JPS60202328A - Electrophoresis-speed measuring device for suspended particle - Google Patents

Electrophoresis-speed measuring device for suspended particle

Info

Publication number
JPS60202328A
JPS60202328A JP59060370A JP6037084A JPS60202328A JP S60202328 A JPS60202328 A JP S60202328A JP 59060370 A JP59060370 A JP 59060370A JP 6037084 A JP6037084 A JP 6037084A JP S60202328 A JPS60202328 A JP S60202328A
Authority
JP
Japan
Prior art keywords
results
particles
electrophoresis
result
frequency analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59060370A
Other languages
Japanese (ja)
Inventor
Hidehiko Fujii
藤井 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59060370A priority Critical patent/JPS60202328A/en
Publication of JPS60202328A publication Critical patent/JPS60202328A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a highly reliable result with few errors, by selecting the adequate result among the results obtained by executing a plurality of analyzing methods. CONSTITUTION:A program of frequency analysis by a Fourier transformation method is imparted to an operating device 8. A program of a zero crossing method is set in an operating device 9. The devices 8 and 9 read the data of the same output from a RAM7 and perform the different operations, respectively. To which method the measuring condition is suitable is not clear, therefore, the product of the results of the two operations is made to be the final data. In this figure, the operation of the product is carried out by the device 9, and the result is displayed on a display device 10.

Description

【発明の詳細な説明】 イ・産業上の利用分野 本発明は浮遊粒子の電気泳動速度を測定する装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an apparatus for measuring the electrophoretic velocity of suspended particles.

口・従来技術 生物細胞を適当な溶媒中に浮遊させ電界を作用させて電
気泳動を行わせると、細胞の泳動速度によって細胞表面
の電荷を知ることができ、細胞の類別を行うことができ
る。このような浮遊粒子の電気泳動速度を測定する方法
の一つは次のようなものである。電気泳動管内に粒子を
浮遊させ、これを照明して側方から見ると粒子は光った
点に見える。これをレンズで格子上に投影し、格子の後
に受光素子を置いて、格子透過光を受光する。浮遊粒子
に電気泳動を行わせると、粒子の像が格子上を移動する
。粒子像は輝点であるから、これが格子上を移動すると
粒子像が格子線を通過するとき受光素子への入射光量が
減少する。粒子が一個だけの場合を考えると、受光素子
の出力は粒子の速度と格子のピッチとで決まる周期で変
動するから、この周期から粒子の速度がまる。粒子が多
数あって速度分布を持っているときは、受光素子の出力
は色々な周期の信号が多数重なったものとなっている。
(Prior Art) When biological cells are suspended in a suitable solvent and subjected to electrophoresis by applying an electric field, it is possible to determine the charge on the cell surface based on the migration speed of the cells, and the cells can be classified. One method for measuring the electrophoretic velocity of such suspended particles is as follows. Particles are suspended in an electrophoresis tube, and when the tube is illuminated and viewed from the side, the particles appear as glowing dots. This is projected onto the grating using a lens, and a light receiving element is placed after the grating to receive the light transmitted through the grating. When suspended particles undergo electrophoresis, the image of the particles moves on a grid. Since the particle image is a bright spot, when the particle image moves on the grid, the amount of light incident on the light receiving element decreases when the particle image passes through the grid lines. Considering the case where there is only one particle, the output of the light receiving element fluctuates at a period determined by the speed of the particle and the pitch of the grating, so the speed of the particle is calculated from this period. When there are many particles and they have a velocity distribution, the output of the light receiving element is a combination of many signals with various periods.

一般にはこのような信号が得られるので、この信号を周
波数解析することによって粒子の電気泳動速度の分布を
めるのである。こ5で周波数解析法としては、フーリエ
変換法、ゼロクロス計数法炉相関法等が用いられる。こ
れらの方法は例えばフーリエ変換法は粒子密度が高いと
きは正しい結果を与えるが、粒子が沈降して粒子数が減
少して来ると結果の再現性が悪くなる。ゼロクロス法は
その反対で粒子数が少いときの方が良い結果を与える。
Generally, such a signal is obtained, and the distribution of electrophoretic velocity of particles is determined by frequency analysis of this signal. In this case, as the frequency analysis method, a Fourier transform method, a zero-cross counting method, a furnace correlation method, etc. are used. For example, the Fourier transform method gives correct results when the particle density is high, but as the particles settle and the number of particles decreases, the reproducibility of the results deteriorates. The zero-crossing method is the opposite, giving better results when the number of particles is small.

