JPS60201778A - Picture input device - Google Patents

Picture input device

Info

Publication number
JPS60201778A
JPS60201778A JP59058690A JP5869084A JPS60201778A JP S60201778 A JPS60201778 A JP S60201778A JP 59058690 A JP59058690 A JP 59058690A JP 5869084 A JP5869084 A JP 5869084A JP S60201778 A JPS60201778 A JP S60201778A
Authority
JP
Japan
Prior art keywords
camera
posture
measurement
light quantity
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59058690A
Other languages
Japanese (ja)
Inventor
Kazuhiko Saka
坂 和彦
Atsushi Kuno
敦司 久野
Toshimichi Masaki
俊道 政木
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP59058690A priority Critical patent/JPS60201778A/en
Publication of JPS60201778A publication Critical patent/JPS60201778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To control the posture of a camera so that the center of camera viewfield is coincident with the position of an object, by picking up the object together with measurement of the input light quantity of an image pick-up means and controlling the posture of the image pick-up means according to the result of measurement of said light quantity. CONSTITUTION:A camera 1 is set at an upper oblique position to an object 4 on a table 5, and a light source is set so that its optical axis is coincident with the visual axis of the camera 1. A post 61 is supported rotatably on a base 6 and at the same time an attachment shaft 62 of the camera 1 is attached tiltably at the upper end of the post 61. The picture signals given from the camera 1 are supplied to a light quantity measuring device 4 for measurement of the input light quantity to the camera 1. Based on the result of this measurement, a posture controller 8 sends a control signal (e) to the camera 1. At the same time, a posture information signal (f) is fed back from the camera 1. Then the turning amount theta of the post 61 and the tilting amount phi of the shaft 62 are prescribed for control of posture of the camera 1.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、例えば産業ロボット用の物体認識装置におい
て、主として三次元物体を画像化するのに用いられる画
像入力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an image input device mainly used to image a three-dimensional object, for example in an object recognition device for an industrial robot.

〈発明の背景〉 従来のこの種画像入力装置は、第9図に示す如く、テー
ブル5全体を視野範囲A1とする固定カメラ9と、物体
4の認識に必要な限られた視野範囲A2をもつ可動カメ
ラ90とを具備し、固定カメラ9にてテーブル5上の物
体4の位置を検出し、その検出結果に基づき、姿勢制御
装置91を作動させて可動カメラ90を動かし、可 ゛
動カメラ90の視野の中心を物体4の位置に設定してい
る。前記固定カメラ9による物体の位置検出は、カメラ
撮像面92(第10図に示す)における”+Y方向の画
像の濃度分布Lx、Lγを次式により算出することによ
って行なわれる。
<Background of the Invention> As shown in FIG. 9, a conventional image input device of this type has a fixed camera 9 whose viewing range A1 covers the entire table 5, and a limited viewing range A2 necessary for recognizing an object 4. The fixed camera 9 detects the position of the object 4 on the table 5, and based on the detection result, the posture control device 91 is activated to move the movable camera 90. The center of the field of view is set at the position of object 4. Detection of the position of the object by the fixed camera 9 is performed by calculating the density distribution Lx, Lγ of the image in the +Y direction on the camera imaging surface 92 (shown in FIG. 10) using the following equation.

L x = Jf (x 、 y)dxLy = ff
(x、y)dy 但しf(x、y)は座標(x、y)における画像の濃度
である。
L x = Jf (x, y)dxLy = ff
(x, y) dy where f(x, y) is the density of the image at the coordinates (x, y).

ところが上記した従来装置の場合、2台のカメラ9.9
0が必要であるため、設備費用が高くつき且つ設備の設
置スペースが大きくなる。
However, in the case of the conventional device described above, two cameras9.9
Since 0 is required, the equipment cost is high and the installation space for the equipment is large.

また固定カメラ9で得た物体像Gが低コントラストの場
合、濃度分布Lx、Lyが顕著にあられれず、物体の位
置検出が困難となることがある。
Furthermore, when the object image G obtained by the fixed camera 9 has a low contrast, the density distributions Lx and Ly are not particularly sharp, which may make it difficult to detect the position of the object.

