明らかなように、第1層An配、il!i12の端
において第2QAQ配線4に断線が生じていることが認
めらイした。これは、層間絶B膜として用いた窒化珪素
膜3が第15八β配線2を十分に被覆することが出来ず
、特に配線の端において溝5が生じたために発生すると
考えられる。
In other words, layer 1 of the AQ2 store wiring structure? As a jl insulation,
The above-mentioned plasma CVD method (hereinafter referred to as μ) using microwaves
When a silica silica film was formed by a wave plasma CVD method, a disconnection HjH occurred in the second layer wiring. In order to investigate the cause, the cross-sectional shape of sample A:1 was observed using a scanning electron microscope. That is, as shown in FIG. 1, a film with a thickness of 0.9 μm 2
The first layer Af! with a width of 3 μm! , After forming the wiring 2, a silicon nitride film 3 with a thickness of 1.5 μm is formed by μ-wave plasma CVD method.
is formed, and further Afl is formed in the same manner as the 15th 8th β wiring.
A second QAQ wiring 4 having a thickness of 0.9 μII+ and a width of 3 μm was formed in a direction perpendicular to the wiring 2. In this way, as is clear from FIG. 1, the first layer An distribution, il! It was found that a disconnection occurred in the second QAQ wiring 4 at the end of i12. This is thought to occur because the silicon nitride film 3 used as the interlayer isolation B film could not sufficiently cover the 158th β wiring 2, and grooves 5 were formed, particularly at the ends of the wiring.

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的は、下地段差に対する肢■L性の
優れた薄膜形成方法を捉供することシこある。
Therefore, it is an object of the present invention to provide a method for forming a thin film that has excellent resistance to unevenness on the base.

〔発明の概要〕[Summary of the invention]

第1図に示したような、段差部にお)Nで溝5の生じる
原因について、種々検討した結果、下記のような原因に
よって生ずるものと推定されるに至った。すなわち、μ
波プラズマCVD法により10−’ Torr以下の低
圧力で放電を行うと、粒子の平均白肉行程は数1以上と
長くなり、プラズマ電位が正であるために生じた、プラ
ズマと試料との間の電位差により引き出されたイオン番
よ&まとんど衝突することなく試料に垂直に入射し、膜
を形成する。そのため、段差上にわず力1な魔力1生じ
ると、庇の下では自己遮蔽効果により膜の成長力1阻害
され、溝が生じることになる。したがってこオLを改善
するための一方法として、R’F放電を用)Nたプラズ
マCVD法と同程度の10−21’orr以上に圧力を
上げ、平均自由行程を短くすることにより自己遮蔽効果
を小さくすることが考えられる力t、このようにすると
、μ波プラズマC,VD法の特長が失われ、例えば5i
FaとN2とbq’+反応ガスでの膜形成は出来なくな
る。これに対して、試料に入射する粒子の運動エネルギ
ーを増加させ4しば、下記理由から、10−” Tor
r以下の低圧力下でも膜形成が可能であるというμ波プ
ラズマCVD法の特長を生かしたまま、段差被覆性を改
Zすることが可能になると考えられる。すなわち、一般
に50eV以上のエネルギー有するイオンが基板に衝突
すると、基板表面の一部がスパッタリング効果によりた
たき出される。イオン1個につきたたき出される基板材
料のヱ(スパッタリング率)はイオンの種類、基板表面
の材質によるばかりでなく、イオンの入射角度に大きく
依ひしており、入射角60″近傍でスパッタリング率は
最大となる。従って、イオンにより基板が盛んにスパッ
タリングされている場合には、基板や配線の上の平坦部
では主に膜形成が行わ九、一方段差部では、わずかし;
庇が生じてもその部分はスパッタリング効果が大きく現
われて削られるため、庇は無くなり、第1図に示される
ような溝5が消失するとともに、段差部での膜表面の傾
斜も松やかになる。
As a result of various studies on the cause of the formation of the groove 5 at the stepped portion as shown in FIG. 1, it has been concluded that the formation is caused by the following causes. That is, μ
When discharge is performed at a low pressure of 10-' Torr or less using the wave plasma CVD method, the average white path of the particles becomes longer than several 1, and the distance between the plasma and the sample caused by the positive plasma potential increases. Ions drawn out by the potential difference are incident perpendicularly onto the sample without colliding, forming a film. Therefore, if 1 magic power is generated without being on a step, the self-shielding effect will inhibit the film's growth power 1 under the eaves, resulting in grooves. Therefore, one method to improve this L is to increase the pressure to 10-21'orr or higher, which is the same level as the plasma CVD method using R'F discharge, and shorten the mean free path to achieve self-shielding. If the force t is considered to reduce the effect, the features of the μ-wave plasma C, VD method will be lost, and for example, 5i
Film formation using Fa, N2, and bq'+ reaction gas becomes impossible. On the other hand, if the kinetic energy of the particles incident on the sample is increased, the 10-" Tor
It is thought that it will be possible to improve the step coverage while taking advantage of the feature of the μ-wave plasma CVD method that film formation is possible even under low pressures below r. That is, generally when ions having an energy of 50 eV or more collide with a substrate, a part of the substrate surface is ejected due to the sputtering effect. The sputtering rate of the substrate material ejected per ion depends not only on the type of ion and the material of the substrate surface, but also on the incident angle of the ion, with the sputtering rate reaching its maximum at an incident angle of around 60''. Therefore, when the substrate is actively sputtered by ions, film formation mainly takes place on the flat parts of the substrate and wiring, while only a small amount is formed on the stepped parts.
Even if an eave is formed, the sputtering effect is large and the area is scraped away, so the eave disappears, the grooves 5 as shown in Figure 1 disappear, and the slope of the film surface at the stepped portion also becomes pine-like. .

