JPS60202408A - Optical circuit device - Google Patents

Optical circuit device

Info

Publication number
JPS60202408A
JPS60202408A JP5875384A JP5875384A JPS60202408A JP S60202408 A JPS60202408 A JP S60202408A JP 5875384 A JP5875384 A JP 5875384A JP 5875384 A JP5875384 A JP 5875384A JP S60202408 A JPS60202408 A JP S60202408A
Authority
JP
Japan
Prior art keywords
substrate
holding part
optical
plane
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5875384A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Yoshio Manabe
由雄 真鍋
Hidetaka Tono
秀隆 東野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5875384A priority Critical patent/JPS60202408A/en
Publication of JPS60202408A publication Critical patent/JPS60202408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor

Abstract

PURPOSE:To obtain an optical circuit device having stable photocoupling efficiency by fixing a semiconductor laser on the 1st holding part of a supporting base body, fixing at least one piezo-electric substrate forming an electrode on the 2nd holding part of the supporting base body and fixing an optical circuit substrate on a position where an optical guide is photocoupled with the semiconductor laser on the piezo-electric substrate. CONSTITUTION:Voltage is applied to the piezo-electric substrate 31 and the thickness of the substrate 31 is increased or decreased to maximize the photocoupling between the optical waveguide 15 and the semiconductor laser 14. Since the slight vertical shift changes the photocoupling efficiency sharply, the vertical shift is adjusted by applying the voltage to the substrate 31 and increasing or decreasing the thickness of the substrate 31. For instance, an approximately vertical polarization direction is formed on the 1st plate 41 of the substrate 31 which is the fixing surface of the 2nd holding part 13 and an electrode 43 is formed on the 1st plate 41 and the 2nd plate 42 of the substrate 31 which is approximately parallel with the 1st plate 41. In this case, stainless is for the 2nd holding part 13, the electrode is formed by vapor-deposited aluminium on piezo-electric ceramics and polarized and a Ti diffusion type LiNbO3 optical waveguide having 2mum thickness and sum width is used.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光伝送分野における光回路デバイスに関する。[Detailed description of the invention] Industrial applications The present invention relates to an optical circuit device in the field of optical transmission.

本発明は特に光集積回路を用いた光回路デバイスに関す
る。
The present invention particularly relates to an optical circuit device using an optical integrated circuit.

従来例の構成とその問題点 従来光集積回路を半導体レーザと一体化固定する場合、
第1図の構成が用いられていた。す々わち、保持基体1
1の第1保持部12に半導体レーザ14を固定し、保持
基体11の第2保持部13に半導体レーザ14と光導波
路16が光結合する3 ・−シーン 板厚を有する光回路基板16を設けていた。しかし、接
着剤の厚さのバラツキから光導波路厚が1゜μm以下で
は充分な光結合が得られなかった。
Conventional configuration and its problems When integrating and fixing a conventional optical integrated circuit with a semiconductor laser,
The configuration shown in Figure 1 was used. That is, holding base 1
A semiconductor laser 14 is fixed to the first holding part 12 of the holding base 11, and an optical circuit board 16 having a thickness of 3--thin is provided to the second holding part 13 of the holding base 11, to which the semiconductor laser 14 and the optical waveguide 16 are optically coupled. was. However, due to variations in the thickness of the adhesive, sufficient optical coupling could not be obtained when the thickness of the optical waveguide was less than 1 mm.

この点を改善するために、第2図に示す構造が提案され
た。同図において11,12,13,14゜15.16
は第1図と同じである。同図&、bはそれぞれ要部正面
図および要部断面図である。
In order to improve this point, the structure shown in FIG. 2 was proposed. In the same figure, 11, 12, 13, 14° 15.16
is the same as in Figure 1. Figures & and b are a front view and a sectional view of the main part, respectively.