更には物体位置検出に際し、x、7両方向の瀘度分布L
x 、Lγをめる必要があるため、処理が複雑となり、
制御装置の大型化やコスト高を招く等、幾多の不利があ
った。
Furthermore, when detecting the object position, the filtering degree distribution L in both x and 7 directions is
Since it is necessary to calculate x and Lγ, the processing becomes complicated,
There were a number of disadvantages, such as an increase in the size of the control device and higher costs.

〈発明の目的〉 本発明は、物体位置検出用のカメラを用いることなく、
物体認識用カメラの視野中心が物体位置にくるようカメ
ラの姿勢を制御可能とした新規な画像入力装置を提供す
るものであり、これにより上記した不利を一挙に解消す
ることを目的とする。
<Object of the invention> The present invention can detect objects without using a camera for detecting object positions.
It is an object of the present invention to provide a novel image input device that can control the posture of an object recognition camera so that the center of its field of view is located at the object position, and thereby aims to eliminate the above-mentioned disadvantages at once.

〈発明の構成および効果〉 上記目的を達成するため、本発明では、物体背部に再帰
性反射物を配備し、物体に対しては撮像手段の視軸に沿
って光を照射する同軸照明を実施して、物体を撮像する
と共に、撮像手段の入力光量を計測して、その計測結果
に裁づき、撮像手段の姿勢を制御することとした。
<Structure and Effects of the Invention> In order to achieve the above object, the present invention provides a retroreflector behind an object, and implements coaxial illumination that irradiates the object with light along the visual axis of the imaging means. In this way, the object is imaged, the amount of light input to the imaging means is measured, and the attitude of the imaging means is controlled based on the measurement results.

本発明によれば、物体位置検出用のカメラが不要である
から、設備費用が軽減されると共に、設備の設置スペー
スを小さくできる。また再帰性反射物の使用並びに同軸
照明の実施により、高コントラストの画像が得られるか
ら、物体位置を確実に検出できる。而も撮像手段の入力
光量にて物体位置を検出するから、濃度分布を算出する
従来方式と比較して、処理の簡略化、制御装置の小型化
、コストの軽減を実現できる等、発明目的を達成した顕
著な効果を奏する。
According to the present invention, since a camera for detecting the position of an object is not required, equipment costs can be reduced and the installation space for the equipment can be reduced. Furthermore, by using a retroreflector and implementing coaxial illumination, a high-contrast image can be obtained, so the object position can be detected reliably. Moreover, since the object position is detected based on the input light intensity of the imaging means, compared to the conventional method of calculating the concentration distribution, it is possible to simplify the processing, downsize the control device, and reduce costs, thereby achieving the purpose of the invention. Achieve remarkable effects.

〈実、施例の説明〉 第1図および第2図は画像入力装置の基本構成を示し、
物体4の画像を得るCCD (Charged−Cou
pled Device )が使用されたカメラ1と、
物体4へ光(図中、矢印で示す)を照射する照明用光源
2と、物体4の背部に配備される再帰性反射物3とから
成る。この再帰性反射物3は光の入射方向へ光を反射さ
せる物体であり、シート状のものをテーブル5上へ貼付
して、その上へ物体4を位置させている。
<Explanation of Examples> FIGS. 1 and 2 show the basic configuration of an image input device,
A CCD (Charged-Cou) that obtains an image of the object 4.
A camera 1 in which a device (Pled Device) was used;
It consists of an illumination light source 2 that irradiates light (indicated by an arrow in the figure) to an object 4, and a retroreflector 3 placed on the back of the object 4. This retroreflector 3 is an object that reflects light in the direction of incidence of the light, and is a sheet-like object affixed to a table 5, on which the object 4 is positioned.

カメラ1は、テーブル5上の物体4に対し斜め上方位置
に配備され、また光源2はその光軸20がカメラ1の視
軸10と一致するように位置させである。本実施例では
、この同軸照明を実現するのに、カメラ1の視軸10上
に71−フミラー21を傾けて配備すると共に、光源2
をハーフミラ−21に向は且つ視軸10に対向位16さ
せている。
The camera 1 is placed obliquely above the object 4 on the table 5, and the light source 2 is positioned so that its optical axis 20 coincides with the viewing axis 10 of the camera 1. In this embodiment, in order to realize this coaxial illumination, the 71-fmirror 21 is tilted and arranged on the visual axis 10 of the camera 1, and the light source 2
is positioned 16 toward the half mirror 21 and facing the visual axis 10.

