JPS60201531A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS60201531A
JPS60201531A JP5661084A JP5661084A JPS60201531A JP S60201531 A JPS60201531 A JP S60201531A JP 5661084 A JP5661084 A JP 5661084A JP 5661084 A JP5661084 A JP 5661084A JP S60201531 A JPS60201531 A JP S60201531A
Authority
JP
Japan
Prior art keywords
electron beam
evaporation
evaporation source
sputtering method
perpendicularly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5661084A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5661084A priority Critical patent/JPS60201531A/en
Publication of JPS60201531A publication Critical patent/JPS60201531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a vertical magnetization film with excellent C axis orientation in a speed higher than one digit order of the speed of the sputtering method by using an electron beam evaporating source and irradiating an electron beam nearly perpendicularly to an evaporated plane under a special power density condition so as to form the vertical magnetization film. CONSTITUTION:The base 1 is made run toward the arrow A along a cylindrical can 2. The evaporation source 6 consists of an evaporation source tank 8 and an evaporating material 7, the heating of the evaporation material 7 is conducted by the electron beam 9 and the beam is irradiated nearly perpendicularly to the evaporation plane L. The irradiating conditiin of the electron beam is kept to a value of 50kW/cm<2> or over by focusing. Thus, the C axis orientation in a speed as high as 60 times that of the conventional sputtering method and the same degree obtained as the sputtering method is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直記録方式に適した磁気記録媒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium suitable for perpendicular recording.

従来例の構成とその問題点 短波長記録特性の優れた記録方式として、垂直記録方式
がある。この方式においては媒体の膜面に垂直方向が磁
化容易軸である垂直記録媒体が必要となる。このような
媒体に信号を記録すると残留磁化は媒体の膜面に垂直方
向を向き、従って信号が短波長になる程媒体内反磁界は
減少し、優れた再生出力が得られる。
Conventional Structure and Problems There is a perpendicular recording method as a recording method with excellent short wavelength recording characteristics. This method requires a perpendicular recording medium whose axis of easy magnetization is perpendicular to the film surface of the medium. When a signal is recorded on such a medium, the residual magnetization is oriented perpendicularly to the film surface of the medium, and therefore, the shorter the signal wavelength, the smaller the demagnetizing field within the medium, and the better the reproduced output.

現在用いられている垂直記録媒体は、非磁性基板上に直
接に、あるいはパーマロイ等の軟磁性薄膜を介して、C
OとOrを主成分とし、垂直方向に磁化容易軸を有する
磁性層をスパッタリング法により形成したものである。
Currently used perpendicular recording media are made by recording C on a non-magnetic substrate directly or through a soft magnetic thin film such as permalloy.
A magnetic layer containing O and Or as main components and having an axis of easy magnetization in the perpendicular direction is formed by a sputtering method.

しかしスパッタリング法は磁性薄膜の形成速度が遅いの
で、低コストで垂直磁化膜を得るのけ困難であシ、かか
る点に鑑み、高速での垂直磁化膜の生産を可能にする真
空蒸着法(イオンブレーティング法のように、蒸発原子
の一部をイオン化する方法も含む)の検討が進み、数千
オングストローム7秒という速い形成速度でGo−Or
垂直磁化膜が得られることが知られ期待されている。し
かし現在知られている範囲では、スパッタリング法で得
られる膜に比して垂直磁化膜としての性能の目安である
C軸配向性の点で劣゛り改良が望まれている。
However, since the sputtering method has a slow rate of forming a magnetic thin film, it is difficult to obtain a perpendicularly magnetized film at low cost. (including methods that ionize some of the evaporated atoms, such as the brating method) are progressing, and Go-Or can be formed at a fast formation rate of several thousand angstroms in 7 seconds.
It is known and expected that perpendicularly magnetized films can be obtained. However, in the range currently known, it is inferior to films obtained by sputtering in terms of C-axis orientation, which is a measure of performance as a perpendicularly magnetized film, and improvements are desired.

このC軸配向性は、六方稠密構造のX線回折パターンの
(002)面のX線ロッキング曲線の半値幅Δθ50の
値の大小で判定されるもので、ディジタル記録の高密度
化で充分な信号対雑音吐を得るのにΔθ60は1o度以
下、更に好ましくは5°以下が必要であるが、真空蒸着
法では、かかる性能の垂直磁化膜は得られていないから
である。
This C-axis orientation is determined by the value of the half-width Δθ50 of the X-ray rocking curve of the (002) plane of the X-ray diffraction pattern of the hexagonal close-packed structure, and with high density digital recording, sufficient signal can be obtained. This is because Δθ60 needs to be 10 degrees or less, more preferably 5 degrees or less to obtain noise-resistant discharge, but a perpendicularly magnetized film with such performance cannot be obtained by vacuum evaporation.