同図において、光結合効率を上げるために、光回路基板
16と第2保持部13との間にテーパ支持体21を挿入
し光結合効率を最大とし、接着剤22で固定した構造で
ある0この構造では、接着剤22の固定の際に収縮凝固
するため位置ずれが発生し光結合効率が低下するという
問題を有していた。実際の作製には収縮量を考慮して初
めから光結合位置からずしておき、接着剤22の凝固時
に最大光結合効率となるようにしていた。しかし、接着
剤の分量、湿度、気温9表面状態により状況は異なるた
め、必ずも最大光結合が得られず、光結合効率のバラツ
キが大きい問題を有していた。
In the figure, in order to increase the optical coupling efficiency, a tapered support 21 is inserted between the optical circuit board 16 and the second holding part 13 to maximize the optical coupling efficiency, and the structure is fixed with an adhesive 22. This structure has a problem in that the adhesive 22 shrinks and solidifies when it is fixed, causing positional displacement and reducing optical coupling efficiency. In actual manufacturing, the optical coupling position was moved from the beginning in consideration of the amount of shrinkage, so that the maximum optical coupling efficiency was achieved when the adhesive 22 solidified. However, since the situation varies depending on the amount of adhesive, humidity, temperature, and surface condition, the maximum optical coupling cannot always be obtained, and there is a problem in that the optical coupling efficiency varies greatly.

加えて、外気温の変動によっても光結合効率が各部の膨
張係数等の違いにより、変動する欠点も有していた。
In addition, it also has the disadvantage that the optical coupling efficiency fluctuates due to differences in the expansion coefficients of various parts due to fluctuations in outside temperature.

本発明者らは、従来の構成のもつ欠点を新しい光回路基
板の保持構成を用いて改善したものである0 発明の目的 本発明の目的は従来の構成のもつ作製時における光結合
効率低下を防ぐとともに、温度変化にも光結合効率の変
動を防ぎ安定した光結合効率を有する光回路デバイスの
構造を提供するものである。
The present inventors have improved the drawbacks of the conventional configuration by using a new optical circuit board holding configuration. The present invention provides a structure of an optical circuit device that prevents fluctuations in optical coupling efficiency due to temperature changes and has stable optical coupling efficiency.

発明の構成 本発明にかかる光回路デバイスは、少なくとも半導体レ
ーザと光導波路を設けた光回路基板と支持基体とからな
シ、上記支持基体の第1保持部に半導体レーザを固定し
、上記支持基体の第2保持部に電極を設けた少なくとも
一枚の圧電基板を固定し、上記圧電基板上で上記光導波
路と上記半導体レーザとを光結合させる位置に上記光回
路基板を固定した構造をしている。
Structure of the Invention An optical circuit device according to the present invention includes an optical circuit board provided with at least a semiconductor laser and an optical waveguide, and a support base, the semiconductor laser is fixed to a first holding part of the support base, and the semiconductor laser is fixed to a first holding part of the support base, At least one piezoelectric substrate provided with an electrode is fixed to a second holding part of the at least one piezoelectric substrate, and the optical circuit board is fixed on the piezoelectric substrate at a position where the optical waveguide and the semiconductor laser are optically coupled. There is.

実施例の説明 5−”−? 本発明を以下に実施例を用いて説明する。第3図は本発
明の実施例にかかる要部断面図である。
DESCRIPTION OF EMBODIMENTS 5-''-? The present invention will be described below using examples. FIG. 3 is a sectional view of a main part according to an example of the present invention.

