JPS60202388A - Inhibitor for leakage of radioactive sodium aerosol - Google Patents

Inhibitor for leakage of radioactive sodium aerosol

Info

Publication number
JPS60202388A
JPS60202388A JP59059099A JP5909984A JPS60202388A JP S60202388 A JPS60202388 A JP S60202388A JP 59059099 A JP59059099 A JP 59059099A JP 5909984 A JP5909984 A JP 5909984A JP S60202388 A JPS60202388 A JP S60202388A
Authority
JP
Japan
Prior art keywords
sodium
fire
main cooling
building
aerosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59059099A
Other languages
Japanese (ja)
Inventor
憲一 鈴木
宮木 和美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP59059099A priority Critical patent/JPS60202388A/en
Publication of JPS60202388A publication Critical patent/JPS60202388A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は液体金属ナトリウム型高速mWJ炉の原子炉格
納施設内で発生するナトリウム火災時に放射性ナトリウ
ムエアロゾルの環境への漏洩を低減するll1Q’l性
ナトリウムエアロゾルの漏洩抑制装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a method for reducing the leakage of radioactive sodium aerosol into the environment during a sodium fire that occurs in a reactor containment facility of a liquid metal sodium fast mWJ reactor. This invention relates to a sodium aerosol leakage suppression device.

[発明の技術的背景とその問題点] 一般に液体金属ナトリウム型高速増殖炉にJ3いては、
−次冷却材として液体全屈ナトリウムが使用されている
[Technical background of the invention and its problems] In general, liquid metal sodium fast breeder reactor J3 has
-Liquid total flex sodium is used as the secondary coolant.

第1図は液体金属ナトリウム形高速増殖炉の原子炉格納
施設を示すもので、図におい°C符号1は原子炉格納容
器外部遮蔽壁を示しており、この原子炉格納容器外部遮
蔽壁1内には原子炉格納容器2が収容されている。原子
炉格納容器2の下部中央部には原子炉容器室3が配設さ
れ、この原子炉容器室3内には炉心4を収容する原子炉
容器5が収容されている。
Figure 1 shows a reactor containment facility for a liquid metal sodium fast breeder reactor. A reactor containment vessel 2 is housed in the reactor containment vessel 2. A reactor vessel chamber 3 is provided in the lower center of the reactor containment vessel 2, and a reactor vessel 5 that accommodates a reactor core 4 is housed within this reactor vessel chamber 3.

原子炉容器5内には液体金属ナトリウムが収容され、ま
た上端開口部は遮蔽プラグ6により閉塞され、遮蔽プラ
グ6に穿設された貫通孔には制御棒駆動機構7が配設さ
れCいる。
Liquid metal sodium is contained in the reactor vessel 5, and the upper end opening is closed by a shielding plug 6, and a control rod drive mechanism 7 is disposed in a through hole formed in the shielding plug 6.

原子炉容器室3に隣接して一次主冷却至8が配設されて
おり、この−法主冷却室8内には中間熱交換器9および
一次主冷却系循環ボンブ10が配設されている。
A primary main cooling chamber 8 is disposed adjacent to the reactor vessel chamber 3, and an intermediate heat exchanger 9 and a primary main cooling system circulation bomb 10 are disposed within this main cooling chamber 8. .

ずなわら、炉心4内でエネルギーを得た液体全屈ナトリ
ウムは、−法主冷却室8内に移送され、中間熱交換器9
により二次冷却材と熱交換した後、−次主冷N1系循環
ポンプ10により再び原子炉容”器5内へ循環される。
The liquid total flex sodium that has obtained energy in the reactor core 4 is then transferred to the primary cooling chamber 8 and transferred to the intermediate heat exchanger 9.
After exchanging heat with the secondary coolant, it is circulated again into the reactor vessel 5 by the secondary main cold N1 system circulation pump 10.

原子炉容器室3および一次主冷却室8の上部には仕切壁
11が形成され、この仕切壁11と原子炉格納容器2に
より床上建屋12が形成されている。
A partition wall 11 is formed above the reactor vessel chamber 3 and the primary main cooling chamber 8, and the partition wall 11 and the reactor containment vessel 2 form an above-floor building 12.