イオンによる基板のスパッタリングを活性化する(スパ
ッタリング率を増加させる)ためには、入射粒子の運動
エネルギーを高めることが必要であり、こノ(はプラズ
マの平均電位を試料の平均電位に対して正とし、これら
の間の電位差を大きくすることにより達成さ才しる。そ
のためには、(1)試料に負のバイアス電圧を印加する
、(2)プラズマ電位を正の方向にシフトさせる、(3
)l記(1)J:;よび(2)を同u!Jに行うことの
いず汎かが必要となる。(1)の具体的な方法としては
、(a)試料に負の直流電圧を印加する、(b)試料に
RF’雷電圧印加し、自己バイアス効果により負のバイ
アス電圧を発生させる方法がある。(a)(b)を同時
に行なってもよいことは一部うまでもない。(2)の具
体的な方法としては、μ波プラズマCVIJ’!装置の
反応槽内に電極を挿入し、これに正の直流電圧を印加す
る方法がある。該電極に1<I;″電圧をJ:lI加す
る方法は、負の自己バイアスが発生することになり、逆
効果である。
In order to activate the sputtering of the substrate by ions (increase the sputtering rate), it is necessary to increase the kinetic energy of the incident particles, and this makes the average potential of the plasma positive with respect to the average potential of the sample. This can be achieved by increasing the potential difference between them.To do this, (1) apply a negative bias voltage to the sample, (2) shift the plasma potential in the positive direction, and (3)
) Note (1) J:; and (2) as u! You will need a wide variety of things to do in J. Specific methods for (1) include (a) applying a negative DC voltage to the sample, and (b) applying RF' lightning voltage to the sample to generate a negative bias voltage due to the self-bias effect. . It goes without saying that (a) and (b) may be performed simultaneously. A specific method for (2) is the μ-wave plasma CVIJ'! There is a method of inserting an electrode into the reaction tank of the device and applying a positive DC voltage to it. The method of applying a voltage of 1<I;'' to the electrode by J:lI generates a negative self-bias, which is counterproductive.

なお、本発明の要点はプラズマと試料との間の電位差を
大きくすることにある。従って、(1)において直流電
源もしくはRF定電源直接試オ″)に接続することは必
ずしも必要ではなく、試オニ1台に接続しても本発明の
目的が達成さJしることは工°うまでもない。
Note that the key point of the present invention is to increase the potential difference between the plasma and the sample. Therefore, in (1), it is not necessarily necessary to connect directly to a DC power supply or RF constant power supply, and even if it is connected to a single test unit, the object of the present invention will not be achieved. It's no good.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.