同図において、11.12,13,14,15゜16は
第1図と同じである。すなわち、少なくとも半導体レー
ザ14と光導波路15を設けた光回路基板16と支持基
体11とからなり、支持基体11の第1保持部12に半
導体レーザ14を固定し、支持基体の第2保持部に電極
を設けた少なくとも1枚の圧電基板31を固定し、圧電
基板31上で光導波路15と半導体レーザ14とを光結
合させる位置に光回路基板16を固定した構造としたO 本発明にかかる構造においては圧電基板31に電圧を印
加し、圧電基板31の厚みを増減させて光導波路15と
半導体レーザ14とを光結合最大にさせることが出来た
。すなわち、光導波路の断面構造は通常光回路基板16
の表面の面内方向に長く、それに垂直な方向は短い矩形
構造を有しているため、上下方向のすこしのずれによシ
光結合効率が大きく変化する。このため本発明にかかる
6・−・− 構造を用いると上下方向のずれを圧電基板31に電圧を
印加させることに圧電基板31を増減させていたのであ
る。
In the figure, 11, 12, 13, 14, 15°16 are the same as in FIG. That is, it consists of an optical circuit board 16 provided with at least a semiconductor laser 14 and an optical waveguide 15, and a support base 11. A structure according to the present invention in which at least one piezoelectric substrate 31 provided with electrodes is fixed, and an optical circuit board 16 is fixed on the piezoelectric substrate 31 at a position where the optical waveguide 15 and the semiconductor laser 14 are optically coupled. In , it was possible to maximize the optical coupling between the optical waveguide 15 and the semiconductor laser 14 by applying a voltage to the piezoelectric substrate 31 and increasing or decreasing the thickness of the piezoelectric substrate 31 . That is, the cross-sectional structure of the optical waveguide is normally the same as that of the optical circuit board 16.
Since it has a rectangular structure that is long in the in-plane direction of the surface and short in the direction perpendicular to it, the optical coupling efficiency changes greatly due to a slight deviation in the vertical direction. For this reason, when the 6-- structure according to the present invention is used, the number of piezoelectric substrates 31 is increased or decreased to compensate for the vertical deviation by applying a voltage to the piezoelectric substrates 31.

具体的に本発明にかかる構成を第4図に従って述べる。The configuration according to the present invention will be specifically described with reference to FIG.

すなわち、同図において11.12,13゜14、.1
5,16.31は第3図と同一である。
That is, in the same figure, 11.12, 13°14, . 1
5, 16.31 are the same as in FIG.

同図において、第2保持部13との固定面である圧電基
板31の第1平面41にほぼ垂直な分極方向を有し1、
第1千面41と第1平面41にほぼ平行な圧電基板31
の第2千面42とに電極43を設けている。この場合、
第2保持部13をステンレスとして、ペロプスカイト構
造のABO3−PbTtO3−PbZ rO3系圧電セ
ラミック(圧電定数d33−575X1σ12m2Δ)
に蒸着アルミで電極を設は分極処理を施したのち、厚さ
2μm1幅3μmのTi拡散型L i Nb0a光導波
路を用いて構成した。この場合、圧電基板31を厚さ1
01m、直流電圧−100〜+1oov間で所定の電圧
に印加すると、初め光結合効率がeo%であったものが
70%に改善され本発明の効果が確認された。この場合
、圧電7 パ・−一 基板31の厚さにもとづく光導波路の上下位置の移動量
は、僅か一50〜50nm程度の変化量であるが、意外
にも光結合効率に与える効果の大きいことがわかり、本
発明の効果が意外にも大きいことがわかった。
In the figure, 1 has a polarization direction substantially perpendicular to the first plane 41 of the piezoelectric substrate 31 that is the fixed surface with the second holding part 13;
Piezoelectric substrate 31 substantially parallel to the 1,000th plane 41 and the first plane 41
An electrode 43 is provided on the 2,000th surface 42 of the substrate. in this case,
The second holding part 13 is made of stainless steel and is made of ABO3-PbTtO3-PbZ rO3-based piezoelectric ceramic with perovskite structure (piezoelectric constant d33-575X1σ12m2Δ)
After electrodes were provided with vapor-deposited aluminum and subjected to polarization treatment, a Ti-diffused LiNb0a optical waveguide with a thickness of 2 μm and a width of 3 μm was used. In this case, the piezoelectric substrate 31 has a thickness of 1
When a predetermined voltage was applied between 01 m and a DC voltage of -100 to +1 oov, the optical coupling efficiency, which was initially eo%, was improved to 70%, confirming the effect of the present invention. In this case, the amount of vertical movement of the optical waveguide based on the thickness of the piezoelectric substrate 31 is only about 150 to 50 nm, but it has a surprisingly large effect on the optical coupling efficiency. It was found that the effects of the present invention are surprisingly large.