このように種々な周波数解析法は夫々一長一短があり、
適した条件下で良い結果を与えるものである。しかし従
来の電気泳動測定装置は一種類の周波数解析法を適用し
ているだけであるから、測定条件が適当でないと測定誤
差が生じ易いものであった。
In this way, various frequency analysis methods have their own advantages and disadvantages.
It gives good results under suitable conditions. However, since conventional electrophoresis measurement devices apply only one type of frequency analysis method, measurement errors are likely to occur if measurement conditions are not appropriate.

ミロ 的 本発明は浮遊粒子の電気泳動速度の測定結果の信頼性及
び精度の向上を目的とする。
The purpose of the present invention is to improve the reliability and accuracy of measurement results of electrophoretic velocity of suspended particles.

二・構 成 本発明電気泳動測定装置は測定装置によって得られる同
一の信号に対して複数種の周波数解析法を適用して複数
の結果を得、その中から妥当な測定結果を選択するよう
にしたものである。
2. Configuration The electrophoresis measurement device of the present invention applies multiple types of frequency analysis methods to the same signal obtained by the measurement device to obtain multiple results, and selects a valid measurement result from among them. It is something.

ホ・実施例 第1図は本発明の一実施例を示す。1は電気泳動管で、
浮遊粒子は図の紙面に垂直の方向に電気、泳動を行うよ
うになっている。2は電気泳動管内の浮遊粒子を照明す
る光束であるっ3は照明された浮遊粒子を側方から見る
対物レンズで、浮遊粒子の像を格子4上に形成している
。この像は暗い背影に粒子が輝点として映ついる。格子
本の透過光ハ集光レンズ5を通゛してシリコンホトセル
6上に入射せしめられる。シリコンホトセル6の出力信
号はプリアンプを経た後A / D変換されてRAM7
に記憶せしめられる。RAM’i’は2048語(1語
16ビツト)の構成である。RAM’7は二つの演算処
理装置8及び9の両方から共通にアクセスされている。
E. Embodiment FIG. 1 shows an embodiment of the present invention. 1 is an electrophoresis tube,
Floating particles are designed to conduct electrophoresis in a direction perpendicular to the plane of the figure. Reference numeral 2 is a light beam that illuminates the floating particles in the electrophoresis tube. Reference numeral 3 is an objective lens that views the illuminated floating particles from the side, and forms an image of the floating particles on the grid 4. In this image, particles appear as bright spots against a dark background. The light transmitted through the grid passes through a condensing lens 5 and is made incident on a silicon photocell 6. The output signal of the silicon photocell 6 passes through a preamplifier, is A/D converted, and is sent to the RAM 7.
be memorized. RAM'i' has a structure of 2048 words (16 bits per word). RAM'7 is commonly accessed by both arithmetic processing units 8 and 9.

演算処理装置8にはフーリエ変換法による周波数解析の
プログラムが与えてあり、演算処理装置9にはゼロクロ
ス法のプログラムが設定しである。
The arithmetic processing unit 8 is provided with a program for frequency analysis using the Fourier transform method, and the arithmetic processing unit 9 is provided with a program for the zero-cross method.

二つの演算処理装置8,9は共通のRAM’/から同じ
測定出力のデータを読出して夫々異る演算処理を行う。
The two arithmetic processing units 8 and 9 read out the same measurement output data from a common RAM'/ and perform different arithmetic processing on them.