まず、第1の実施例について説明する。不ブ、施例にお
いて用いた装置の41η成のUX l”3を第2図に示
す。
First, a first example will be described. FIG. 2 shows a 41η-sized UX l''3 of the apparatus used in the example.

従来装置とほぼ同様の構成であるが、試料台11にバイ
アス電圧を印加するためのRF電源16を新たに付は加
えた。まず、81基板12を試料台ll上に設置する。
Although the configuration is almost the same as the conventional device, an RF power source 16 for applying a bias voltage to the sample stage 11 has been newly added. First, the 81 substrate 12 is placed on the sample stage 11.

試料台11はシースヒータI3により250°Cに加熱
した。次に、反応室7をロータリーポンプ、拡散ポンプ
によりl X l O−’ Torrまで真空排気し、
反応ガスをリークバルブ6で流量制御し、反応槽7内に
導入する。反応ガスとしてはSiF4とN2を用い、体
積比1:1で導入し1反応室7内での反応ガス圧力は8
 X 10−’ Torrにした。次に、ソレノイ1−
コイル14に電流を流し、永久磁石15とともにミラー
磁場を形成した。
The sample stage 11 was heated to 250°C by a sheath heater I3. Next, the reaction chamber 7 was evacuated to l X l O-' Torr using a rotary pump and a diffusion pump.
The flow rate of the reaction gas is controlled by a leak valve 6, and the reaction gas is introduced into the reaction tank 7. SiF4 and N2 were used as reaction gases, introduced at a volume ratio of 1:1, and the reaction gas pressure in one reaction chamber 7 was 8.
X 10-' Torr. Next, solenoid 1-
A current was passed through the coil 14 to form a mirror magnetic field together with the permanent magnet 15.

マグネ1−ロン8により周波数2 、 ’I 5 G 
Hl、出力′:L力200Wのマイクロ波を発生させ、
導波管9中を伝播させ、AQ、203製放電管lO内で
プラズマを発生させると同時に、RF電源16により周
波数800 K Hz、振幅aOV、−,のRF電圧屈
JJ’i zl・は1.8、水素′3有量は原子数比で
、1%以下であった。さらに、段差被覆性を調べるため
、I)η述と同様のAQ2層配線(14造を作成し、走
査型電子顕微釘で観察した。観察された断面図の一例を
第3図に示す。第1層Afl配線2.第21音A、 f
l配線4ともに厚さ0.9μm9幅3μmであり、窒化
珪素膜3′は厚さ1.5μmである。第3図かられかる
ように、第1層AQ配線2の端部で従来化じていた窒化
珪素膜3の府が消滅し、かつ段差部での形状も緩やかに
なっており、第2層AQ配線4の断線は生じていない。
Frequency 2 due to magnet 1-ron 8, 'I 5 G
Hl, output': Generates microwaves with L power of 200W,
While propagating through the waveguide 9 and generating plasma in the AQ203 discharge tube 10, the RF power source 16 generates an RF voltage of 800 kHz, amplitude aOV, -, and 1. .8, the amount of hydrogen '3 was less than 1% in terms of atomic ratio. Furthermore, in order to investigate step coverage, an AQ 2-layer wiring (14 structure) similar to that described in I) η was prepared and observed using a scanning electron microscope. An example of the observed cross-sectional diagram is shown in Fig. 3. 1-layer Afl wiring 2. 21st sound A, f
Both the l interconnects 4 have a thickness of 0.9 .mu.m and a width of 3 .mu.m, and the silicon nitride film 3' has a thickness of 1.5 .mu.m. As can be seen from FIG. 3, the conventional shape of the silicon nitride film 3 at the end of the first layer AQ wiring 2 has disappeared, and the shape at the stepped portion has also become gentler. No disconnection occurred in the AQ wiring 4.

さらに、Aα2層配線構造の半導体集積回路素子を用い
、層間絶縁膜として本発明を適用したところ、第2層r
4I2線の断線は生じなかった。
Furthermore, when the present invention was applied as an interlayer insulating film using a semiconductor integrated circuit element with an Aα two-layer wiring structure, the second layer r
No breakage of the 4I2 line occurred.