また、本発明の構成にさらに改善を加えると、光結合効
率の改善を計ることができた。すなわち、第6図に示す
実施例の構造にすると良好であった。
Moreover, by further improving the configuration of the present invention, it was possible to improve the optical coupling efficiency. That is, the structure of the example shown in FIG. 6 was good.

同図において、11.12,13,14,15゜16.
31.41.42は第4図と同じである。
In the same figure, 11.12,13,14,15°16.
31.41.42 are the same as in FIG.

同図において、第1平面41にほぼ平行な分極方向を有
し、第1平面41にほぼ垂直な圧電基板31の第3千面
61と、第3千面51にほぼ平行な圧電基板31の第4
千面62とに電極53を設けた構造とすると特に光結合
効率が低い場合でも改善可能であった0具体的述べると
、前記実施例と同じように、厚さ2μm1幅3μmのT
i拡散型LlNbo3光導波路と、長さ41,101m
テ、厚さ’%V1 。
In the figure, the 3,000th plane 61 of the piezoelectric substrate 31 having a polarization direction substantially parallel to the first plane 41 and substantially perpendicular to the first plane 41, and the 3,000th plane 61 of the piezoelectric substrate 31 substantially parallel to the 3,000th plane 51. Fourth
If the structure is such that the electrode 53 is provided on the 1,000-sided surface 62, it is possible to improve the optical coupling efficiency even when the efficiency is low.
i-diffusion type LlNbo3 optical waveguide and length 41,101m
Thickness '%V1.

1Mの圧電セラミック(圧電定数d31=−263X1
0m/V)を用いると、例えばわずか光結合効率6゜係
のものが、直流電圧−100〜10o■の電圧印加で8
0%以上に改善されることを確認した。この構成におい
ては、11の増減が−0,3〜0.3μm程度可能であ
るためこのような改善が可能であったと考えられる。
1M piezoelectric ceramic (piezoelectric constant d31=-263X1
0m/V), for example, an optical coupling efficiency of only 6 degrees becomes 8 when a DC voltage of -100 to 10 degrees is applied.
It was confirmed that the improvement was over 0%. In this configuration, it is considered that such an improvement was possible because the number 11 can be increased or decreased by about -0.3 to 0.3 μm.

