JPS6020144A - Method for analyzing trace component in gas - Google Patents

Method for analyzing trace component in gas

Info

Publication number
JPS6020144A
JPS6020144A JP12773983A JP12773983A JPS6020144A JP S6020144 A JPS6020144 A JP S6020144A JP 12773983 A JP12773983 A JP 12773983A JP 12773983 A JP12773983 A JP 12773983A JP S6020144 A JPS6020144 A JP S6020144A
Authority
JP
Japan
Prior art keywords
sample
gas
tube
adsorbent
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12773983A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamakawa
山川 義弘
Masahiro Furuno
正浩 古野
Kazuhiko Yamazaki
一彦 山崎
Makoto Takada
誠 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GASUKURO KOGYO KK
Mitsubishi Petrochemical Co Ltd
Original Assignee
GASUKURO KOGYO KK
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GASUKURO KOGYO KK, Mitsubishi Petrochemical Co Ltd filed Critical GASUKURO KOGYO KK
Priority to JP12773983A priority Critical patent/JPS6020144A/en
Publication of JPS6020144A publication Critical patent/JPS6020144A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation

Abstract

PURPOSE:To automate an analyzing stage by spraying an evaporated refrigerant controlled to a specified temp. so as to meet the characteristic of the gaseous sample to be supplied into a sample thickening pipe to said pipe and capturing selectively the trace component. CONSTITUTION:While a sample thickening pipe 32 is first heated, a carrier gas is passed through a feed port 36 to remove the adsorbed material in an adsorbent 35 in the case of analyzing the trace component in a gaseous sample. A liquid refrigerant is then ejected from an ejecting nozzle 29 to the refrigerant flow passage 30b of a heating cylinder 30 and the evaporated refrigerant of a specified temp. evaporated by heating is sprayed to the U-pipe part 32a of the pipe 32. The specified temp. of said refrigerant is controlled by a heater 34 of the heating cylinder 30 so as to meet the characteristic of the gaseous sample. When the part 32a is cooled to the specified temp., the gaseous sample is supplied through the port 36 and the trace component in the gaseous sample is adsorbed to the adsorbent 35 and is thereby thickened. When the required amt. of the sample is thickened, the supply of the liquid refrigerant is stopped and the part 32a is heated by a heater 38 to desorb the trace component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガス中の機織成分分析法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for analyzing textile components in gas.

〔従来の技術〕[Conventional technology]

窒メ(、水素、アルゴン等の気体は、半導体の製造業に
おいては、ppb程度の不純物の存在が間顯となってき
ており、このための有効な分析法が要求されるようにな
った。
Gases such as nitrogen, hydrogen, and argon are increasingly found to contain ppb level impurities in the semiconductor manufacturing industry, and an effective analysis method for this purpose is now required.

従来、ガス中の不純物等の微量成分を分析するときは、
気体ガスを冷却トラップに通して不純物を冷却、濃縮し
た後、t4に6物をガスクロマトグラフィ等の分析法に
よって行なっていた。
Conventionally, when analyzing trace components such as impurities in gas,
After passing the gas through a cooling trap to cool and concentrate impurities, six substances were analyzed at t4 by analysis methods such as gas chromatography.

しかし、この方法では、試料烏縮管への冷媒の導入、排
除および排除後の試料濃縮管の加熱の操作に人手が必要
で自動化が難しかった。
However, this method requires manual labor to introduce the refrigerant into the sample condensation tube, remove it, and heat the sample concentrator tube after removal, making automation difficult.

そして、この分析法では、冷却トラップを冷却する場合
、液体窒素(−196℃)、液体アルゴン(−186℃
)等の液化ガス浴を使用するか、ドライアイス−メタノ
ール(約−80℃)、液体窒素−エタノール(−130
℃)等の有機溶媒浴を使用するかしていた。
In this analysis method, when cooling the cold trap, liquid nitrogen (-196°C), liquid argon (-186°C
), dry ice-methanol (approximately -80°C), liquid nitrogen-ethanol (-130°C), etc.
An organic solvent bath (e.g., 15°C) was used.

液化ガス浴は、高純度ガス中の不純物の分析や大気中の
悪、1成分の分析に使用され、例えば、ヘリウム中の不
純物の分析には適している。しかし、この液化ガス浴で
は、窒素、アルゴン、酸素中の不純物の分析の場合、冷
却il!度が冷媒のelli点に固定されるため、主成
分が冷却トラップ内で液化してしまい、目的とする不純
物成分をうまく捕集できない、という問題があった。
Liquefied gas baths are used to analyze impurities in high-purity gases and to analyze single components in the atmosphere, and are suitable for analyzing impurities in helium, for example. However, in this liquefied gas bath, for analysis of impurities in nitrogen, argon, and oxygen, cooling il! Since the temperature is fixed at the elli point of the refrigerant, there is a problem in that the main component liquefies within the cooling trap, making it impossible to successfully collect the target impurity component.