上記方式によると、カメラ1の画像特性は、第3図の実
線で示す如く、物体と背景との濃度差が大きい高コント
ラストの双峰性ヒストグラムとなり、従って画像データ
の2値化に際して、しきい値の設定範囲Hが大きくなる
。尚図中、破線はしきい値設定が容易でない低コントラ
スト画一のヒストグラムである。
According to the above method, the image characteristics of the camera 1 are a high contrast bimodal histogram with a large density difference between the object and the background, as shown by the solid line in Figure 3, and therefore, when binarizing image data, a threshold The value setting range H becomes larger. In the figure, the broken line is a histogram of low contrast uniformity for which it is difficult to set the threshold value.

第4図は本発明にかかる画像入力装置の具体構成例′を
示す。図示例の装置は、基台6上に支柱61を回動可能
に支持し、支柱61の上端にカメラ1の取付軸62を傾
動可能に、取り付けたものである。また図中、光量計測
装置7は、カメラ1からの画像信号lijを入力して、
カメラ′ 1の入力光量χi を計測する。姿勢制御装
置8は、計測結果に基づく制御信号Cをカメラ1へ送り
、且つカメラ1より姿勢情報信号fをフィードバックし
て、前記支柱61の回動量θおよび、取付軸62の傾動
量ψを規定して、カメラ1の姿勢を制御する。
FIG. 4 shows a specific configuration example of an image input device according to the present invention. In the illustrated example, a support 61 is rotatably supported on a base 6, and a mounting shaft 62 of the camera 1 is tiltably attached to the upper end of the support 61. In addition, in the figure, the light amount measuring device 7 inputs the image signal lij from the camera 1, and
The input light amount χi of camera' 1 is measured. The attitude control device 8 sends a control signal C based on the measurement result to the camera 1, and also feeds back an attitude information signal f from the camera 1 to define the rotation amount θ of the support column 61 and the tilt amount ψ of the mounting shaft 62. to control the attitude of the camera 1.

第5図は前記光tj計測装置7の構成例を示す。FIG. 5 shows an example of the configuration of the optical tj measuring device 7. As shown in FIG.

図示例の装置は、カメラ1からの画像信号lijを所定
のしきい値Cで画素毎に2値化し、これを全画素にわた
って加算して、カメラ1の入力光量λiをめている。図
中の比較器71は、画像信号1ijと、前記第3図に示
す範囲H内に設定されたしきい値Cとを大小比較し、背
景に対応して論理「1」、物体に対応して論理「0」の
2値化信号Bを出力する。加算器72は、2値化信号B
を全画素にわたり加算するもので、加算出力ΣBをラッ
チ回路73でラッチし、2値化信号Bをフィードバック
させたラッチ出力ΣBpに加算してゆくことにより、入
力光量λiを算出する。この入力光量χiは、カメラ1
の視野内に物体が存在しないとき最大となり、その最大
入力光量λ0は、カメラ1の撮像面が縦横nビットの画
素より成る場合には、全画素が論理「1」となるから、
つぎのように表わ、される。
In the illustrated example, the image signal lij from the camera 1 is binarized for each pixel using a predetermined threshold value C, and this is added over all pixels to determine the input light amount λi of the camera 1. A comparator 71 in the figure compares the image signal 1ij with a threshold value C set within the range H shown in FIG. and outputs a binary signal B of logic "0". The adder 72 receives the binary signal B
is added over all pixels, and the input light amount λi is calculated by latching the addition output ΣB in the latch circuit 73 and adding it to the latch output ΣBp fed back with the binarized signal B. This input light amount χi is
The maximum input light intensity λ0 is maximum when there is no object within the field of view, and if the imaging surface of the camera 1 is composed of n-bit pixels in the vertical and horizontal directions, all pixels will be logic "1".
It is expressed as follows.

χQ = n X n また撮像面上の物体領域をSビットとすると、カメラ1
の入力光量χiは次式で表わされる。
χQ = n
The input light amount χi is expressed by the following equation.

