JPS60200965A - Manufacture of thin film of amorphous silicon carbide - Google Patents

Manufacture of thin film of amorphous silicon carbide

Info

Publication number
JPS60200965A
JPS60200965A JP59055887A JP5588784A JPS60200965A JP S60200965 A JPS60200965 A JP S60200965A JP 59055887 A JP59055887 A JP 59055887A JP 5588784 A JP5588784 A JP 5588784A JP S60200965 A JPS60200965 A JP S60200965A
Authority
JP
Japan
Prior art keywords
thin film
gas
mercury
amorphous silicon
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59055887A
Other languages
Japanese (ja)
Other versions
JPS6261110B2 (en
Inventor
Kiyoshi Takahashi
清 高橋
Makoto Konagai
誠 小長井
Minoru Takamizawa
高見沢 稔
Tatsuhiko Motomiya
本宮 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59055887A priority Critical patent/JPS60200965A/en
Publication of JPS60200965A publication Critical patent/JPS60200965A/en
Publication of JPS6261110B2 publication Critical patent/JPS6261110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Abstract

PURPOSE:To obtain a homogeneous film free from defects by subjecting hydrogensilanes coexisting with methyl hydrogensilanes to photolysis. CONSTITUTION:Methyl hydrogensilanes represented by a general formula (CH3)1SibHc (where b=1-3, a+c=2b+2, 2b+1>=a, a>=1, 2b+1>=c, and c>=1) are prepd. The methyl hydrogensilanes and hydrogensilanes are fed to the surface of a substrate with a carrier gas, and they are subjected to photolysis or mercury sensitized photolysis.

Description

【発明の詳細な説明】 本発明はアモルファス炭化けい#薄膜、特には基体のダ
メージを少すくシたアモルファス炭化けい素薄膜の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an amorphous silicon carbide thin film, particularly an amorphous silicon carbide thin film with little damage to a substrate.

アモルファス炭化けい素(以下a−8iOと略称する)
については、これが高い光学ハンドキャップ(Eopt
) を有するものであることから太陽電池用窓枠材や発
光素子、電子写真感光体などへの応用が検討されており
、この製造方法については水素化シラン、アルキルシラ
ンまたはハロゲン化シランと炭化水素化合物をプラズマ
OVDする方法(特開昭57−27914号、特開昭5
7−22112号、特開昭57−104276号、特開
昭57−455365号、特開昭57−200215号
公報参照)、これらのガス、混合ガスを熱分解させる方
法(特開昭57−116200号、特開昭57−118
082号公報参照)やイオンブレーティング法(特開昭
55−18678号公報参照)、スパッター法(特開昭
56−40284号公報参照)などが知られている。
Amorphous silicon carbide (hereinafter abbreviated as a-8iO)
As for this, this is a high optical hand cap (Eopt
), its application to solar cell window frame materials, light-emitting elements, electrophotographic photoreceptors, etc. is being considered, and the manufacturing method is based on hydrogenated silane, alkylsilane, or halogenated silane and hydrocarbon. Method of plasma OVD of compounds (JP-A-57-27914, JP-A-5
7-22112, JP-A-57-104276, JP-A-57-455365, JP-A-57-200215), methods of thermally decomposing these gases and mixed gases (JP-A-57-116200) No., JP-A-57-118
082), the ion blating method (see Japanese Patent Laid-Open No. 55-18678), and the sputtering method (see Japanese Patent Laid-Open No. 56-40284).