以上のJ、うに構成された原子炉格納施設では、例えば
−法主冷却室8内で液体金属ナトリウムを循環Jる一次
主冷却系配管13が破断した場合には、−法主冷却室8
内においてナトリウム火災が生ずる。
In the reactor containment facility configured as described above, for example, if the primary main cooling system piping 13 that circulates liquid metal sodium in the main cooling room 8 breaks, - the main cooling room 8
A sodium fire occurs inside the building.

づなわち一般に、このような場合を考慮し、−次主冷N
1室8内は窒素雰囲気とされているが、実際には約3%
程度の酸素が存在しており、破断口から流出する液体全
屈ナトリウムはこの酸素と結合し、Na2OまたはNa
2O2からなるエーロゾルを生ずる。このエアロゾルは
数μmから数十μmの粒子Cあり、火災による一次主冷
却室8内の圧力上昇により一次主冷却室8から床上建屋
12へ漏洩し、さらにこの床上建屋12から原子炉格納
容器2外へ漏洩し、環境汚染を引き起こす(13それが
ある。
That is, in general, considering such a case, -th primary cold N
Room 18 is said to have a nitrogen atmosphere, but in reality it is about 3% nitrogen.
There is a certain amount of oxygen present, and the liquid total flex sodium flowing out from the fracture combines with this oxygen to form Na2O or Na
Produces an aerosol consisting of 2O2. This aerosol has particles C ranging from several μm to several tens of μm, and due to the pressure increase in the primary main cooling chamber 8 due to the fire, it leaks from the primary main cooling chamber 8 to the floor building 12, and then from this floor building 12 to the reactor containment vessel 2. It leaks outside and causes environmental pollution (13).

[発明の目的] 本発明はかかる従来の事情に対処してなされたもので、
液体金属ナトリウム型畠速増殖炉の原子炉格納施設内で
発生するナトリウム火災時に放射性ナトリウムエアロゾ
ルの環境への漏洩を低減り−ることのできる放射性ナト
リウムエアロゾルの漏洩抑制装置を提供しようとするも
のである。
[Object of the invention] The present invention has been made in response to such conventional circumstances,
The purpose of the present invention is to provide a radioactive sodium aerosol leakage suppression device that can reduce the leakage of radioactive sodium aerosol into the environment in the event of a sodium fire occurring in the reactor containment facility of a liquid metal sodium type Hatsaya breeder reactor. be.

[発明の概要] すなわら本発明は、原子炉容器内へ液体金属ナトリウム
を循環する配管を収容する建屋内でナトリウム火災時に
発生する酸化ナトリウムからなるエアロゾルの前記建屋
外への漏洩を防止する放射性ナトリウムエアロゾルの漏
洩抑制装置におい゛(、前記建屋内におけるナトリウム
火災を検出する火災検出器と、この火災検出器からの火
災信号を入力し前記jl屋内へ固体状の二酸化炭素を噴
出する二酸化炭素供給装置とを備えたことを特徴とする
放射性ナトリウムエアロゾルの漏洩抑制装置である。
[Summary of the Invention] In other words, the present invention prevents the leakage of aerosols made of sodium oxide generated in the event of a sodium fire in a building housing piping for circulating liquid metal sodium into a nuclear reactor vessel to the outside of the building. The radioactive sodium aerosol leak suppression system includes a fire detector that detects a sodium fire in the building, and a carbon dioxide detector that receives a fire signal from the fire detector and spouts solid carbon dioxide into the building. This is a radioactive sodium aerosol leakage suppression device characterized by comprising a supply device.

[発明の実施例] 以上本発明の詳細を図面に示す一実施例について説明づ
゛る。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described in detail as shown in the drawings.

第2図は本発明の放射性ナトリウムエアL1ゾルの漏洩
抑制装置を一次主冷却室に適用した例を示りbのぐ、図
において符号8は一次主冷却室を示しCいる。この−法
主冷却室8内には原子炉容器5内の液体金属ナトリウム
を再循環する一次冷却系循環ポンプ10が配設されCお
り、また−法主冷却系配管13内の液体金属ナトリウム
と二次冷却材とを熱交換する中間熱交換器9が配設され
ている。
FIG. 2 shows an example in which the radioactive sodium air L1 sol leakage suppression device of the present invention is applied to a primary main cooling chamber. In the figure, reference numeral 8 indicates the primary main cooling chamber. A primary cooling system circulation pump 10 for recirculating the liquid metal sodium in the reactor vessel 5 is disposed within the main cooling chamber 8, and the liquid metal sodium in the main cooling system piping 13 is also recirculated. An intermediate heat exchanger 9 is provided to exchange heat with the secondary coolant.