λi = n x n −S 従って入力光量χiを最小にすれば、カメラ1の視野内
に物体を最大限含ませることができるもので、前記姿勢
制御装置8は入力光量χiが最小となるようカメラ1の
姿勢を制御する。
λi = n x n −S Therefore, if the input light amount χi is minimized, the object can be included in the field of view of the camera 1 to the maximum extent, and the attitude control device 8 controls the camera so that the input light amount χi is minimized. Control the posture of 1.

第6図は他の実施例を示す。図示例のものは、テーブル
5の上方へアーム60を突出させ、アーム60の下面に
基台6を固定し、基台6に支持枠63を揺動可能に取り
付け、支持枠63にカメラ1を回動可能に取り付けたも
のである。
FIG. 6 shows another embodiment. In the illustrated example, an arm 60 is projected above a table 5, a base 6 is fixed to the lower surface of the arm 60, a support frame 63 is swingably attached to the base 6, and a camera 1 is attached to the support frame 63. It is rotatably mounted.

第7図はテーブル5に対するカメラ1の視野決定方法を
例示している。今カメラ1の視野範囲をテーブル面積の
4分の1とした場合、まずこのテーブルを4等分に区画
して、その中心点(n=1〜4で示す点)と、各中心点
間の中間点(n=5〜9で示す点)とを想定する。つい
でカメラ1の視点をn=l〜4の各点に順次設定して、
夫々の入力光量χin (但しn=l〜4)を計測する
。そして次式を満足する点を検出し、その検出結果に基
づき第8図に示す視野決定テーブルを参照して、テーブ
ル5上の視点を決定する。
FIG. 7 illustrates a method for determining the field of view of the camera 1 with respect to the table 5. Now, if the field of view of camera 1 is set to 1/4 of the table area, first divide this table into 4 equal parts, and find the center point (points indicated by n = 1 to 4) and the points between each center point. An intermediate point (points indicated by n=5 to 9) is assumed. Next, set the viewpoint of camera 1 at each point n=l~4 in sequence,
The respective input light amounts χin (where n=l to 4) are measured. Then, a point that satisfies the following equation is detected, and based on the detection result, the visual field determination table shown in FIG. 8 is referred to to determine the viewpoint on table 5.

λin(λ。−ε 但しεは誤差許容値である。λin(λ.−ε However, ε is an error tolerance value.

例えば上式を満足する点がn=1.2の点であると仮定
すれば、第8図のテーブルを参照すると、カメラ1の視
点はn = 5の点に決定されることになる。
For example, if it is assumed that the point that satisfies the above equation is n=1.2, then referring to the table in FIG. 8, the viewpoint of camera 1 will be determined to be n=5.

然して物体4に対しカメラ1の方向から同軸照明を実施
すると、物体4の背後に生ずる陰影41は物体4に隠れ
てカメラ1の視野に入らず、従って画像入力の対象とな
らない。また物体4に照射された光は物体表面で乱反射
され、その反射光の一部がカメラ1に入射される。一方
再帰性反射物3に照射された光はカメラ1の方向へ反射
されるため、その大部分がカメラ1へ入射される。これ
により物体4は暗く、背景は明るく撮像され、高コント
ラストの画像が得られ、この高コントラスト画像から、
物体位置を確実に検出でき、カメラ1の視野を最適に設
定し得る。
However, when coaxial illumination is applied to the object 4 from the direction of the camera 1, the shadow 41 that appears behind the object 4 is hidden by the object 4 and does not enter the field of view of the camera 1, and is therefore not subject to image input. Further, the light irradiated onto the object 4 is diffusely reflected on the object surface, and a part of the reflected light is incident on the camera 1. On the other hand, since the light irradiated to the retroreflector 3 is reflected toward the camera 1, most of the light is incident on the camera 1. As a result, the object 4 is imaged darkly and the background is brightly imaged, and a high-contrast image is obtained. From this high-contrast image,
The object position can be detected reliably and the field of view of the camera 1 can be set optimally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の画像入力装置の基本構成を示す図、第
2図は光源とカメラとの位置関係を示す図、第3図は画
像の濃度分布を示す特性図、第4図は本発明にかかる装
置例の具体構成を示す図、第5図は光量計測装置の回路
ブロック図、第6図は他の実施例の具体構成を示す図、
第7図はカメラ視野決定方式を示す図、第8図は視野決
定テーブルを示す図、第9図は従来方式の構成を示す図
、第10図は従来方式における物体位置検出方法を示す
図である。 1・・・・・・カメラ 2・・川・光源3・−・・・・
再帰性反射物 7・・・・・・光量計測装置8・・・・
・・姿勢制御装置 特許出願人 立石電機株式会社 徒3 ■ A/ 4 娃6 口
FIG. 1 is a diagram showing the basic configuration of the image input device of the present invention, FIG. 2 is a diagram showing the positional relationship between the light source and the camera, FIG. 3 is a characteristic diagram showing the density distribution of the image, and FIG. FIG. 5 is a circuit block diagram of a light amount measuring device; FIG. 6 is a diagram showing a specific configuration of another embodiment;
FIG. 7 is a diagram showing the camera field of view determination method, FIG. 8 is a diagram showing the field of view determination table, FIG. 9 is a diagram showing the configuration of the conventional method, and FIG. 10 is a diagram showing the object position detection method in the conventional method. be. 1... Camera 2... River/Light source 3...
Retroreflector 7... Light amount measuring device 8...
...Posture control device patent applicant Tateishi Electric Co., Ltd. 3 ■ A/ 4 娃6 口