なお、RF主電源試料台との接続はコンデンサーを介し
た容量性カップリングとすることが好ましい。これは、
RF雷電圧より試料台に生した自己バイアス電圧がRF
主電源介して消滅することを防止するためである。R,
F電源自体がバイアス電圧の消滅を防止する構造を有し
ている場合には、容量カップリングにすることは必ずし
も必要ではない。また、本実施例では試料台へのバイア
ス電圧としてRF電圧を用いているが、形成する薄膜が
導電性薄膜の場合には直流電圧の印加によっても段差被
覆性は効果的に改善される。
Note that the connection with the RF main power supply sample stage is preferably capacitive coupling via a capacitor. this is,
The self-bias voltage generated on the sample stage due to RF lightning voltage is RF
This is to prevent it from disappearing via the main power supply. R,
If the F power supply itself has a structure that prevents the bias voltage from disappearing, capacitive coupling is not necessarily required. Further, in this embodiment, an RF voltage is used as a bias voltage to the sample stage, but if the thin film to be formed is a conductive thin film, step coverage can be effectively improved by applying a DC voltage.

次に、第2の実施例について説明する。本実施例で用い
た装置の41υ成の概略を第4図に示す。第2図に示し
た装置と比べて、試料台11八R[パ電圧を印加したR
 F電源1Gをはずし、試料台11と放電管]0との間
にプラズマを囲むようをこ金属製の筒17を挿入し、こ
れに外部の直流電源18より正のバイアス電圧を印加し
、プラズマに刻する参照電極とし、た。」二記実施例1
と同様にS i、 F 4とN2を反応ガスとしで用い
放電を行ったが、本実施例で目放電中に筒゛市価17に
]00■の正の直流電圧を印加した1、その他は、it
、!: J”1台11にJ2. I・電圧を印加してい
ないことを除き5実施例Jど同様にして1肱形成を4j
つだ。40分間の放′工により、鵬ノブ約]、 、 5
71111の窒1ヒ佳素膜か形成された。この膜の屈折
率は]、8、水素含有量は原子数比て1ヅ・以下てあ一
ンた。また、本実施例においても、へ02層配線構造の
試着を作成し、走査型゛工f顕微鏡により断面観察を行
ったが、その断面形状は第3図とほぼ同様であり、第2
層ΔQ配線の断線は;Ij13かった。
Next, a second example will be described. FIG. 4 shows an outline of the 41υ configuration of the apparatus used in this example. Compared to the apparatus shown in FIG.
The F power supply 1G is removed, a metal tube 17 is inserted between the sample stage 11 and the discharge tube 0 so as to surround the plasma, and a positive bias voltage is applied to it from the external DC power source 18, and the plasma It was used as a reference electrode. ”2 Example 1
Similarly, discharge was performed using Si, F4 and N2 as reaction gases, but in this example, a positive DC voltage of 00cm was applied to the tube 17 during the first discharge. , it
,! : J"1 11 to J2. 1 elbow was formed in the same manner as in Example 5 except that no voltage was applied to 4j.
One. After 40 minutes of labor, Nobu Peng became approximately 5
A nitride-arsenic film of 71111 was formed. The refractive index of this film was 8, and the hydrogen content was 1° or less compared to the number of atoms. In addition, in this example as well, a sample of the second-layer wiring structure was fabricated and the cross-section was observed using a scanning microscope, and the cross-sectional shape was almost the same as that shown in FIG.
The disconnection of layer ΔQ wiring was Ij13.

以ヒ、本発明に−)いでSiF4とN2を反応ガスどし
へ空1ヒメS膜形J戊の実施例で説明したが、本発明は
11;皮プラズマに■1つ法におりるφヶ膜の段差被覆
性の改占を図るために、(]、 ) 試石もしくは試;
i′1台にバイアス電圧を印加する、(2)参照型面に
正のバーで)′スミ圧を印加し、プラズマ電位を高める
、(3)上記(」)と(2)を同時にfjうのいずれか
の方a;を用いることを規定したちのCあ・って、反応
ガス−\)形成する薄j漠の種類に限定され当〕いこと
はごうま“Cもない。
Hereinafter, in the present invention, SiF4 and N2 are transferred to the reactant gas in an example of the empty 1 S film type J 戊, but the present invention is explained using the method 11; In order to improve the step coverage of the membrane, (], ) test stone or trial;
i′ Apply bias voltage to one unit, (2) Apply ′′ sumi pressure with a positive bar to the reference mold surface to increase the plasma potential, (3) Do the above ('') and (2) at the same time. Although it is prescribed to use any one of the following methods, it is not appropriate to limit the reaction gas to a vague type of reaction gas.