図において符号14は一次主冷却室8内に発生した火災
を検出する火災検lJ1器を示している。この火災検出
器14は一次主冷却室8内の放射能の変化または温度変
化により一次主冷却室8内のナトリウム火災を検出する
。−法主冷却室8の天井中央部には複数の細孔ノズルを
右する二酸化炭素噴出器15が配設されでいる。この二
酸化炭素噴出器15は加圧された二酸化炭素を収容し−
Cなるボンベ16に配管17を介しC接続されており、
この配管17には開閉弁18が介挿されている。
In the figure, reference numeral 14 indicates a fire detector 1J1 for detecting a fire occurring within the primary main cooling chamber 8. This fire detector 14 detects a sodium fire in the primary main cooling chamber 8 based on a change in radioactivity or a change in temperature within the primary main cooling chamber 8. - A carbon dioxide ejector 15 having a plurality of small hole nozzles is disposed in the center of the ceiling of the main cooling room 8. This carbon dioxide ejector 15 contains pressurized carbon dioxide.
C is connected to a cylinder 16 called C via piping 17,
An on-off valve 18 is inserted into this pipe 17.

図において符号19は火災検出器14からの火災信−号
を入力し、前述した開閉弁18を間とする制御装置を示
しでいる。
In the figure, reference numeral 19 indicates a control device to which a fire signal from the fire detector 14 is input, and which has the above-mentioned on-off valve 18 in between.

すなわち、以上のような一次主冷却室8では、が生じた
時には放射能を帯びた液体金属ナトリウン−次主冷却配
管13に亀裂が生じた時または破断ム20が一次主冷却
室8内に漏洩し、ナトリウム火災が発生しナトリウムは
酸素ど結合しNa2OまたはNa2O2のエアロゾルが
発生する。
That is, in the primary main cooling chamber 8 as described above, when a crack occurs in the radioactive liquid metal sodium-secondary main cooling pipe 13 or the broken dam 20 leaks into the primary main cooling chamber 8. However, a sodium fire occurs and sodium combines with oxygen, generating an aerosol of Na2O or Na2O2.

しかしながら、以上のように4を成された放射性ナトリ
ウムエアロゾルの漏洩抑制装置ひは、ナトリウム火災は
火災検出器14により検出され制御装置19へ出力され
、この制御装置19により開閉弁18が間とされる。こ
の結果、ボンベ16内に圧縮状態で収容されている二酸
化炭素が配管17を通り二酸化炭素噴出器15の細孔ノ
ズルから一次主冷却室8内へ噴出する。このとぎ二酸化
炭素は雪状の固体状態となり、火災による圧力上昇にま
り上りへ移動してきたエアロゾル粒子と衝突し凝集を促
進させ、これによりエアロゾルは一次主冷却室j室8か
ら漏洩することなく、−法主冷却室8の床」−に多量に
落下する。
However, in the radioactive sodium aerosol leak suppression system constructed as described above, a sodium fire is detected by the fire detector 14 and output to the control device 19, and the control device 19 closes the on-off valve 18. Ru. As a result, the carbon dioxide contained in the cylinder 16 in a compressed state passes through the pipe 17 and is ejected from the small hole nozzle of the carbon dioxide ejector 15 into the primary main cooling chamber 8 . This shaved carbon dioxide becomes a snow-like solid state, collides with aerosol particles that have moved upward due to the increase in pressure caused by the fire, and promotes aggregation. As a result, the aerosol does not leak from the primary main cooling room J chamber 8. A large amount of water fell onto the floor of the master cooling room 8.

また、二酸化炭素の冷IJJ作用によりエアロゾルは壁
面に凝縮することとなる。さらに二酸化炭素はツートリ
ウム火災を抑制する効果をもつことが実験的に検証され
でおり、従つ【ナトリウム火災も同時に消火することか
できる。この結果、−法主冷却室8からの放射性液体全
屈ナトリウムエアロゾルの漏洩を従来より大幅に低減す
ることができる。
Further, the aerosol will condense on the wall surface due to the cold IJJ action of carbon dioxide. Furthermore, it has been experimentally verified that carbon dioxide has the effect of suppressing tsutorium fires, and therefore [sodium fires can also be extinguished at the same time]. As a result, the leakage of the radioactive liquid total bending sodium aerosol from the main cooling chamber 8 can be significantly reduced compared to the conventional method.