しかし、プラズマOVD法にはプラズマ放電に伴なって
発生するイオンなどの高エネルギー粒子が生成した膜と
衝突するために高品質の膜が得られにくく、また反応器
壁に反応分解物が付着するため反応器の繰返し使用に限
界があるほか均質な脇を得るためにはこの付着物をクリ
ーニングする必要があるという不利があり、また始発原
料とし゛ て発火性の高いSiH4またはSi2H6を
使用するため取扱い(二厳重な注意が必要でコストも高
いという問題があった。他方、原料ガスとしてハロゲン
化シランを使用する場合にはプラズマによる分解で副生
じた塩酸や塩素の処理に僑点があり、堆積速度も遅いと
いう欠点があった。また、熱分解法は高温を必要とする
ものであるため基体と皮膜との間の熱膨張の差によって
皮膜にクラックが発生し易く、接着強度も劣るほか、各
元素のクラスターができやす(、さらには均質で良質な
膜が得られず、皮膜速度も遅いという欠点があり、また
始発材料としてプラズマOVD法と同様のガスを使用す
るため、プラズマOVD法と同じ不利があり、さらにイ
オンブレーティング法、スパッタ法も高温を必要とされ
るために熱分解法と同じ欠点があることが認められてい
る。
However, in the plasma OVD method, it is difficult to obtain a high-quality film because high-energy particles such as ions generated by plasma discharge collide with the produced film, and reaction decomposition products adhere to the reactor wall. Therefore, there is a limit to the repeated use of the reactor, and there is a disadvantage in that it is necessary to clean the deposits in order to obtain a homogeneous product.Also, since SiH4 or Si2H6, which is highly flammable, is used as the starting material, it is difficult to handle. (There was a problem in that strict precautions were required and the cost was high.On the other hand, when using halogenated silane as a raw material gas, there was a problem in the treatment of hydrochloric acid and chlorine that were produced as by-products during plasma decomposition. It also had the disadvantage of slow speed.Also, since the pyrolysis method requires high temperatures, the film tends to crack due to the difference in thermal expansion between the substrate and the film, and the adhesive strength is poor. It is easy to form clusters of each element (furthermore, it is difficult to obtain a homogeneous and high-quality film, and the coating speed is slow. Also, since the same gas as the plasma OVD method is used as the starting material, the plasma OVD method is different from the plasma OVD method. It has been recognized that the same disadvantages exist and that ion blating and sputtering methods also suffer from the same drawbacks as pyrolysis methods due to the high temperatures required.

本発明はこのような不利を解決したa−8iO薄供給し
、光分解あるいは水銀増感光分解させることを特徴とす
るものである。
The present invention is characterized by overcoming such disadvantages by supplying a-8iO thinly and subjecting it to photodecomposition or mercury-sensitized photodecomposition.

すなわち、本発明者らはイオン発生がなく、高温を必要
としないa−8iO薄膜の製造方法について種々検討し
た結果、メチルハイドロジエンシラン類単独では光分解
反応は遅いが、これを5iHaまたは812H6などか
らなるハイドロジエンシラン類と共に光照射すると水素
引き抜きにより活性化したハイドロジエンシランラジカ
ルがこのメチルハイドロジエンシラン類を分解してa−
8iOが容易に得られること、またこれによればラジカ
ル反応のみでa−8iO薄膜の形成が行なわれるので一
欠陥のない均質な膜が得られることを確認して本発明を
完成させた。
That is, the present inventors investigated various methods for producing a-8iO thin films that do not generate ions and do not require high temperatures, and found that although the photodecomposition reaction is slow when using methylhydrodiene silane alone, it can be When irradiated with light together with hydrogen silanes consisting of methylhydrogen silanes, hydrogen silane radicals activated by hydrogen abstraction decompose these methylhydrogen silanes to form a-
The present invention was completed by confirming that 8iO can be easily obtained and that a homogeneous film without any defects can be obtained since an a-8iO thin film can be formed only by a radical reaction.

本発明の方法で始発材料とされるハイドロジエンシラン
類はSiH4,8i□H6または5i3H,などで示さ
れるものとされるが、これは光分解反応でアモルファス
けい素(以下a−8iと略記する)を生成するものであ
るから、このa−8iをa−8iOとするため(吋まこ
れC二炭素源となるメチルハイドロジエンシラン類を併
用することが必要とされる。
The hydrogen silanes used as starting materials in the method of the present invention are represented by SiH4,8i□H6 or 5i3H, which is converted into amorphous silicon (hereinafter abbreviated as a-8i) through a photodecomposition reaction. ), it is necessary to use methylhydrodienesilanes, which serve as a C2 carbon source, in order to convert this a-8i to a-8iO.