演算処理によってまるものは、浮遊粒子の電気泳動速度
のスペクトルであり、何れの周波数解析法によっても全
く正しい結果が得られるなら、両演算処理装置によって
得られるスペクトルのデータは一致する筈であるが、夫
々の周波数解析法にはそれが適している測定条件があり
、実際の測定条件は一般に何れの方法に対しても、必ず
しも最適ではないので、夫々の方法でめられたスペクト
ルは誤差を含んでおり、互に一致しないのが普通である
。前述したようにフーリエ変換法は粒子数が多い場合誤
差の少い速度スペクトルを与え、ゼロクロス法は粒子数
が少いとき良い結果を与える。測定条件がどちらの方法
によシ適していたかは実際上明かでないので、二つの演
算結果そのものからよシ誤差の少い結果を抽出すること
になる。その一つの方法は演算処理装置8゜9によって
得られた結果をグラフにして画かせ、目視によって速度
分布の広りの小さい方を選択するものである。目視によ
る方法は主観が入るし面倒であるから、二つの結果を自
動的に軟量する方法が考えられる。図の実施例の場合、
二つの演算結果の積を以って最終的な速度分布のデータ
とする。即ち演算処理装置8の演算結果をf、(x)、
9の演算結果をg (x)とするとき、積F (x) 
= f (x) g (X)を以って最終的な速度分布
のデータとする。こ\でXは受光素子6の出力信号を構
成している成分波の周波数であり粒子の泳動速度と対応
した量で、関数値f1gは周波数Xの成分の振幅即ち周
波数Xに対応する速度を持った粒子の数に比例した量で
ある。第2図は演算処理装置8.9による演算 二処理
結果の例を示し、aは8のフーリエ変換法による結果、
bは9のゼロクロス法による結果で、Cは両者の積を示
す。この積をめる方法は一種の多数決法で、積において
最大値を示すXは、二つの解析方法の何れでも多いとさ
れた周波数成分である。第1図の装置ではこの積の演算
処理回路9の方が引受けて行うようになっておシ、その
結 ・果が表示装置lOによって表示される。
What is determined by calculation processing is the spectrum of the electrophoretic velocity of suspended particles, and if either frequency analysis method yields completely correct results, the spectral data obtained by both calculation processing devices should match. , each frequency analysis method has measurement conditions for which it is suitable, and actual measurement conditions are generally not necessarily optimal for any method, so the spectra determined by each method do not contain errors. However, it is normal that they do not match each other. As mentioned above, the Fourier transform method gives a velocity spectrum with less error when the number of particles is large, and the zero-crossing method gives good results when the number of particles is small. Since it is actually unclear which method is suitable for the measurement conditions, the result with the least error is extracted from the two calculation results themselves. One method is to plot the results obtained by the arithmetic processing unit 8.9 in a graph and visually select the one with the smaller velocity distribution. Since the visual inspection method involves subjectivity and is troublesome, a method of automatically comparing the two results may be considered. In the case of the illustrated embodiment,
The product of the two calculation results is used as the final velocity distribution data. That is, the calculation results of the calculation processing device 8 are expressed as f, (x),
When the calculation result of step 9 is g (x), the product F (x)
= f (x) g (X) is the final velocity distribution data. Here, X is the frequency of the component wave constituting the output signal of the light receiving element 6, which corresponds to the migration speed of the particles, and the function value f1g is the amplitude of the component of frequency X, that is, the speed corresponding to frequency X. The amount is proportional to the number of particles held. Figure 2 shows an example of the results of two operations performed by the arithmetic processing unit 8.9, where a is the result of the Fourier transform method of 8;
b is the result of the zero cross method of 9, and C is the product of both. This method of calculating the product is a type of majority voting method, and X, which shows the maximum value in the product, is the frequency component that is determined to be the largest in either of the two analysis methods. In the apparatus shown in FIG. 1, the arithmetic processing circuit 9 for this product takes charge of the calculation, and the result is displayed on the display device 1O.

上述実施例では二つの演算処理装置を用いて二つの解析
法を同時に実行するようにしているが、これは結坐をな
るべ←速かに得るためであり、−の演算処理装置で順次
複数種の周波数解析法を実行するようにしてもよいこと
は云うまでもない。
In the above embodiment, two arithmetic processing units are used to execute two analysis methods at the same time, but this is in order to obtain the result as quickly as possible. It goes without saying that a different frequency analysis method may also be implemented.

また周波数解析法は2種に限られない。例えば3種の解
析法を実行し、夫々の方法で得られるスペクトル関数を
f(X) l g (x) l h(X)とするとき、
三通りの積f@g、l!:f@h、!:g@hを計算し
、この中から最大のピークを示すものを以って最終結果
とするようにしてもよい。
Further, the frequency analysis method is not limited to two types. For example, when three types of analysis methods are executed and the spectral function obtained by each method is f(X) l g (x) l h(X),
Three products f@g, l! :f@h,! :g@h may be calculated, and the one showing the largest peak among them may be used as the final result.