なお以上述べた実施例では、−法主冷却室8内に火災検
出器14および二酸化炭素噴出器15を設けた例につい
て説明しICが、本発明はかかる実施例に限定されるも
のでなく、床上建屋12内に火災検出器を設け、さらに
この床上建屋12の頂部に二酸化炭素噴出器を配設し、
床上建屋12内で一次主冷却室8から漏洩し’U<るナ
トリウムのエアロゾル粒子の凝集を促進さぜ′(もよい
ことは勿論C゛ある。
In addition, in the embodiment described above, an example in which a fire detector 14 and a carbon dioxide ejector 15 are provided in the main cooling chamber 8 is explained, and the IC is not limited to this embodiment. A fire detector is provided in the floor building 12, and a carbon dioxide ejector is provided at the top of the floor building 12.
It is of course advantageous to promote agglomeration of sodium aerosol particles leaking from the primary main cooling chamber 8 in the above-floor building 12.

[発明の効果] 以上述べたように本発明の放射性す]〜リウム土アロゾ
ルの漏洩抑制装置によれば、原子炉格納施設内ぐ発生す
るナトリウム火災時にa3ける放射性ナトリウムエアロ
ゾルの環境への漏洩を従来より大幅に低減することがで
きる。
[Effects of the Invention] As described above, the radioactive sodium aerosol leakage suppression device of the present invention prevents the leakage of radioactive sodium aerosol into the environment during a sodium fire that occurs in a nuclear reactor containment facility. This can be significantly reduced compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉格納施設を示す縦断面図、第2図は本発
明の放射性ナトリウム土アロゾルの漏洩抑制装置の一実
施例を一次主冷却室に適用した状態を示す一次主冷却室
の縦断面図である。 2・・・・・・・・・・・・原子炉格納容器5・・・・
・・・・・・・・原子炉容器8・・・・・・・・・・・
・−法主冷却室12・・・・・・・・・・・・床上建屋
14・・・・・・・・・・・・火災検出器15・・・・
・・・・・・・・二酸化炭素噴出器代理人弁理士須山佐
− 第1図 第2図
Fig. 1 is a vertical cross-sectional view showing the reactor containment facility, and Fig. 2 is a longitudinal cross-sectional view of the primary main cooling room, showing a state in which an embodiment of the radioactive sodium earth arosol leakage suppression device of the present invention is applied to the primary main cooling room. It is a front view. 2... Reactor containment vessel 5...
・・・・・・Reactor vessel 8・・・・・・・・・・・・
- Main cooling room 12... Floor building 14... Fire detector 15...
・・・・・・・・・Carbon dioxide ejector representative patent attorney Suyama Sa - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1〉原子炉容器内へ液体金属ナトリウムを循環する配
管を収容する建屋内でナトリウム火災時に発生づる酸化
ナトリウムからなるエアロゾルの前記建屋外への漏洩を
防止する放射性ナトリウムエアUゾルの漏洩抑制装置に
おいて、前記建屋内にJ5けるナトリウム火災を検出す
る火災検出器と、この火災検出器からの火災信号を入力
し前記建屋内へ固体状の二酸化炭素を噴出する二酸化炭
素供給装置とを備えたことを特徴とする放射性ナトリウ
ムエアロゾルの漏洩抑制装置。
(1> Radioactive sodium aerosol leakage control device that prevents aerosols made of sodium oxide generated in the event of a sodium fire from leaking to the outside of the building in a building that houses piping that circulates liquid metal sodium into the reactor vessel. , comprising a fire detector for detecting a J5 sodium fire in the building, and a carbon dioxide supply device for inputting a fire signal from the fire detector and spouting solid carbon dioxide into the building. A radioactive sodium aerosol leakage suppression device characterized by:
JP59059099A 1984-03-27 1984-03-27 Inhibitor for leakage of radioactive sodium aerosol Pending JPS60202388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059099A JPS60202388A (en) 1984-03-27 1984-03-27 Inhibitor for leakage of radioactive sodium aerosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059099A JPS60202388A (en) 1984-03-27 1984-03-27 Inhibitor for leakage of radioactive sodium aerosol