〔発明の効果〕〔Effect of the invention〕

−1−1記説明から明らかろ゛ように、本発明によれは
、従来のμ波プラズマCV f)法で問題となっていた
、形成した薄膜の段差被覆性を改善すえ)ことができ、
こ1しによりμ波プラズマCV 1.’)θ言こよる薄
膜の半導体焦積回路をはじめとする各種電子テバイスの
製造に適用することができる。
As is clear from the explanation described in -1-1, the present invention can improve the step coverage of the formed thin film, which has been a problem with the conventional μ-wave plasma CV f) method.
By doing this, μ-wave plasma CV 1. ') θ It can be applied to the production of various electronic devices including thin film semiconductor integrated circuits.

し1面の筒中なま(2明 第1図は従来法で形成したニー(用模の形状を説明する
だめの図、第2図は本発明の第1の実施例で用いた72
波プラズマCV Jg)装置の構成の概1118を示す
図、第3図は本発明の詳細な説明4′る7°已めの断面
(既略図、第4図は本発明の第2の実施f列で用いたμ
波プラズマCV 1つ装置の構成の概略4示す図である
Figure 1 shows the shape of the knee formed by the conventional method.
FIG. 3 is a cross-sectional view 7° diagonal from the detailed description of the present invention. FIG. 4 is a schematic diagram of the second embodiment of the present invention. μ used in the column
FIG. 4 is a diagram schematically showing the configuration of one wave plasma CV device.

1−−−−3i 1基板 2−−−一第1 FJj A
 c(配線。
1----3i 1 board 2----1 1st FJj A
c (wiring.

3. 3’−−−−窒化珪素膜、/I−−−−第2層A
Q配綜(:−−−−リークバルブ、7−−−−反応槽、
8−−−−マグ’i’ lL」ン、9−−−−心波管、
10.−−−一放電管。
3. 3'----Silicon nitride film, /I----Second layer A
Q arrangement (:----leak valve, 7----reaction tank,
8----Mag 'i'1L'n, 9---- Heart wave tube,
10. ---One discharge tube.

+1−−−一試料台、+2−−−試イ’l、+ 3−−
−−ヒーター+ + 4−−−−iL/)rド:J (
ル、I 5−−−−永久磁/、i、I 6−−−R1パ
電源、17− ↑:;I 71 (”jヱ。
+1---1 sample stand, +2---trial, +3---
--Heater + + 4----iL/) r de: J (
Le, I 5---Permanent magnetic/, i, I 6---R1 power supply, 17- ↑:;I 71 ("jヱ.

18−−−直ンん゛屯l克弓工 第1 図 第1頁の続き 0発 明 者 西 松 茂 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内 昭和 年 月 日 事件の表示 昭和59年 特 許 願 第58247号発明の名称 
薄膜形成方法 補正をする者 代理人 居所〒100 東京都千代田区丸の内−丁目5番1号株
式会社 日 立 製 作 所 内 補正の内容 別紙のとおり。
18--Naonuntununl Katsukyuu No. 1 Continuation of Figure 1 Page 0 Author: Shigeru Nishimatsu 1-28 Hata, Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory Indication of the incident on month, day, and year of Showa 1981 Patent Application No. 58247 Title of Invention
Address of the representative of the person making the amendment to the thin film formation method Hitachi Manufacturing Co., Ltd., 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo 100 Contents of the amendment As shown in the attached sheet.