一方、有機溶媒浴では、脱着のために昇温させるさい、
可燃ガスが蒸発して危険であり、かつドライアイス、窒
素が気化するため、パイプで給排出することがσ’it
シ<、分析の自動化には適さない、という問題があった
On the other hand, in an organic solvent bath, when raising the temperature for desorption,
Because combustible gas evaporates and is dangerous, and dry ice and nitrogen also evaporate, supplying and discharging through pipes is not recommended.
However, there was a problem that it was not suitable for automated analysis.

〔発明の目的〕[Purpose of the invention]

この発明は、このような従来の問題点を解決するために
なされたもので、試料濃縮管に、その中に供給する試料
ガスの特性に合わせて一定温度に制御した気化冷媒を吹
き付け、これを冷却するようにして、(1)目+11J
とする不純物等の微[セ成分のみを選択的に捕集するこ
とができ、(2)かつ、分析の自動化を図ることのでき
る、ガス中の微量成分分析法を提供することを目的とす
るものである。
This invention was made to solve these conventional problems, and involves spraying a vaporized refrigerant into a sample concentrating tube at a constant temperature according to the characteristics of the sample gas supplied therein. As it cools down, (1) eye +11J
The purpose of the present invention is to provide a method for analyzing trace components in gas that can selectively collect only trace components such as impurities, and (2) that can automate the analysis. It is something.

〔発明の構成〕[Structure of the invention]

この発明は、試料fQ細管を加熱しながら、これにキャ
リアガスを通し、その中に充填した吸着剤で吸着した@
鵡物質を取り除くエージング工程と、試料濃縮管に一定
温度に制御した気化冷媒を吹き付けて、これを冷却する
冷却工程と、試料濃縮管に、その冷却を続けながら試料
ガスを供給してその中に充填した前記吸着剤で試料ガス
中の微量成分を吸着して濃縮する濃縮工程と、試料濃縮
管を加熱して、吸着剤で吸着した前記微量成分を脱着す
る脱着工程と、試料濃縮管にキャリアガスを通して、吸
着剤から脱着した微量成分を分離カラムに送り分NL測
定する分析工程とより成るガス中の微量成分分析法であ
る。
In this invention, a carrier gas is passed through a sample fQ thin tube while heating it, and an adsorbent filled in the tube adsorbs @
There is an aging process for removing cormorant substances, a cooling process for cooling the sample concentration tube by spraying a vaporized refrigerant controlled at a constant temperature, and a cooling process for supplying sample gas to the sample concentration tube while continuing to cool it. A concentration step in which trace components in the sample gas are adsorbed and concentrated using the filled adsorbent; a desorption step in which the sample concentration tube is heated to desorb the trace components adsorbed by the adsorbent; and a carrier is added to the sample concentration tube. This is a method for analyzing trace components in gas, which consists of an analysis step in which trace components desorbed from an adsorbent are sent to a separation column through gas and the amount NL is measured.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図ないし第7図に示す
微は成分分析装置、すなわちガスクロマトグラフに基づ
いて説明する。
Hereinafter, one embodiment of the present invention will be described based on a component analyzer, that is, a gas chromatograph, shown in FIGS. 1 to 7.

第1図は実施例におけるエージング工程ノ、第2図は同
じく冷却工程の、第3図は同じく濃縮上4皇の、第4図
は同じく脱着工程の、第5図は同じく分析]工程のそれ
ぞれガスクロマトグラフにおける1(1」開本′乍成を
示ず図である。第6図は第1図ないし第5図1における
倣)jに成分濃縮装置の断面図、第7図は第6図の要部
拡大図である。
Figure 1 shows the aging process in the example, Figure 2 shows the cooling process, Figure 3 shows the concentration process, Figure 4 shows the desorption process, and Figure 5 shows the analysis process. Fig. 6 is an imitation of Fig. 1 to Fig. 5) and Fig. 7 is a cross-sectional view of the component concentrating device. It is an enlarged view of the main part.