さらに、本発明者らは本構成を詳細に検討した結果、著
しく効果の得られる構造を見い出し、新規な光回路デバ
イスを発明した。第6図に基づいて本実施例を説明する
。同図において、11,12゜13.15.16は第3
図と同じである0すなわち、第2保持部13の表面にほ
ぼ垂直な分極方向を有し且つ分極方向の180°異なる
2枚の圧電基板61をはり合せ、はり合せ面にほぼ平行
な圧電基板表面62に電極63を設け、半導体レーザ1
4より離れた圧電基板61の端の第1端64を第2保持
部13に固定し、半導体レーザ14に近い圧電基板61
の第2端66に光回路基板16を固定した。上記構成に
おいては、圧電基板61に厚さ0.3M11.長さ16
鴎の圧電セラミックを用いてはり合せて構成し、例えば
厚さ0.3wILの少ファイヤeヘー〕 基板上に形成した厚さ0.5μm2幅3μmのPLZT
系薄膜光薄膜光導波路体レーザとを光結合させた場合、
膜厚が0.5μmと薄いため位置精度を厳密にとること
が光結合効率に重要である。この場合、光結合効率10
%であったものが、直流電圧−100〜100Vの範囲
の所定の値に保持することによシ光結合効率50%が得
られた。これは、光の強度分布、を考慮するとほぼ理想
値に近い値が □得られたものである。また、温度変化
による光結合効率の変動も電圧を変えることによシ最大
結合効率の得られることを確認した0 第4図の説明にかかる実施例においては、圧電基板31
は第2保持部13と直接固定しているが、圧電基板31
は第2保持部13上で第1平面が固定さればよく、第7
図の構造も本発明に含まれるものである0すなわち、第
1平面41は第2保持基体71に固定し、第2保持基体
71がテーパ支持体72により上下位置調整され、固定
された構造であっても同等の効果が得られる0第5図の
実施例も同様な構成も可能であり、第8図の構成も1C
Fぐ ・7 本発明に含まれるものである。すなわち、第1平面41
を第2保持基体71に固定し、第2保持基体71がテー
パ支持体72により上下方向の調整固定された構造であ
る。第7.8図の構造では、上下調整がテーパ支持体7
2で行われるので、圧電基板31.光回路基板16の厳
密な寸法精度が必要なくよシ作製しやすく、且つ光結合
効率の調整範囲が広くてより良好であった。
Furthermore, as a result of a detailed study of this configuration, the present inventors discovered a structure that provides significant effects, and invented a new optical circuit device. This embodiment will be explained based on FIG. In the same figure, 11, 12° 13.15.16 is the third
In other words, two piezoelectric substrates 61 having a polarization direction substantially perpendicular to the surface of the second holding part 13 and having polarization directions different by 180° are bonded together, and the piezoelectric substrates are substantially parallel to the bonding surface. An electrode 63 is provided on the surface 62, and the semiconductor laser 1
4, the first end 64 of the piezoelectric substrate 61 that is farther away from the semiconductor laser 14 is fixed to the second holding part 13, and the piezoelectric substrate 61 that is closer to the semiconductor laser 14
The optical circuit board 16 was fixed to the second end 66 of the. In the above configuration, the piezoelectric substrate 61 has a thickness of 0.3M11. length 16
PLZT with a thickness of 0.5 μm and a width of 3 μm formed on the substrate.
When optically coupled with a system thin film optical thin film optical waveguide body laser,
Since the film thickness is as thin as 0.5 μm, strict positional accuracy is important for optical coupling efficiency. In this case, the optical coupling efficiency is 10
%, but by keeping the DC voltage at a predetermined value in the range of -100 to 100 V, a light coupling efficiency of 50% was obtained. This is a value □ that is close to the ideal value considering the light intensity distribution. Furthermore, it was confirmed that the maximum coupling efficiency can be obtained by changing the voltage even when the optical coupling efficiency fluctuates due to temperature changes. In the embodiment described in FIG.
is directly fixed to the second holding part 13, but the piezoelectric substrate 31
The first plane only needs to be fixed on the second holding part 13, and the seventh plane is fixed on the second holding part 13.
The structure shown in the figure is also included in the present invention. That is, the first plane 41 is fixed to the second holding base 71, and the second holding base 71 is vertically adjusted and fixed by the tapered support 72. A configuration similar to the embodiment shown in FIG. 5 is also possible, and the configuration shown in FIG.
Fgu・7 Included in the present invention. That is, the first plane 41
is fixed to a second holding base 71, and the second holding base 71 is adjusted and fixed in the vertical direction by a tapered support 72. In the structure shown in Fig. 7.8, the vertical adjustment is performed by the tapered support 7.
2, the piezoelectric substrate 31. The optical circuit board 16 does not require strict dimensional accuracy and is easy to manufacture, and the optical coupling efficiency can be adjusted over a wide range.

また、第6図にかかる実施例においては、圧電基板31
を2枚で図示したが、圧電体基板31は何枚でもよく、
出来るだけ板厚を薄くして複数枚重ね合せた構造が光結
合効率の調整に要する電圧を下げることができ適してい
る。すなわち、第9図のごとき構成が優れている。同図
において圧電基板31の分極方向を隣り合う圧電基板3
1で180異ならせておき、電極91も隣シ合う電極に
ほぼ一定の直流電圧を加えると長さ12が伸縮し、光結
合効率の調整が可能である。しかも、圧電基板31の第
1平面41、第2平面42を同時に研磨によシ作製でき
るので、面精度が良く、固11 ば 。
Further, in the embodiment shown in FIG. 6, the piezoelectric substrate 31
Although two piezoelectric substrates 31 are illustrated, any number of piezoelectric substrates 31 may be used.
A structure in which the plate thickness is made as thin as possible and a plurality of layers are stacked is suitable because it can lower the voltage required to adjust the optical coupling efficiency. In other words, the configuration shown in FIG. 9 is superior. In the figure, the polarization direction of the piezoelectric substrate 31 is
When a substantially constant DC voltage is applied to the electrodes 91 adjacent to each other, the lengths 12 of the electrodes 91 expand and contract, making it possible to adjust the optical coupling efficiency. Moreover, since the first plane 41 and the second plane 42 of the piezoelectric substrate 31 can be prepared by polishing at the same time, the surface accuracy is good and the surface is hardened.