発明の目的 本発明は、回転支持体に沿って移動する基板上にC軸配
向性の良好な垂直磁化膜を真空蒸着法により高速で形成
する方法を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a method for forming a perpendicularly magnetized film with good C-axis orientation on a substrate moving along a rotating support at high speed by vacuum evaporation.

発明の構成 本発明は、回転支持体に沿って移動する基板に垂直磁化
膜を真空蒸着する際、蒸発源が電子ビーム蒸発源であシ
、この蒸発源からの該電子ビームが60 KW / c
7J以上に集束され、かつ蒸発面にほぼ垂直に照射され
るもので、C軸配向性の良好な垂直磁化膜を高速で得る
ことができるものである。
Structure of the Invention In the present invention, when a perpendicularly magnetized film is vacuum-deposited on a substrate moving along a rotating support, the evaporation source is an electron beam evaporation source, and the electron beam from this evaporation source is 60 KW/c.
The beam is focused at 7 J or more and is irradiated almost perpendicularly to the evaporation surface, making it possible to obtain a perpendicularly magnetized film with good C-axis orientation at high speed.

実施例の説明 以下本発明の実施例について、図面を参照しながら説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明を実施するのに用いた磁気記録媒体の製
造装置の基本構成を示す図である。
FIG. 1 is a diagram showing the basic configuration of a magnetic recording medium manufacturing apparatus used to carry out the present invention.

基板1は円筒状キャン2に沿って矢印Aの向きに走行す
る。蒸発源6と円筒状キャン2との間にはマスク6が配
置されており、蒸発原子(イオンを含むこともある。)
はスリットSを通って、基板1に付着する。3,4はそ
れぞれ基板1の供給ロール及び巻取りロールである。
The substrate 1 runs along the cylindrical can 2 in the direction of arrow A. A mask 6 is placed between the evaporation source 6 and the cylindrical can 2, and evaporates atoms (sometimes containing ions).
passes through the slit S and adheres to the substrate 1. 3 and 4 are a supply roll and a take-up roll for the substrate 1, respectively.

蒸発源6は、蒸発源容器8と、蒸発材料7から成り、蒸
発材料7の加熱は、電子ビーム9で行われるもので第2
図に示すように蒸発面りにほぼ垂直に照射される。
The evaporation source 6 consists of an evaporation source container 8 and an evaporation material 7, and the evaporation material 7 is heated by an electron beam 9.
As shown in the figure, the evaporation surface is irradiated almost perpendicularly.

実際は、照射部Vは、平面ではないが、模式的に第2図
に示したように定義するものとする。
Actually, the irradiation part V is not a plane, but it is defined as schematically shown in FIG. 2.

本発明は、電子ビームの照射条件として前記した照射角
度と、その電子ビームが照射位置で、6QKw/c−以
上になるように集束された状態に保持されることを特徴
とするものである。
The present invention is characterized in that the electron beam irradiation conditions are as described above at the irradiation angle, and that the electron beam is maintained in a focused state such that it is 6QKw/c- or more at the irradiation position.

本発明が蒸着速度でなくて電子ビームの集束された直径
に臨界値の存在することについては、明確ではないが、
垂直磁化膜の材料がCoを約8Qチ含む合金であシ、G
oの場合s OKW / c!以上に集束された電子ビ
ームの圧力によシ、蒸発面が凹部を構成し、蒸発原子の
配向性が良化することが大いに関係しているものと推察
される。ただし上限については、湯がはね上シ、膜にピ
ンホール等の欠陥を作ることのないように、Co系の場
合は、実験的には、22.OKW/cA以下にするのが
好ましいが、これは本質的ではなく、電子ビームのスポ
ット径によっても異なるものである。
Although it is not clear that the present invention has a critical value not in the deposition rate but in the focused diameter of the electron beam,
The material of the perpendicular magnetization film is an alloy containing about 8Q of Co, G
If o, s OKW/c! It is inferred that this is largely related to the fact that the evaporation surface forms a concave portion due to the pressure of the focused electron beam, and the orientation of the evaporated atoms is improved. However, the upper limit is experimentally determined to be 22.5% for Co-based materials to prevent hot water from splashing and creating defects such as pinholes in the membrane. Although it is preferable to make it below OKW/cA, this is not essential and varies depending on the spot diameter of the electron beam.

通常の蒸着で用いられるビームスポット径が2cm以下
であれば、前述の数値を一応の目安にすることができる
If the beam spot diameter used in normal vapor deposition is 2 cm or less, the above-mentioned values can be used as a rough guide.

本発明に用いられる垂直磁化膜形成のだめの蒸着材料は
、Co −Or 、Co−Ni−0r 、Co−Cr−
Rh。
The vapor deposition materials for forming the perpendicular magnetization film used in the present invention include Co-Or, Co-Ni-Or, Co-Cr-
Rh.