まず、ガスクロマトグラフのtA成を、19明すると、
1はキャリアガスのオ、a人口、2,3.4゜5,22
け調圧弁、6.7.8は不純物除去トラップ、9は逆上
弁、10.18.19は抵抗管、11は第1六方切換コ
ツク(以下第1コツクという。)、12は第2六方切換
コンク(以下第2コツクという。)、13は第1四方切
換バルブ(以下第1バルブという。)、14は第2四方
切換バルブ(以下i:ij 2バルブという。)、15
.16は注入口、17は分離カラム、20はガスクロマ
トグラフイル用検出器である。
First, when the tA composition of the gas chromatograph is determined by 19,
1 is carrier gas o, a population, 2, 3.4° 5, 22
6.7.8 is an impurity removal trap, 9 is a reversal valve, 10.18.19 is a resistance pipe, 11 is a first hexagonal switching cock (hereinafter referred to as the 1st cock), 12 is a second hexagonal valve. 13 is a first four-way switching valve (hereinafter referred to as the first valve); 14 is a second four-way switching valve (hereinafter referred to as i:ij 2 valve); 15
.. 16 is an injection port, 17 is a separation column, and 20 is a detector for gas chromatography.

21は試ASFガスの給入口、23は流屓計、24ハr
tic 量コノトロールjt、25 、26ハ二−トル
弁、2Tは空気の逆流を防止するバッファタンク、Aは
微量成分濃縮装置、pは圧力計、28は密封オーブンで
あり不活性ガスで外気より若干加圧され空気、湿分の侵
入を防止している。なお、上記各構成要素はパイプで連
結さ′4tでいる。
21 is the supply port for the test ASF gas, 23 is the flow meter, 24 Har
tic Quantity control jt, 25, 26 honeytle valve, 2T is a buffer tank to prevent backflow of air, A is a trace component concentrator, p is a pressure gauge, 28 is a sealed oven, which is inert gas and slightly lower than outside air. It is pressurized to prevent air and moisture from entering. Incidentally, each of the above-mentioned constituent elements is connected by a pipe.

上記微量成分の濃縮装置Aは、第6図および第7図に示
す構成となっている。すなわち、同装置Aは、液状冷媒
の噴出ノズル29と、この噴出ノズル29を嵌めて連結
した液状冷媒の加熱筒30と、この加熱筒30を嵌めて
連結し、その加熱筒30による加熱によ−って気化した
気化冷媒のFa通管31と、この流通管31&こ挿通し
た試1+蟲縮管32とより構成されている。
The trace component concentrating device A has the configuration shown in FIGS. 6 and 7. That is, the device A includes a liquid refrigerant jet nozzle 29, a liquid refrigerant heating cylinder 30 connected by fitting the jet nozzle 29, and a liquid refrigerant heating cylinder 30 connected by fitting the jet nozzle 29, which is heated by the heating cylinder 30. - It is composed of a Fa passage pipe 31 for vaporized refrigerant, and a sample 1 + contraction pipe 32 inserted through this flow pipe 31.

上記噴出ノズル29と加熱筒30には、噴出ノズル29
から力旧倍筒30の冷1藻流路30bにかけて連通ずる
温度センサーの挿通孔29 a 、’ 30 aが設け
である。33はこの挿通孔2ga、30aに挿通した温
度センサー、すなわち熱′iL対であって、試料濃縮管
32のU字管部32aに臨ませて設置しである。この熱
電対33は、加熱筒30で加熱されて気化した気化冷媒
のl1度を検出し、その検出信号は区外の第1加熱温度
制御装置へ入力されるようになっている。34は加熱筒
30のヒーターであって、その加熱温度は熱1fj対3
3から、J:、記検出113号を人力した第1加熱制御
装置によって自(力制御されるようになっている。
The jet nozzle 29 and the heating cylinder 30 have a jet nozzle 29
Temperature sensor insertion holes 29 a and ' 30 a are provided which communicate with the cold algae flow path 30 b of the force multiplier cylinder 30 . Reference numeral 33 indicates a temperature sensor, that is, a pair of heat sensors inserted through the insertion holes 2ga and 30a, and is installed facing the U-shaped tube portion 32a of the sample concentration tube 32. This thermocouple 33 detects l1 degrees of the vaporized refrigerant heated and vaporized in the heating cylinder 30, and the detection signal is inputted to the first heating temperature control device outside the area. 34 is a heater for the heating cylinder 30, and its heating temperature is 1 fj vs. 3
3, J:, the detection No. 113 is manually controlled by the first heating control device.

流通管31は、挿入した試料濃縮管32の周囲を気化し
た冷媒か流れて、流通支管31aから排出されるように
なっている。
The flow pipe 31 is configured such that the vaporized refrigerant flows around the inserted sample concentration pipe 32 and is discharged from the flow branch pipe 31a.