定した場合光回路基板16に歪みが入りにくく光導波路
16の特性を劣下させない長所を有している。又、この
構成において、圧電基板310分極方向を同一にした場
合は、第10図に示す構造にすれば同等の効果の得られ
ることを確認した。第10図は要部断面図を示しており
、13,16゜31は第9図と同じである。すなわち、
圧電基板31の分極方向は同じであり、1枚の圧電基板
310両面は電極101が設けられており、隣の圧電基
板の電極とは絶縁材1029例えば絶縁性接着剤で分離
されている。この場合、同一の方向に電圧を印加すれば
第9図に示した実施例と同等の効果が得られた。
If the optical circuit board 16 is set, the optical circuit board 16 is hard to be distorted and the characteristics of the optical waveguide 16 are not deteriorated. Furthermore, in this configuration, it has been confirmed that when the piezoelectric substrates 310 are polarized in the same direction, the same effect can be obtained by using the structure shown in FIG. 10. FIG. 10 shows a sectional view of the main part, and angles 13 and 16° 31 are the same as FIG. 9. That is,
The polarization directions of the piezoelectric substrates 31 are the same, electrodes 101 are provided on both sides of one piezoelectric substrate 310, and the electrodes of the adjacent piezoelectric substrate are separated by an insulating material 1029, for example, an insulating adhesive. In this case, if a voltage was applied in the same direction, the same effect as in the embodiment shown in FIG. 9 could be obtained.

又、本発明は要部構造を示したものであり、第11図の
ように光ファイバ111を光導波路16の他端に設けて
も本発明に含まれるものである。
Further, the present invention shows the main structure, and even if the optical fiber 111 is provided at the other end of the optical waveguide 16 as shown in FIG. 11, it is also included in the present invention.