へ・効 果 格子上に浮遊粒子の像を結像させる電気泳動速度測定で
は受光素子の出力信号から速度分布をめるのに色々な解
析方法があるが、それらの方法は夫々得失があシ、適当
とされる測定条件も異っておシ、一般に成る程度の誤差
を含んでいる。従って従来のように唯一種類の解析法で
速度分布をめる場合、結果の信頼性は不充分である。本
発明によれば、複数の解析法を実行し、夫々の方法で得
られた結果から比較絞量によって妥当な結果を選出する
ので、誤差の少い信頼性の高い結果が得られる。
In electrophoretic velocity measurement, which involves forming an image of suspended particles on a grid, there are various analysis methods for determining the velocity distribution from the output signal of the light-receiving element, but each of these methods has its own advantages and disadvantages. However, the measurement conditions that are considered appropriate vary and generally include errors of a certain degree. Therefore, when calculating the velocity distribution using only one type of analytical method as in the past, the reliability of the results is insufficient. According to the present invention, since a plurality of analysis methods are executed and appropriate results are selected from the results obtained by each method by a comparative reduction amount, highly reliable results with few errors can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の構成を示すプコツク図
、第2図は周波数解析結果の一例のグラフである。 1・・・電気泳動管、2・・・照明光束、3・・・対物
レンズ、4・・・格子、5・・・集光レンズ、6・・・
シリコンホトセル 7・・・RAM、8.9・・・演算
処理装置、10・・・表示装置。 代理人 弁理士 縣 浩 介
FIG. 1 is a diagram showing the configuration of an apparatus according to an embodiment of the present invention, and FIG. 2 is a graph showing an example of frequency analysis results. DESCRIPTION OF SYMBOLS 1... Electrophoresis tube, 2... Illumination light flux, 3... Objective lens, 4... Grid, 5... Condensing lens, 6...
Silicon photocell 7...RAM, 8.9... Arithmetic processing unit, 10... Display device. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 浮遊粒子の像を格子上に形成し、同格子を透過した光を
受光し、その受光出力を周波数解析して浮遊粒子の速度
分布をめる構成において、データ処理装置が複数種の周
波数解析法のプログラムを有して、それら複数種の周波
数解析法を実行し、各解析法によって得られた結果から
最適の結果を選出するようになっていることを特徴とす
る浮遊粒子の電気泳動速度測定装置。
In a configuration in which an image of suspended particles is formed on a grid, the light transmitted through the grid is received, and the received light output is frequency-analyzed to determine the velocity distribution of the suspended particles, the data processing device can process multiple types of frequency analysis methods. Electrophoretic velocity measurement of suspended particles characterized by having a program for executing multiple types of frequency analysis methods and selecting the optimal result from the results obtained by each analysis method. Device.
JP59060370A 1984-03-27 1984-03-27 Electrophoresis-speed measuring device for suspended particle Pending JPS60202328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060370A JPS60202328A (en) 1984-03-27 1984-03-27 Electrophoresis-speed measuring device for suspended particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060370A JPS60202328A (en) 1984-03-27 1984-03-27 Electrophoresis-speed measuring device for suspended particle

Publications (1)

Publication Number Publication Date
JPS60202328A true JPS60202328A (en) 1985-10-12

Family

ID=13140176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060370A Pending JPS60202328A (en) 1984-03-27 1984-03-27 Electrophoresis-speed measuring device for suspended particle

Country Status (1)

Country Link
JP (1) JPS60202328A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748638A (en) * 1980-07-31 1982-03-20 Chugai Pharmaceut Co Ltd Processing method for data of laser nephelometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748638A (en) * 1980-07-31 1982-03-20 Chugai Pharmaceut Co Ltd Processing method for data of laser nephelometer

Similar Documents

Publication Publication Date Title
US4188121A (en) Multiple ratio single particle counter
US4408880A (en) Laser nephelometric system
JP3304692B2 (en) Spectrometer
Steidel et al. Spectral differences in the QSO pairs Q1634+ 267A, B and Q2345+ 007A, B and the gravitational lens interpretation
US4385318A (en) Method and apparatus for comparing data signals in a container inspection device
DE19720330C1 (en) Method and device for measuring stresses in glass panes using the scattered light method
JPS60202328A (en) Electrophoresis-speed measuring device for suspended particle
JP3020626B2 (en) Engine exhaust gas analyzer using Fourier transform infrared spectrometer
JPH03135704A (en) Strain inspecting method for plate type body
JP2617795B2 (en) Gloss measuring method and equipment for painted surfaces
Weir et al. SKICAT: A system for the Scientific Analysis of Palomar-STScI Digital Sky Survey
EP0045495B1 (en) Laser nephelometric system
JPH02310445A (en) Method for correcting grain size distribution in measurement of fine particle
JP2821201B2 (en) Particle measurement method and device
JPH043491B2 (en)
CA2170774A1 (en) A method and apparatus for determining the concentration of a component present in a fluid stream in dispersed form
JPS62233712A (en) Method for measuring sharpness
SU615506A1 (en) Method of determining surface roughness
Hewett et al. Automatic Analysis of Objective Prism Spectra
JPH0687046B2 (en) Steel plate surface flaw inspection method by neural network
JPH0771923A (en) Method for measuring film thickness
JPH0786477B2 (en) Surface inspection device
JPH0648250B2 (en) Method for measuring electron beam energy spectrum
JPH11287747A (en) Laser diffraction/scattering type grain size distribution measuring device
JPH0238851A (en) Qualitative analysis for x-ray microanalyzer of the like