試料濃縮管32は、1本のガラスチューブをU字状にv
rり曲げて形成したもので、その先端のU字管部32a
の中にはモレキュラーシーブ、シリカゲル等のガス中の
微量成分を吸着する吸着剤35が充填しである。36は
試料ガスの供給口、37は同じく初、出口である。38
は、試料濃縮管32のU字管部32aの周囲に設りたヒ
ーター、39はそのヒーターによる加熱温txを検出す
るための温度センサー、すなわち熱電対で、試料濃縮管
32に沿わせて配管したセンツーデユープ40に挿入し
て、前記U字管部32aに臨ませである。ヒーター38
による加熱温度は、熱電対39に検出されて図外の第2
加熱温度制御装置へフィードバックされ、これによって
制御されるようになっている。41は、微量成分の濃縮
装置Aの収納ケースである。
The sample concentration tube 32 is a single glass tube formed into a U-shape.
It is formed by bending it, and the U-shaped tube part 32a at the tip
The inside is filled with an adsorbent 35 such as molecular sieve or silica gel that adsorbs trace components in the gas. 36 is a sample gas supply port, and 37 is also an outlet. 38
is a heater installed around the U-shaped tube portion 32a of the sample concentration tube 32, and 39 is a temperature sensor, that is, a thermocouple, for detecting the heating temperature tx by the heater. It is inserted into the CENTUS duplex 40 so as to face the U-shaped tube portion 32a. Heater 38
The heating temperature is detected by a thermocouple 39 and a second
It is fed back to the heating temperature control device and controlled by this. 41 is a storage case of the trace component concentrator A.

この装置Aの動作を説明すると、次のとおりである。The operation of this device A will be explained as follows.

まず、噴出ノズル29から力11熱筒30の冷媒流路3
0bへ噴出された液状冷媒は、そこで加熱されて気化し
、一定温度の気化冷θ1(となって試料濃縮管32のU
字管部32aに吹き付けられる。
First, from the jet nozzle 29, the refrigerant flow path 3 of the heat cylinder 30
The liquid refrigerant spouted to 0b is heated and vaporized there, resulting in a constant temperature of vaporization cooling θ1 (as a result, U of the sample concentration tube 32
It is sprayed onto the tube portion 32a.

ここにいう一定温度は、第1加酪温疫制ζ1(1装置i
:jによって制御された1品度である。すなわち、熱電
対33によって検出された気化冷媒の温度が第1加熱温
度制御装置にフィードバックされ、これによって一定温
度に制御された加!!8筒30のヒーター34によって
保持されたものである。このl)+il iは、試料ガ
スの状態変化等の特性に合わせてあらかじめ設定するも
ので、試料ガスの主成分を液化させないで、その中の6
1 m成分、つまり不純物成分のみを選択的に捕集でき
る温度である。
The constant temperature referred to here is the first heating temperature control ζ1 (1 device i
: It is one quality controlled by j. That is, the temperature of the vaporized refrigerant detected by the thermocouple 33 is fed back to the first heating temperature control device, thereby controlling the temperature to a constant temperature. ! It is held by eight cylinders 30 of heaters 34. This l)+il i is set in advance according to the characteristics such as state changes of the sample gas.
This is the temperature at which only the 1m component, that is, the impurity component, can be selectively collected.

吹きイ」けられた気化冷媒によってU字管部32aが一
定温度に冷却されたところで、その中に供給l」36か
ら試料ガスが所定の流速で供給されると、試料ガス中の
微量成分は、吸着剤35に吸着され濃縮される。そして
、微量成分を吸着された試料ガスは、流通管31を通っ
て流通支管31aから排出される。
When the U-shaped tube section 32a is cooled to a constant temperature by the blown vaporized refrigerant, when a sample gas is supplied into the U-shaped tube section 32a from the supply section 36 at a predetermined flow rate, trace components in the sample gas are , is adsorbed by the adsorbent 35 and concentrated. Then, the sample gas with trace components adsorbed passes through the flow pipe 31 and is discharged from the flow branch pipe 31a.

心室h(の濃縮が行なわれたところで、試料ガスと液状
冷媒の供給が停【Lされ、ヒーター38によってU字管
f’fls 32 aが加熱されると、吸着剤35に吸
/f’(された微11(成分(J脱λ°1される。
When the concentration of the ventricle h() is completed, the supply of sample gas and liquid refrigerant is stopped, and when the U-shaped tube f'fls 32a is heated by the heater 38, adsorption/f'( 11 (component (J de λ°1).

Ibi: ;i−tされたところで、試料ガスの供給口
36からキャリ゛ノ′カスか供給されると、濃縮された
微風成分は取り出される。
Ibi: ; When the carrier gas is supplied from the sample gas supply port 36, the concentrated breeze component is taken out.