同図において、11.12,13,14,15゜の光結
合率の低下を補償し光結合効率を高めることができ、か
つ温度変化による光結合効率の低下も改善できる長所を
有しており、光回路デバイスの改善に大きく貢献でき、
光通信、制御分野への効果は大きく、実用上の価値の高
いものである。
In the figure, it has the advantage of being able to compensate for the decrease in the optical coupling rate at 11.12, 13, 14, and 15 degrees, increasing the optical coupling efficiency, and also improving the decrease in optical coupling efficiency due to temperature changes. , can greatly contribute to the improvement of optical circuit devices,
The effect on the optical communication and control fields is significant and has high practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の従来の光回路デバイスの構成図、第2図
(a) 、 (b)は第2の従来の光回路デバイスの要
部正面構成図、要部側面構成図、第3図は本発明の第1
の実施例の光回路デバイスの構成図、第4図は同第2の
実施例の同デバイスの構成図、第6図は同第3の実施例
の同デバイスの構成図、第6図は同第4の実施例の同デ
バイスの構成図、第7図は同第6の実施例の同デバイス
の構成図、第8図は同第6の実施例の同デバイスの構成
図、第9図は同第7の実施例の同デバイスの構成図、第
10図は同第8の実施例の同デバイスの構成図、第11
図は同第9の実施例の同デバイスの構成図である。 11・・・・・・保持基体、12・・・・・・第1保持
部、13・・・・・・・第2保持部、14・・・・・・
半導体レーザ、16・・・・・・光導波路、16・・・
・・・光回路基板、31・・・・・・圧電13ペゾ 基板、41・・・・・・第1平面、42・・・・・・第
2平面、43・・・・・・電極、61・・・・・・第3
平面、62・・・・・・第4平面、63・・・・・・電
極、61・・・・・・圧電基板、62・・・・・・圧電
基板表面、63・・・・・・電極、64・・・・・・第
1端、66・・・・・・第2端、71・・・・・・第2
保持基板、72・・・・・・テーパ支持体、91・・・
・・・電極、101・・・・・・電極、102・・・・
・・絶縁材、111・・・・・・光ファイバ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 f/ 第2図 也’ (bl 特開昭GO−202408(5) uVず 第6図 第11図 fl −り0−
FIG. 1 is a configuration diagram of a first conventional optical circuit device, FIGS. The figure shows the first aspect of the present invention.
4 is a block diagram of the same device in the second embodiment. FIG. 6 is a block diagram of the same device in the third embodiment. FIG. 7 is a block diagram of the same device in the fourth embodiment, FIG. 7 is a block diagram of the same device in the sixth embodiment, FIG. 9 is a block diagram of the same device in the sixth embodiment, and FIG. FIG. 10 is a configuration diagram of the same device according to the seventh embodiment, FIG. 10 is a configuration diagram of the same device according to the eighth embodiment, and FIG.
The figure is a configuration diagram of the same device according to the ninth embodiment. 11... Holding base, 12... First holding part, 13... Second holding part, 14...
Semiconductor laser, 16... Optical waveguide, 16...
...Optical circuit board, 31...Piezoelectric 13P substrate, 41...First plane, 42...Second plane, 43...Electrode , 61...3rd
Plane, 62... Fourth plane, 63... Electrode, 61... Piezoelectric substrate, 62... Piezoelectric substrate surface, 63... Electrode, 64...first end, 66...second end, 71...second
Holding substrate, 72... Taper support, 91...
...Electrode, 101... Electrode, 102...
...Insulating material, 111...Optical fiber. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure f/ Figure 2 ya' (bl JP-A-202408(5) uVzu Figure 6 Figure 11 fl -ri0-

Claims (4)

【特許請求の範囲】[Claims] (1)半導体レーザと光導波路を設けた光回路基板と支
持基体とからなり、上記支持基体の第1保持部に半導体
レーザを固定し、上記支持基体の第2保持部に電極を設
けた少なくとも1枚の圧電基板を固定し、上記圧電基板
上で上記光導波路と上記半導体レーザとを光結合させる
位置に上記光回路基板を固定したことを特徴とする光回
路デバイス。
(1) At least one comprising an optical circuit board provided with a semiconductor laser and an optical waveguide, and a supporting base, wherein the semiconductor laser is fixed to a first holding part of the supporting base, and an electrode is provided to a second holding part of the supporting base. An optical circuit device characterized in that a single piezoelectric substrate is fixed, and the optical circuit board is fixed on the piezoelectric substrate at a position where the optical waveguide and the semiconductor laser are optically coupled.
(2)第2保持部との固定面である圧電基板の第1平面
にほぼ垂直な分極方向を有し、第1平面と上記第1平面
にほぼ平行な上記圧電基板の第2平面に電極を設けたと
とを特徴とする特許請求の範囲第1項記載の光回路デバ
イス。
(2) The electrode has a polarization direction substantially perpendicular to the first plane of the piezoelectric substrate that is the fixed surface with the second holding part, and is provided on the second plane of the piezoelectric substrate that is substantially parallel to the first plane and the first plane. 2. The optical circuit device according to claim 1, further comprising:
(3)第1平面にほぼ平行な分極方向を有し、上記第1
平面にほぼ垂直な圧電基板の第3平面と、上記第3平面
にほぼ平行な上記圧電基板の第4平面とに電極を設けた
ことを特徴とする特許請求の範2パく−・ 門弟1項記載の光回路デバイス。
(3) having a polarization direction substantially parallel to the first plane;
Claim 2, characterized in that electrodes are provided on a third plane of the piezoelectric substrate that is substantially perpendicular to the plane, and on a fourth plane of the piezoelectric substrate that is substantially parallel to the third plane. Optical circuit device described in section.
(4)第2保持部表面にほぼ垂直な分極方向を有し且つ
分極方向のほぼ18o0異なる2枚の圧電基板をはり合
せ、上記はり合せ面にほぼ平行な圧電基板表面に電極を
設け、上記半導体レーザより離れた上記圧電基体の端の
第1端を上記第2保持部に固定し、上記半導体レーザに
近い上記圧電基板の第2端に光回路基板を固定したこと
を特徴とする光回路デバイス◎
(4) Two piezoelectric substrates having a polarization direction substantially perpendicular to the surface of the second holding part and differing in polarization direction by approximately 18o0 are bonded together, electrodes are provided on the surface of the piezoelectric substrate substantially parallel to the bonding surface, and the An optical circuit characterized in that a first end of the piezoelectric substrate remote from the semiconductor laser is fixed to the second holding part, and an optical circuit board is fixed to a second end of the piezoelectric substrate near the semiconductor laser. Device◎
JP5875384A 1984-03-27 1984-03-27 Optical circuit device Pending JPS60202408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5875384A JPS60202408A (en) 1984-03-27 1984-03-27 Optical circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5875384A JPS60202408A (en) 1984-03-27 1984-03-27 Optical circuit device