別紙 特許請求の範囲 1、反応室と、該反応室にマイクロ波電力を供給する手
段と、該反応室内に反応ガスを導入する手段と、該反応
室内に試料を保持する手段を備えて構成されたプラズマ
デポジション装置を用いた薄膜形成方法において、該反
応室内の試料を保持する試料台もしくは直接試料に直流
電圧およびまたは交流電圧を印加しながら膜形成を行う
ことを特徴とするマイクロ波励起プラズマを用いた薄膜
形成方法。
Attached Claim 1: A system comprising a reaction chamber, means for supplying microwave power to the reaction chamber, means for introducing a reaction gas into the reaction chamber, and means for holding a sample within the reaction chamber. A method for forming a thin film using a plasma deposition apparatus, characterized in that film formation is performed while applying a DC voltage and/or an AC voltage directly to a sample stage holding a sample in the reaction chamber or directly to the sample. Thin film formation method using

2、反応室と、該反応室にマイクロ波電力を供給する手
段と、該反応室内に反応ガスを導入する手段と、該反応
室内に試料を保持する手段を備えて構成されたプラズマ
デポジション装置を用いた薄膜形成方法において、該反
応室の少なくとも一部分もしくは該反応室内に設けられ
た参照電極に正のバイアス電圧を印加しながら膜形成を
行うことを特徴とするマイクロ波励起プラズマを用い 
また薄膜形成方法。
2. A plasma deposition apparatus comprising a reaction chamber, means for supplying microwave power to the reaction chamber, means for introducing a reaction gas into the reaction chamber, and means for holding a sample within the reaction chamber. A method for forming a thin film using microwave-excited plasma, characterized in that film formation is performed while applying a positive bias voltage to at least a portion of the reaction chamber or a reference electrode provided within the reaction chamber.
Also a thin film formation method.

3、反応室と、該反応室にマイクロ波電力を供給する手
段と、該反応室内に反応ガスを導入する手段と、該反応
室内に試料を保持する手段を備えて構成されたプラズマ
デポジション装置を用いた薄膜形成方法において、該反
応室内の試料を保持する試料台もしくは直接試料に直流
電圧もしくは交流電圧もしくはその両方を印加し、かつ
該反応室の少なくとも一部分もしくは該反応室内に設け
られた参照電極に正のバイアス電圧を印加しながら膜形
成を行うことを特徴とするマイクロ波励起プラズマを用
いた薄膜形成方法。
3. A plasma deposition apparatus comprising a reaction chamber, means for supplying microwave power to the reaction chamber, means for introducing a reaction gas into the reaction chamber, and means for holding a sample within the reaction chamber. In a thin film forming method using a thin film forming method, a direct current voltage or an alternating current voltage, or both are applied directly to a sample stage holding a sample in the reaction chamber or directly to the sample, and at least a part of the reaction chamber or a reference provided within the reaction chamber is applied. A method for forming a thin film using microwave-excited plasma, characterized by forming the film while applying a positive bias voltage to an electrode.

4、上記反応室内の反応ガス圧力が、放電時);おいて
1O−2Torr以下であることを特徴とする特許請求
の範囲第1項乃至第3項のいずれ61に記載のマイクロ
波励起プラズマを用いた薄膜形成方法。
4. The microwave-excited plasma according to any one of claims 1 to 3, wherein the reaction gas pressure in the reaction chamber is 10-2 Torr or less at the time of discharge); Thin film formation method used.

5、上記薄膜が絶縁物であることを特徴とする特許請求
の範囲第1項乃至第4項のいずれかに2載のマイクロ波
励起プラズマを用いた薄膜形成ケ法。
5. The thin film forming method using microwave-excited plasma as set forth in any one of claims 1 to 4, wherein the thin film is an insulator.

6、上記反応ガスが珪素化合物ガスおよび窒素ガスを含
む混合ガス、もしくは珪素化合物ガスおよび窒素化合物
ガスを含む混合ガスであり、該薄膜が窒化珪素であるこ
とを特徴とする特許請求の範囲第5項記載のマイクロ“
波励起プラズマを用いた薄膜形成方法。
6. Claim 5, wherein the reaction gas is a mixed gas containing a silicon compound gas and a nitrogen gas, or a mixed gas containing a silicon compound gas and a nitrogen compound gas, and the thin film is silicon nitride. Micro “
Thin film formation method using wave-excited plasma.