」二1:己ヒーター38による力11ζ仝b?晶1誌は
、熱電対39によって検出された加熱温度か第2加熱温
度制御1:ei ii’、’(にフィードバックどれ、
これによって一定の設に2 liJ度に制御されたヒー
ター38によって保持されたものである。
"21: Force 11ζ from self-heater 38? The crystal 1 is fed back to the heating temperature detected by the thermocouple 39 or the second heating temperature control 1:ei ii','(
As a result, the temperature was maintained at a constant temperature by the heater 38, which was controlled at 2 liJ degrees.

つぎに、上記(14成と機能を備えたガスクロマトグラ
フによって、エージング工程、冷却工程、濃縮工程、脱
着工程および分析工程の各工程を説明する。
Next, each step of the aging step, cooling step, concentration step, desorption step, and analysis step will be explained using a gas chromatograph equipped with the above-mentioned (14) functions.

(1)エージング工程(第1I司) この工程では、試料濃縮管32のU字管部32aを加熱
(例えば300〜340℃)し、これに第1図の太い実
線で示す回路を通してゼロガス(例えばI(eガス)を
導入し、吸着剤35で吸着した吸着物質を取り除く。
(1) Aging process (1st stage) In this process, the U-shaped tube part 32a of the sample concentration tube 32 is heated (for example, 300 to 340°C), and a zero gas (for example, I (e gas) is introduced and the adsorbed substance adsorbed by the adsorbent 35 is removed.

すなわち、不純物除去トラップ8を通して精製されたゼ
ロガスは第1バルブ13と第2コツク12を通って試料
濃縮管32に導入され、再び第2コツク12を通ってバ
ッファータンク2Tへ放出される。一方、不純物除去ト
ラップ6を通って精製されたキャリアガスは、破線で示
す回路を通って、つまり第1コツク11、第2コツク1
2、第1コツク11を経て分離カラム17を通り、検出
器20に送られる。
That is, the zero gas purified through the impurity removal trap 8 is introduced into the sample concentration tube 32 through the first valve 13 and the second tank 12, and is discharged through the second tank 12 again into the buffer tank 2T. On the other hand, the carrier gas purified through the impurity removal trap 6 passes through the circuit shown by the broken line, that is, the first tank 11 and the second tank 1.
2. It passes through the first column 11, the separation column 17, and is sent to the detector 20.

(2)冷却工程(第2図) この工程では、試料濃縮管32のU字管部32aに、一
定温度に制御した気化冷媒を吹き付けて、これを冷却す
る。
(2) Cooling step (FIG. 2) In this step, a vaporized refrigerant controlled at a constant temperature is sprayed onto the U-shaped tube portion 32a of the sample concentration tube 32 to cool it.

すなわち、濃縮装置Aの回路を、第2図の一点鎖線で示
すように、閉回路とし、噴出ノズル29より液状冷媒、
例えば液体窒素を噴出させ、これを加熱筒30で加熱し
て気化冷媒とし、U字管部32aを一定の渚J゛、例え
ば−1301:に冷却する。
That is, the circuit of the concentrator A is made into a closed circuit as shown by the dashed line in FIG. 2, and the liquid refrigerant,
For example, liquid nitrogen is ejected and heated in the heating cylinder 30 to become a vaporized refrigerant, thereby cooling the U-shaped tube portion 32a to a certain level J', for example -1301:.

このとき、試料ガスは、二点鎖線で示すように、調整弁
22、滝川コントロール弁24、第1バルブ13、第2
コツク12を通ってバッファータンク27へと送られる
。不純物陰火)・ラップ6を通って精製されたキートリ
アガスは、破線で示すように、第1コツク11、抵抗管
10、第1コツク11を通過して分離カラム17、第2
バルブ14を通った後、検出器20へ送られる。−万、
不純物除去トラップ8で精製されたゼロガスは、太い実
線で示すように、第1バルブ13、ニードル弁25を通
って放出される。
At this time, the sample gas is supplied to the regulating valve 22, the Takigawa control valve 24, the first valve 13, and the second valve as shown by the two-dot chain line.
The liquid is sent to the buffer tank 27 through the tank 12. The purified key tria gas passes through the wrap 6, passes through the first column 11, the resistance tube 10, and the first column 11, and then passes through the separation column 17 and the second column, as shown by the broken line.
After passing through valve 14, it is sent to detector 20. Ten thousand,
The zero gas purified by the impurity removal trap 8 is discharged through the first valve 13 and the needle valve 25, as shown by the thick solid line.