Publications (1)

Publication Number Publication Date
JPS60202408A true JPS60202408A (en) 1985-10-12

Family

ID=13093295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5875384A Pending JPS60202408A (en) 1984-03-27 1984-03-27 Optical circuit device

Country Status (1)

Country Link
JP (1) JPS60202408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619455A1 (en) * 1987-08-13 1989-02-17 Lemarer Rene OPTICAL ELEMENT ALIGNMENT DEVICE, METHOD OF MANUFACTURING THE SAME, AND METHODS OF CONNECTING TWO OPTICAL FIBERS AND OPTICAL FIBER PHOTODEGRADING DIODE USING THE DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619455A1 (en) * 1987-08-13 1989-02-17 Lemarer Rene OPTICAL ELEMENT ALIGNMENT DEVICE, METHOD OF MANUFACTURING THE SAME, AND METHODS OF CONNECTING TWO OPTICAL FIBERS AND OPTICAL FIBER PHOTODEGRADING DIODE USING THE DEVICE

Similar Documents

Publication Publication Date Title
US6640032B2 (en) Bonding structures for optical members
US5281305A (en) Method for the production of optical waveguides employing trench and fill techniques
CN100410732C (en) Optical modulator
JP4279684B2 (en) Electrode and core structures for polarization-independent waveguides.
JPS63133104A (en) Method and apparatus for mounting integrated optical chip by low stress
US20030228088A1 (en) All optical switch fabricated by a thin film process
US5297218A (en) Optical semiconductor laser and optical waveguide alignment device
JPS60202408A (en) Optical circuit device
JP4453894B2 (en) Optical waveguide device and traveling wave optical modulator
JP2821349B2 (en) Optical waveguide device
JP3485292B2 (en) Trench type semiconductor polarization rotator
JP2579906B2 (en) Optical coupling device
JPH0461175A (en) Photo-coupler device
JPH0639468Y2 (en) Ceramics actuator
JPS60225824A (en) Optical shutter elememt
JPH02257108A (en) Optical waveguide device
JP2819175B2 (en) Waveguide type optical attenuator and optical integrated circuit
JPH1184181A (en) Optical coupler
JPS61287186A (en) Optical isolator integration type semiconductor laser device
JPH03252613A (en) Waveguide type optical device
JPH02266309A (en) Connection structure between optical waveguide and optical fiber
CN114326250A (en) Optical modulator
WO2014203931A1 (en) Light control element
JPS61166504A (en) Optical circuit device
JP3194311B2 (en) Hybrid optical waveguide circuit