Claims (1)

【特許請求の範囲】 ■、 反応室と、該反応室にマイクロ波電力を供給する
手段と、該反応室内に反応ガスを導入する手段と、該反
応室内に試料を保持する手段を備えて構成されたプラズ
マデポジション装置を用いた効:膜形成方法において、
該反応室内の試料を保持する試料台もしくは直接試料に
直流電圧およびまたは交流電圧を印加しながら膜形成を
行うことを特徴とするマイクロ波励起プラズマを用いた
薄膜形成方法。 2、 反応室と、該反応室にマイクロ波電力を供給する
L段と、該反応室内に反応ガスを導入する手段と、該反
応室内に試料を保持する手段を備えて]11^成された
プラズマデポジション装置を用いti’1.’J IE
a形威力法において、該反応室の少なくとも一部分もし
くは該反応室内に設けられた参照電極に正のバイアス電
圧を印加しながら膜形成を行うことを特徴とするマイク
ロ波励起プラズマを用いた?iT1.股形成力法。 3、反応室と、該反応室にマイクロ波電力を供給する手
段と、該反応室内に反応ガスを導入する手段と、該反応
室内に試料を保持する手段を備えて構成されたプラズマ
デポジション装置を用いた薄膜形成方法において、該反
応室内の試料を保持する試料台もしくは直接試料に直流
電圧もしくは交流電圧もしくはその両方を印加し、かっ
政反応室の少なくとも一部分もしくは該反応室内に設け
られた参照電極に正のバイアス電圧を印加しながら膜形
成を行うことを特徴するマイクロ波励起プラズマを用い
た薄膜形成方法。 4、上記反応室内の反応ガス圧力が、放電時においてl
 O’−” Torr以下であることを特徴とする特許
請求の範囲第1項乃至第3項のいずれかに記載のマイク
ロ波励起プラズマを用いた薄膜形成方法。 5、 上記薄膜が絶縁物であることを特徴とする特許請
求の範囲第1項乃至第4項のいずれかに記載のマイクロ
波励起プラズマを用いた簿膜形成方法。 6、 上記反応ガスが珪素化合物ガスおよび窒素ガスを
含む混合ガス、もしくは硅素化合物ガスおよび窒素化合
物ガスを含む混合ガスであり、該、IV膜が窒化珪素で
あることを特徴とする特許請求の範囲第5項記載のマイ
クロ波励起プラズマを用いた薄膜形成方法。
[Claims] (1) Consisting of a reaction chamber, means for supplying microwave power to the reaction chamber, means for introducing a reaction gas into the reaction chamber, and means for holding a sample within the reaction chamber. Effects of using plasma deposition equipment: In the film formation method,
A method for forming a thin film using microwave-excited plasma, characterized in that film formation is performed while applying a DC voltage and/or an AC voltage directly to a sample stage holding a sample in the reaction chamber or directly to the sample. 2. Comprising a reaction chamber, an L stage for supplying microwave power to the reaction chamber, a means for introducing a reaction gas into the reaction chamber, and a means for holding a sample in the reaction chamber]11. ti'1. using a plasma deposition device. 'J IE
In the a-type power method, microwave-excited plasma is used, which is characterized in that film formation is performed while applying a positive bias voltage to at least a portion of the reaction chamber or a reference electrode provided within the reaction chamber. iT1. Crotch formation force method. 3. A plasma deposition apparatus comprising a reaction chamber, means for supplying microwave power to the reaction chamber, means for introducing a reaction gas into the reaction chamber, and means for holding a sample within the reaction chamber. In a thin film forming method using a thin film forming method, a direct current voltage or an alternating current voltage, or both are applied directly to the sample stand holding the sample in the reaction chamber or directly to the sample, and a direct current voltage or an alternating current voltage, or both are applied to the sample stand holding the sample in the reaction chamber, and a reference voltage provided in at least a part of the reaction chamber or a reference provided within the reaction chamber is applied. A method for forming a thin film using microwave-excited plasma, which is characterized by forming a film while applying a positive bias voltage to an electrode. 4. The reaction gas pressure in the reaction chamber is l during discharge.
A method for forming a thin film using microwave-excited plasma according to any one of claims 1 to 3, characterized in that the temperature is less than O'-" Torr. 5. The thin film is an insulator. 6. A method for forming a film using microwave-excited plasma according to any one of claims 1 to 4. 6. The reaction gas is a mixed gas containing a silicon compound gas and a nitrogen gas. or a mixed gas containing a silicon compound gas and a nitrogen compound gas, and the IV film is silicon nitride.
JP59058247A 1984-03-28 1984-03-28 Surface treatment method and surface treatment apparatus Expired - Lifetime JPH0614522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59058247A JPH0614522B2 (en) 1984-03-28 1984-03-28 Surface treatment method and surface treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59058247A JPH0614522B2 (en) 1984-03-28 1984-03-28 Surface treatment method and surface treatment apparatus