この冷却工程では、熱電対33によって検出された気化
冷媒の温1ゲが常に第1加熱温度制御装置にフィードバ
ックされ、これによって加熱筒30のヒーター34によ
る加熱温度が制御されるようになっている。したがって
、気化冷媒の温度は、試料ガスの主成分が液化しないよ
うに、あらかじめそのガスの特性に合わせた湿度に設定
し、かつ制御することができる。
In this cooling step, the temperature of the vaporized refrigerant detected by the thermocouple 33 is constantly fed back to the first heating temperature control device, thereby controlling the heating temperature by the heater 34 of the heating cylinder 30. . Therefore, the temperature of the vaporized refrigerant can be set and controlled in advance to a humidity that matches the characteristics of the sample gas so that the main component of the sample gas does not liquefy.

(3)濃縮工程(第3図) この工程では、冷却工程で冷却した試料濃縮管32に、
さらにその冷却を続(づながら、試料ガスを供給し、そ
の中の1成分を吸着剤35で吸着して濃縮する。
(3) Concentration process (Figure 3) In this process, the sample concentration tube 32 cooled in the cooling process is
Further, while the cooling is continued, a sample gas is supplied, and one component therein is adsorbed and concentrated by the adsorbent 35.

すなわち、試料濃縮管32を一定t14度(例えば−1
30℃)に保持し、この中に添置が例えげ100 tn
t/min の試料ガスを一定時間(例えば10分間)
導入することによってco 、 co2. cIJ、、
にの微1成分を吸λi剤35に吸着させる。
That is, the sample concentration tube 32 is heated at a constant temperature of t14 degrees (for example, -1
For example, 100 tn
t/min sample gas for a certain period of time (e.g. 10 minutes)
By introducing co, co2. cIJ,,
One minute component of the liquid is adsorbed onto the λi absorbing agent 35.

このとき、試料ガスは、一点鎖線で示すように、第1バ
ルブ13、第2コツク12、試料濃縮管32、第2コツ
ク12と順次通過してパン7アタンク2Tへ放出される
。不純物除去トラップ6を通って精製されたキャリアガ
スは、破線で示すように、第1コツク11、第2コツク
12、第1コツク11を経て分離カラム17をImす、
検出器20へ送られる。一方、不純物除去トラップ8で
精製されたゼロガスは、太い実線で示すように、第1バ
ルブ13とニードル弁25を通って放出される。
At this time, the sample gas sequentially passes through the first valve 13, the second tank 12, the sample concentration tube 32, and the second tank 12, as shown by the dashed line, and is released into the pan 7 tank 2T. The carrier gas purified after passing through the impurity removal trap 6 passes through a first tank 11, a second tank 12, a first tank 11, and a separation column 17, as shown by the broken line.
The signal is sent to the detector 20. On the other hand, the zero gas purified by the impurity removal trap 8 is released through the first valve 13 and the needle valve 25, as shown by the thick solid line.

(4)脱着工程(第4図1) この工程では、試料濃縮管32を加熱して吸着した]1
11記倣量筬分を脱着する。
(4) Desorption step (Fig. 4 1) In this step, the sample concentration tube 32 was heated and adsorbed]1
11. Attach and detach the copying amount reed.

すなわち、0縮装置Aの回路を、第4図の一点鎖線で示
すように閉回路とし、試料濃縮管32のU字管部32a
をヒーター38で加熱(例えば250〜300℃)し、
吸着剤35で吸着した試料ガス中のCO,CO□ 、C
IT、等の微量成分を脱オコさゼる。
That is, the circuit of the zero compression device A is made into a closed circuit as shown by the dashed line in FIG.
is heated with a heater 38 (e.g. 250 to 300°C),
CO, CO□, C in the sample gas adsorbed by the adsorbent 35
Removes trace components such as IT.

このとき、不純物1全去トラツプ6を通って精製された
キャリアガスは、破線で示すように、第1コツク11.
44’ti′J’+:肯10、第1コツク11を通過し
て分離カラム17、第2バルブ14を通った後、検出器
20へ送られる。一方、不純物除去トラップ8で精製さ
れたゼロガスは、実線で示すように、第1バルブ13、
第2コツク12を通ってバッファタンク27へ放出され
る。
At this time, the purified carrier gas passes through the impurity 1 removal trap 6 and is transferred to the first tank 11. as shown by the broken line.
44'ti'J'+: Yes 10, after passing through the first tank 11, separation column 17, and second valve 14, it is sent to the detector 20. On the other hand, the zero gas purified by the impurity removal trap 8 is transferred to the first valve 13, as shown by the solid line.
It passes through the second tank 12 and is discharged into the buffer tank 27.