Claims (1)

【特許請求の範囲】[Claims] 物体画像を得るための撮像手段と、撮像手段の視軸に沿
って物体へ光を照射するための照明手段と、物体背部に
配備するための再帰性反射物と、撮像手段の入力光量を
計測する計測手段と、計測結果に基づき撮像手段の姿勢
を制御する姿勢制御手段とから成る画像入力装置。
An imaging means for obtaining an image of the object, an illumination means for irradiating light onto the object along the visual axis of the imaging means, a retroreflector to be placed behind the object, and measuring the amount of light input to the imaging means. An image input device comprising: a measuring means for controlling the image capturing means; and an attitude controlling means for controlling the attitude of the imaging means based on the measurement results.
JP59058690A 1984-03-26 1984-03-26 Picture input device Pending JPS60201778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59058690A JPS60201778A (en) 1984-03-26 1984-03-26 Picture input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59058690A JPS60201778A (en) 1984-03-26 1984-03-26 Picture input device

Publications (1)

Publication Number Publication Date
JPS60201778A true JPS60201778A (en) 1985-10-12

Family

ID=13091541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058690A Pending JPS60201778A (en) 1984-03-26 1984-03-26 Picture input device

Country Status (1)

Country Link
JP (1) JPS60201778A (en)

Similar Documents

Publication Publication Date Title
US8259067B2 (en) Apparatus for capturing and analyzing light and method embodied therein
JP3909377B2 (en) Outdoor distance measuring device
JP5935432B2 (en) Image processing apparatus, image processing method, and imaging apparatus
US5094538A (en) Digitizing the surface of an irregularly shaped article
JP2006514739A (en) Dental laser digitizer system
WO1994018788B1 (en) Imaging apparatus and method for determining range from focus and focus information
JP2000504418A (en) Distance and / or position measuring device
JP2003028811A (en) Method for detecting defect
CN103444165A (en) Imaging device, imaging method and imaging program
JPS60201778A (en) Picture input device
JP3427248B2 (en) Foreign object detection method
JPH08327324A (en) Registering apparatus
JPH0814849A (en) Three-dimensional shape detection method for solder
JPS636679A (en) Method for detecting tilt of wire
JP2521156Y2 (en) Position measurement target
JPS6326510A (en) Inspection device for packaging component
JP3126282B2 (en) Article presence detector
JP2525261B2 (en) Mounted board visual inspection device
JPH10288514A (en) Objective turning angle detecting method
JPH05296724A (en) Parts recognition method
JP2007163266A (en) Inspection device and inspection method
JPH01175456A (en) Image input device
JPH0765175A (en) Position recognizing method
JPH07139916A (en) Apparatus for measuring total length of vehicle
JPH0656352B2 (en) Detecting device