Publications (2)

Publication Number Publication Date
JPS60202942A true JPS60202942A (en) 1985-10-14
JPH0614522B2 JPH0614522B2 (en) 1994-02-23

Family

ID=13078788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058247A Expired - Lifetime JPH0614522B2 (en) 1984-03-28 1984-03-28 Surface treatment method and surface treatment apparatus

Country Status (1)

Country Link
JP (1) JPH0614522B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246765A2 (en) * 1986-05-15 1987-11-25 Varian Associates, Inc. Apparatus and method for manufacturing planarized aluminium films
JPS63127539A (en) * 1986-11-17 1988-05-31 Nec Corp Semiconductor device
JPS63197327A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Plasma processor
US4987102A (en) * 1989-12-04 1991-01-22 Motorola, Inc. Process for forming high purity thin films
US5162633A (en) * 1988-06-29 1992-11-10 Hitachi, Ltd. Microwave-excited plasma processing apparatus
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131476U (en) * 1978-03-03 1979-09-12
JPS58166929A (en) * 1982-03-30 1983-10-03 Fujitsu Ltd Chemical vapor depositing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131476U (en) * 1978-03-03 1979-09-12
JPS58166929A (en) * 1982-03-30 1983-10-03 Fujitsu Ltd Chemical vapor depositing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246765A2 (en) * 1986-05-15 1987-11-25 Varian Associates, Inc. Apparatus and method for manufacturing planarized aluminium films
EP0246765A3 (en) * 1986-05-15 1988-12-14 Varian Associates, Inc. Apparatus and method for manufacturing planarized aluminium films
JPS63127539A (en) * 1986-11-17 1988-05-31 Nec Corp Semiconductor device
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
JPS63197327A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Plasma processor
US5162633A (en) * 1988-06-29 1992-11-10 Hitachi, Ltd. Microwave-excited plasma processing apparatus
US4987102A (en) * 1989-12-04 1991-01-22 Motorola, Inc. Process for forming high purity thin films

Also Published As

Publication number Publication date
JPH0614522B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
US5897713A (en) Plasma generating apparatus
US5089442A (en) Silicon dioxide deposition method using a magnetic field and both sputter deposition and plasma-enhanced cvd
TW432493B (en) Inductively coupled plasma CVD
US6417092B1 (en) Low dielectric constant etch stop films
US6215087B1 (en) Plasma film forming method and plasma film forming apparatus
KR100283007B1 (en) Low-k fluorinated amorphous carbon dielectric and method of making the same
JPH03173130A (en) Adhesion of high quality silicon dioxide by means of plasma reinforced chemical vapor adhesion method
US5514425A (en) Method of forming a thin film
JPH06177123A (en) Deposition method of insulator
KR20010075566A (en) Semiconductor device and method for manufacturing the same
KR100238573B1 (en) Method and apparatus for forming thin film
KR100727205B1 (en) Plasma deposition method and system
US6576569B1 (en) Method of plasma-assisted film deposition
KR20070057284A (en) Process for film production and semiconductor device utilizing film produced by the process
KR100382387B1 (en) Method of plasma processing
US5302555A (en) Anisotropic deposition of dielectrics
JPS60202942A (en) Formation of thin-film
US20040161946A1 (en) Method for fluorocarbon film depositing
US6716725B1 (en) Plasma processing method and semiconductor device
JPS6362238A (en) Depositing method of thin film
JPH11288928A (en) Method for forming si oxide film and plasma excited chemical vapor-phase growth device
JPH03247767A (en) Formation of insulating film
TW201831723A (en) Film Forming Method, Boron Film, and Film Forming Apparatus
JPH08330293A (en) Formation method of insulation film and plasma chemical vapor deposition device used for the method
JPS58191432A (en) Forming method for thin-film