(5)分析工程(・α5図) この工程では、試料濃縮管32にキャリアガスを通して
、吸着剤35から脱着した機敏成分を分離カラム17に
送り、分離、測定する。
(5) Analysis step (Figure α5) In this step, carrier gas is passed through the sample concentration tube 32, and the sensitive components desorbed from the adsorbent 35 are sent to the separation column 17, where they are separated and measured.

すなわち、破線で示すように、試料濃縮管32に、濃縮
工程の試料ガスとは逆の方向から、不純物除去トラップ
6で精製したキャリアガスを導入し、脱着した微M成分
を分離カラム1γへ送り込む。このとき急な圧力変化な
どによる検出器20への悪影響を軽減するため、第2バ
ルブ14を一定時間(例えば30秒)切り換え圧力変化
を検出器20と同程度の圧力損失を生ずる抵抗管18に
送る。しかるのち、1与び第2バルブ14を元に切り換
え、微潰成分は分離カラム1γで分離した後、検出器2
0へ送り、測定する。
That is, as shown by the broken line, the carrier gas purified by the impurity removal trap 6 is introduced into the sample concentration tube 32 from the opposite direction to the sample gas in the concentration step, and the desorbed fine M component is sent to the separation column 1γ. . At this time, in order to reduce the adverse effect on the detector 20 due to sudden pressure changes, the second valve 14 is switched for a certain period of time (for example, 30 seconds) and the pressure change is transferred to the resistance tube 18 that causes the same pressure loss as the detector 20. send. After that, the switch is made based on the 1 input and the second valve 14, and the finely crushed components are separated in the separation column 1γ, and then sent to the detector 2.
0 and measure.

このとき、不純物除去トラップ8で精製されたゼロガス
は、太い実線で示すように、第1バルブ13全通してバ
ッファタンク2Tへ放出される。
At this time, the zero gas purified by the impurity removal trap 8 is discharged into the buffer tank 2T through the entire first valve 13, as shown by the thick solid line.

一方、不純物除去トラップ7で精製されたキャリアガス
は、一点鎖線で示すように、第2バルブ14全通して検
出器20へ送られる。
On the other hand, the carrier gas purified by the impurity removal trap 7 is sent to the detector 20 through the entire second valve 14, as shown by the dashed line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、エージング工
程、冷却工程、濃縮工程、脱着工程および分析工程の5
つの工程より構成するとともに、冷却工程において、試
料濃縮管に、試料ガスの特性に合わせて一定温度に制御
した気化冷媒を吹き付けるようにしたから、 (1)、試料ガス中の主成分を液化させないで微量成分
のみを選択的に捕集することができるとともに、 (2)、試料濃縮管への冷媒導入、排除および排除後の
試料濃縮管の加熱時に可燃ガスが発生するおそれがなく
、全分析工程を自動化することができる、という効果を
得ることができる。
As explained above, according to the present invention, there are five steps: aging step, cooling step, concentration step, desorption step, and analysis step.
In addition, in the cooling process, a vaporized refrigerant controlled at a constant temperature according to the characteristics of the sample gas is sprayed into the sample concentration tube. (1) The main components in the sample gas are not liquefied. (2) There is no risk of flammable gas being generated during the introduction of refrigerant into the sample concentration tube, removal, and heating of the sample concentration tube after removal, making it possible to selectively collect only trace components. This has the effect of automating the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は、この発明の詳細な説明するため
のガスクロマトグラフの構成図であって、第1図は実施
例におけるエージング工程、第2図は同じ冷却工程、第
3図は同じく濃縮工程、第4図は同じく脱着工程、第5
図は同じく分析工程の回路構成図、第6図は第1図ない
し第5図における濃縮装置の断面図、第7図は第6図の
Vll −■1断面図である。 32・・・・・・試料傍λ縮管 35・・・・・・・・吸着剤
Figures 1 to 5 are configuration diagrams of a gas chromatograph for explaining the present invention in detail, in which Figure 1 shows the aging process in the example, Figure 2 shows the same cooling process, and Figure 3 shows the same process. The concentration process, Figure 4, also shows the desorption process, Figure 5.
6 is a sectional view of the concentrator shown in FIGS. 1 to 5, and FIG. 7 is a sectional view of Vll-1 in FIG. 6. 32... λ contraction tube near the sample 35... Adsorbent

Claims (1)