Go−Ti 、 Co −V 、 Go−Mg 、 G
o−Mo 、 Co −W 、 Co −Ru等である
Go-Ti, Co-V, Go-Mg, G
o-Mo, Co-W, Co-Ru, etc.

尚蒸発源の形状としては、基板の幅により適宜工夫する
ものとするが、電子ビームの前述した電力密度は、電子
ビームスポットを動かさなかったと仮定した時の値で、
現実には、スポットを動かす、通常スキャンニングと呼
ばれる操作は行われるのが普通である。
The shape of the evaporation source should be modified as appropriate depending on the width of the substrate, but the above-mentioned power density of the electron beam is the value assuming that the electron beam spot is not moved.
In reality, an operation that moves the spot, usually called scanning, is usually performed.

又蒸発源容器としては、ZrO2,MgO,CaO等の
セラミック製が用いられる。
Further, as the evaporation source container, a material made of ceramic such as ZrO2, MgO, CaO, etc. is used.

又、長尺の媒体を得るのに蒸着、材料の供給を行うのは
勿論であるが、前記した材料は、お互いに蒸発速度が異
なるので、供給割合、経時的操作などは適宜工夫される
ものとする。
In addition, it goes without saying that vapor deposition and material supply are necessary to obtain a long medium, but since the evaporation rates of the above-mentioned materials differ from each other, the supply ratio, temporal operation, etc. must be devised as appropriate. shall be.

又、電子ビーム投入の総電力は、CO系合金のに9で表
わしだ重量当り、4KW以上になるよう実施されるもの
とする。この値が4KWより小さくなると、本発明の効
果を安定に得るのに、電子ビームのスキャンニングに工
夫を必要とし繁雑になるからである。
Further, the total electric power of the electron beam injection shall be 4 KW or more per weight of the CO-based alloy expressed by 9. This is because if this value is smaller than 4 KW, in order to stably obtain the effects of the present invention, scanning of the electron beam must be devised and becomes complicated.

以下に本発明のさらに具体的な一実施例を説明する。A more specific embodiment of the present invention will be described below.

円筒状キャンの直径を5.0 Clnとし、蒸発源容器
をzro2製の容器で、内容積を6 Cm X 6 C
#IX 23CTnの6go(C,n)とし、蒸発面と
、基板の距離を38Canとし、電子ビームは加速電圧
3 Q KV とし、蒸発源容器の上面部に基板の移動
方向と直交する方向に、磁界をかけて、偏向し、はぼ垂
直に照射するようにし、ビームスポット径は、集束磁界
と、電子ビーム発生部の形状を変えて制御した。尚比較
例として、斜め40°(蒸発面からの立ち上沙角)から
照射した場合を示しだ。
The diameter of the cylindrical can is 5.0 Cln, the evaporation source container is a ZRO2 container, and the internal volume is 6 Cm x 6 C.
#IX 23CTn 6go(C,n), the distance between the evaporation surface and the substrate is 38Can, the electron beam has an acceleration voltage of 3 Q KV, and the upper surface of the evaporation source container is placed in the direction perpendicular to the moving direction of the substrate. A magnetic field was applied to deflect and irradiate the electron beam almost perpendicularly, and the beam spot diameter was controlled by changing the focusing magnetic field and the shape of the electron beam generator. As a comparative example, the case where the irradiation was performed from an angle of 40 degrees (the vertical angle from the evaporation surface) is shown.

基板として12μmのポリエチレンテレフタレートを用
い、crを20多含有するGo−C1を蒸着材料として
選んだ。
Polyethylene terephthalate with a thickness of 12 μm was used as the substrate, and Go-C1 containing 20% of cr was selected as the vapor deposition material.

他の例として基板にあらかじめ高周波マグネトロンスパ
ッタリング法により80%Ni−20%Feの薄膜を0
.48μm形成した厚み20μmのポリアミドフィルム
を用いた場合も実施した。真空度は3X10−8Tor
rから6 X 1O−8TOrr(7)範囲で行った。
As another example, a thin film of 80%Ni-20%Fe is coated on the substrate in advance by high-frequency magnetron sputtering.
.. The experiment was also carried out using a polyamide film having a thickness of 48 μm and a thickness of 20 μm. Vacuum degree is 3X10-8 Tor
The range was from r to 6×1O-8TOrr (7).

本発明の構成要件及び効果を次表にまとめて示した。The constituent elements and effects of the present invention are summarized in the following table.