Publications (1)

Publication Number Publication Date
JPS60202388A true JPS60202388A (en) 1985-10-12

Family

ID=13103544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059099A Pending JPS60202388A (en) 1984-03-27 1984-03-27 Inhibitor for leakage of radioactive sodium aerosol

Country Status (1)

Country Link
JP (1) JPS60202388A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017066411A1 (en) * 2015-10-16 2017-04-20 Ge-Hitachi Nuclear Energy Americas Llc Passive fire response system and method of manufacturing
JP2018503424A (en) * 2014-12-22 2018-02-08 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Method and system for suppressing pyrophoric metal fires
JP2019027955A (en) * 2017-07-31 2019-02-21 三菱重工業株式会社 Nuclear facility, dry ice supplying device, and method for suppressing radioactive material
CN111276269A (en) * 2020-03-16 2020-06-12 上海交通大学 Device and method for verifying aerosol retention efficiency of narrow slit of penetrating piece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503424A (en) * 2014-12-22 2018-02-08 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Method and system for suppressing pyrophoric metal fires
WO2017066411A1 (en) * 2015-10-16 2017-04-20 Ge-Hitachi Nuclear Energy Americas Llc Passive fire response system and method of manufacturing
US10004929B2 (en) 2015-10-16 2018-06-26 Ge-Hitachi Nuclear Energy Americas Llc Passive fire response system and method of manufacturing
JP2019027955A (en) * 2017-07-31 2019-02-21 三菱重工業株式会社 Nuclear facility, dry ice supplying device, and method for suppressing radioactive material
CN111276269A (en) * 2020-03-16 2020-06-12 上海交通大学 Device and method for verifying aerosol retention efficiency of narrow slit of penetrating piece

Similar Documents

Publication Publication Date Title
Ma et al. In-vessel melt retention of pressurized water reactors: historical review and future research needs
CN107293336B (en) The constrain system of marine nuclear power station containment
JPS60202388A (en) Inhibitor for leakage of radioactive sodium aerosol
Bang et al. Parametric analyses for the design of a closed-loop passive containment cooling system
Ahearne The Future of Nuclear Power: America will choose nuclear power only if demand for electricity accelerates, nuclear costs are contained and global-warming worries grow
Lee et al. Preliminary Thermal-Hydraulic Analysis of Beam Tube Break (BTLOCA) Accident at HANARO
Kanik et al. 3D analysis of spray effect on long-term depressurization of VVER-1000 containment during LB-LOCA
Etemadieh et al. Assessment of spray system capabilities in reduction of containment pressure and deposition of fission products during a severe accident in VVER-1000
Yoon et al. Validation of the correlation-based aerosol model in the ISFRA sodium-cooled fast reactor safety analysis code
Na et al. The hydrogen issue in the initial operation of a filtered containment venting system
Park et al. An investigation of an in-vessel corium retention strategy for the Wolsong pressurized heavy water reactor plants
JPS58146900A (en) Method of storing radioactive material by sealed air circulation and cooling system
Meignen et al. Direct Containment Heating at low primary pressure: experimental investigation and multidimensional modeling
Petti et al. ITER safety: lessons learned for the future
Bašić et al. Potential Impact of Reactor Core Damage on Severe Accident Management Actions in Vicinity of Spent Fuel Pool
Šadek et al. NPP Krško Station Blackout Analysis after Safety Upgrade Using MELCOR Code
Lin et al. Accident influence to the thermal conditions of the main buildings of the Kuosheng plant during the decommissioning process
JPH09292483A (en) Pressure suppression system in containment section for liquid-metal cooled reactor
Grabaskas et al. Regulatory Considerations Regarding Potential High Temperature Fluid Releases in Advanced Reactor Designs
Louie et al. MELCOR CODE VALIDATION STUDIES ON FIRE ACCIDENTS IN NON-REACTOR FACILITIES.
Park et al. Estimation of Direct Containment Heating Loads in KNGR Using CONTAIN Code
Strawbridge CRBRP structural and thermal margin beyond the design base
Kubo et al. R and D needs for evaluation of sodium fire consequences and aerosol behavior for DFBR
JPS58225391A (en) Loss-of-coolant accident relaxation device
Šadek et al. NPP Krško containment modelling with the ASTEC code