【特許請求の範囲】[Claims] 試料#縮管を加熱しながら、これにキャリアガスを通し
、その中に充填した吸着剤で1!&着した吸着物質を取
り除くエージング工程と、試料濃縮管に一定温度に制御
した気化冷媒を吹き付けて、これを冷却する冷却上押と
、試料濃縮管に、その冷ノ:lIを続けながら試料ガス
を供給してその中に充填した前記吸着剤で試料ガス中の
微量成分を吸着して濃縮する濃縮工程と、試料濃縮管を
加熱して、吸着剤で吸着した前記微量成分を脱着する脱
着工程と、試#”) 14縮管にキャリアガスを通して
、吸着剤から脱着した微量成分を分離カラムに送り分離
、測定する分析工程とより成るガス中のgI量成分分析
法。
While heating the sample #shrinkage tube, pass a carrier gas through it, and use the adsorbent filled in it for 1! The aging process removes the adsorbed substances that have adhered to the sample concentration tube, the cooling top-pressing process involves spraying a vaporized refrigerant controlled at a constant temperature onto the sample concentration tube, and the sample gas is added to the sample concentration tube while continuing the cooling process. a concentration step in which the trace components in the sample gas are adsorbed and concentrated by the adsorbent filled therein; and a desorption step in which the sample concentration tube is heated to desorb the trace components adsorbed by the adsorbent. 14) A method for analyzing gI content in a gas, which consists of an analysis step in which a carrier gas is passed through a condenser tube to send trace components desorbed from an adsorbent to a separation column for separation and measurement.
JP12773983A 1983-07-15 1983-07-15 Method for analyzing trace component in gas Pending JPS6020144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12773983A JPS6020144A (en) 1983-07-15 1983-07-15 Method for analyzing trace component in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12773983A JPS6020144A (en) 1983-07-15 1983-07-15 Method for analyzing trace component in gas

Publications (1)

Publication Number Publication Date
JPS6020144A true JPS6020144A (en) 1985-02-01

Family

ID=14967480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12773983A Pending JPS6020144A (en) 1983-07-15 1983-07-15 Method for analyzing trace component in gas

Country Status (1)

Country Link
JP (1) JPS6020144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637685A1 (en) * 1988-10-06 1990-04-13 Berger Produits Device for injecting a gaseous sample into a gas chromatography column
US6190613B1 (en) * 1998-04-30 2001-02-20 Frontier Laboratories Ltd. Sample concentration device
JP2014059204A (en) * 2012-09-18 2014-04-03 Taiyo Nippon Sanso Corp Gas sampling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845286A (en) * 1971-10-11 1973-06-28
JPS5327580U (en) * 1976-08-16 1978-03-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845286A (en) * 1971-10-11 1973-06-28
JPS5327580U (en) * 1976-08-16 1978-03-09

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637685A1 (en) * 1988-10-06 1990-04-13 Berger Produits Device for injecting a gaseous sample into a gas chromatography column
US6190613B1 (en) * 1998-04-30 2001-02-20 Frontier Laboratories Ltd. Sample concentration device
JP2014059204A (en) * 2012-09-18 2014-04-03 Taiyo Nippon Sanso Corp Gas sampling device

Similar Documents

Publication Publication Date Title
US5457316A (en) Method and apparatus for the detection and identification of trace gases
US5665902A (en) Method to analyze particle contaminants in compressed gases
JPH03170861A (en) Method and apparatus for weighing impurity in gas by vapor phase chromatography
CN112782314A (en) Method and system for analyzing environmental air pretreatment adsorption and desorption
JPS6020144A (en) Method for analyzing trace component in gas
JP7019726B2 (en) Analysis method for trace pollutants in cryogenic liquids
EP3438637B1 (en) System having pre-separation unit
US20130000485A1 (en) Flow Control System, Device and Method for Thermal Desorption
JP2858143B2 (en) Concentration analysis method and apparatus therefor
US5762686A (en) Process for determining amount of argon contamination in oxygen and related apparatus therefor
JP3103985B2 (en) Concentration analysis method and equipment
JP3097031B2 (en) Method and apparatus for analyzing impurities in gas
JPH0120979Y2 (en)
US3167947A (en) Gas detector and analyzer
US4214473A (en) Gaseous trace impurity analyzer and method
CN110346490B (en) Multifunctional two-stage thermal desorption gas path system
JP4118745B2 (en) Concentration analyzer and method
JP2002250722A (en) Method and equipment for analyzing extremely low concentration hydrogen sulfide
US2980513A (en) Combustibles-in-air instrument
JPH04291151A (en) Analysis method of carbon monoxide and/or carbon dioxide
JPH05256842A (en) Method and device for analyzing small amount of organic compound
JP2538067Y2 (en) Concentration analyzer
JPS62187250A (en) Capillary gas chromatographic apparatus for analyzing volatile component
JP2001116724A (en) Method and apparatus for measuring concentration of moisture in gas
CN111855859B (en) Method for separating water in wine for measuring ratio of H and O isotopes