(以下余白) 表よシ明らかなように本発明によれば、真空蒸着法によ
りΔθ60の値が6度以下にできるもので、実施例での
蒸着速度は平均して6000 k猿であったから、従来
のスパッタリング法の100.A/513Cの60倍の
高速で、スパッタリング法で得られたのと同程度のC軸
配向性が得られているもので、量産性がいかに優れてい
るかが理解できる。
(Left space below) As is clear from the table, according to the present invention, the value of Δθ60 can be reduced to 6 degrees or less using the vacuum evaporation method, and the evaporation rate in the example was 6000 k on average. 100% of the conventional sputtering method. It is 60 times faster than A/513C, and C-axis orientation comparable to that obtained by sputtering can be obtained, which shows how excellent it is in terms of mass production.

尚本実施例以外にも、本発明に用いることのできる前述
の他の材料についても同様の効果を有することを確認し
た。
In addition to this example, it was confirmed that other materials mentioned above that can be used in the present invention have similar effects.

発明の効果 以上のように本発明は電子ビーム蒸発源を用い、該電子
ビームを蒸発面にほぼ垂直に50KW/cIA以上の電
力密度条件で照射することで垂直磁化膜を形成すること
で、C軸配向性の良好な垂直磁化膜をスパッタリング法
の1桁以上の高速で得られるもので、実用的効果は極め
て大きい。
Effects of the Invention As described above, the present invention uses an electron beam evaporation source and irradiates the electron beam almost perpendicularly to the evaporation surface at a power density of 50 KW/cIA or more to form a perpendicularly magnetized film. A perpendicular magnetization film with good axial orientation can be obtained at a speed one order of magnitude higher than that of the sputtering method, and the practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するのに用いた蒸着装置の基本構
成を示す図で、第2図は蒸発源部分の拡大断面図、であ
る。 1・・・・・・基板、2・・・・・・円筒状キャン、6
・・・・・・蒸発源、9・・・・・・電子ビーム。
FIG. 1 is a diagram showing the basic configuration of a vapor deposition apparatus used to carry out the present invention, and FIG. 2 is an enlarged sectional view of the evaporation source portion. 1... Board, 2... Cylindrical can, 6
...Evaporation source, 9...Electron beam.

Claims (1)

【特許請求の範囲】[Claims] 回転支持体に沿って移動する基板に垂直磁化膜を真空蒸
着する際、蒸発源が電子ビーム蒸発源であシ、この蒸発
源からの電子ビームが50 KW/cyj以上に集束さ
れかつ、蒸発面にほぼ垂直に照射されることを特徴とす
る磁気記録媒体の製造方法。
When vacuum evaporating a perpendicularly magnetized film onto a substrate moving along a rotating support, the evaporation source is an electron beam evaporation source, and the electron beam from this evaporation source is focused at 50 KW/cyj or more and A method of manufacturing a magnetic recording medium, characterized in that the irradiation is performed almost perpendicularly to the direction of the irradiation.
JP5661084A 1984-03-23 1984-03-23 Manufacture of magnetic recording medium Pending JPS60201531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5661084A JPS60201531A (en) 1984-03-23 1984-03-23 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5661084A JPS60201531A (en) 1984-03-23 1984-03-23 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60201531A true JPS60201531A (en) 1985-10-12

Family

ID=13032012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5661084A Pending JPS60201531A (en) 1984-03-23 1984-03-23 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60201531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147433A (en) * 1990-10-11 1992-05-20 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576440A (en) * 1980-06-11 1982-01-13 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576440A (en) * 1980-06-11 1982-01-13 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147433A (en) * 1990-10-11 1992-05-20 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS60201531A (en) Manufacture of magnetic recording medium
JPS6339124A (en) Magnetic recording medium and its production
JPH0334614B2 (en)
JPS59175037A (en) Production of magnetic recording medium
JPH02137126A (en) Production of magnetic recording medium
JPS61187127A (en) Manufacture of magnetic recording medium
JPS60217531A (en) Production of magnetic recording medium
JPS60214426A (en) Manufacture of magnetic recording medium
JPS59175036A (en) Production of magnetic recording medium
JPH04315818A (en) Manufacture of magnetic recording medium
JPS58125236A (en) Manufacture of magnetic recording medium
JP2548239B2 (en) Method of manufacturing magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPH03225621A (en) Production of magnetic recording medium
JPS63244412A (en) Production of magnetic recording medium
JPS58139338A (en) Manufacture of magnetic recording medium
JPH0334611B2 (en)
JPS5922235A (en) Production of vertical magnetic recording medium
JPH0334620B2 (en)
JPH04188433A (en) Manufacture of magnetic recording medium
JPS6037531B2 (en) Method for manufacturing magnetic recording media
JPS59141210A (en) Vacuum deposition device
JPS6338578A (en) High-frequency ion plating device
JPH05128513A (en) Manufacture of magnetic recording medium
JPS58102336A (en) Manufacture of magnetic recording medium