このメチルハイドロジエンシラン類は一般式%式% 0≧1)で示されるメチルへイドロジェンシラン化合物
またはメチルハイドロジエンポリシラン化合物であり、
これには0H3SiH3,(OH3)2SiH2゜(O
Ha )381H1(OHa 5iH2)21 ((O
H3)2 SiH)21H2H I (OH3s1a2)・510H31((OH3)25i
H)2・5i(OH3)2゜(OH3)2Si・8i0
H3,0H3Si・:8.LH3などが例示さ1 H)( れるが、これらのうちではけい素原子にメチル基を3個
以上結合したものはメチル基が2個以下のものにくらべ
て反応速度が遅いので、けい素原子にメチル基が2個以
下ついたものとすることが好ましい。このメチルハイド
ロジエンシラン類はこれ単独では光分解速度が遅いが、
SiH4,Si2H6または5i3H87’jどのよう
なハイドロジエンシラン類と共存させると光分解反応が
促進されるので、このハイドロジエンシラン類の添加が
必須要件とされる。本発明の方法で得られるa−8iO
薄膜の性状はメチルハイドロジエンシラン類の添加量に
よって相違し、これを10モル%以下とするとa−8i
O中のカーボン窃が少なくなり、90%以上とするとカ
ーボン量が多(なり、高抵抗となって実用的ではなくな
るので、11)〜90モル%のW4A囲、好ましくは1
5〜80モル%とすることがよく、これによれば太陽電
池用窓枠材として要求される2、U〜2.5eVのよう
な高い光学へンドギャップをもつa−8i0薄膜を容易
に得ることができる。また、このハイドロジエンシラン
類およびメチルハイドロジエンシラン類はいずれもガス
状で反応室に等大されるのであるが、これらは必要に応
じ濃度を適宜に希釈するということからキャリヤーガス
に伴流させる。このキャリヤーガスとしては水素、ヘリ
ウム、アルゴンなどの不活性ガスまたはこれらの混合ガ
スとすればよい。
The methylhydrogensilanes are methylhydrogensilane compounds or methylhydrogenpolysilane compounds represented by the general formula % 0≧1),
This includes 0H3SiH3, (OH3)2SiH2゜(O
Ha )381H1(OHa5iH2)21((O
H3)2 SiH)21H2H I (OH3s1a2)・510H31((OH3)25i
H)2・5i(OH3)2゜(OH3)2Si・8i0
H3,0H3Si・:8. Examples include LH3 (1H) (However, among these, those with three or more methyl groups bonded to the silicon atom have a slower reaction rate than those with two or less methyl groups, so the silicon atom It is preferable that 2 or less methyl groups are attached to the methylhydrogensilane.The photodecomposition rate of this methylhydrodiene silane alone is slow, but
Since the photodecomposition reaction is promoted when any hydrogen silane such as SiH4, Si2H6 or 5i3H87'j is present, the addition of this hydrogen silane is an essential requirement. a-8iO obtained by the method of the present invention
The properties of the thin film vary depending on the amount of methylhydrodiene silane added, and if this is 10 mol% or less, a-8i
Carbon theft in O is reduced, and if it is 90% or more, the amount of carbon becomes large (and becomes high resistance, making it impractical).
It is often set at 5 to 80 mol%, and according to this, an a-8i0 thin film having a high optical bend gap of 2.U to 2.5 eV, which is required as a window frame material for solar cells, can be easily obtained. be able to. In addition, both the hydrogen silanes and methylhydrodiene silanes are in gaseous form and are placed in the reaction chamber in equal amounts, but they are flowed along with the carrier gas to dilute the concentration as necessary. . The carrier gas may be an inert gas such as hydrogen, helium, or argon, or a mixed gas thereof.

なお、これらのガスの光分解により得られるa−8iO
薄膜はこの始発拐料ガス中にPH,、B2H6などのド
ーピングを添加することによってn型またはp型のもの
としてもよい。
In addition, a-8iO obtained by photolysis of these gases
The thin film may be made n-type or p-type by adding doping such as PH, B2H6, etc. to this starting material gas.

他方、このメチルハイドロジエンシラン類な光分解させ
るための光源としては高エネルギー光(フォトン)を照
射できるものであればよく、これには高圧水銀ランプ、
低圧水銀ランプなどが例示されるが、低圧水銀ランプの
波長(1,849A。
On the other hand, the light source for photodegrading methylhydrogensilanes may be any source that can irradiate high-energy light (photons), such as a high-pressure mercury lamp,
Examples include low-pressure mercury lamps, and the wavelength of low-pressure mercury lamps (1,849A).

2.537A)ではS1□H6は反応するがSiH4で
は反応が起きないので、SiH4を使用する場合には水
銀増感反応を使用することがよく、この場合には反応系
に極微量の水銀を添加する必要があり、光照射によって
励起された水銀がガス分子と衝突するときにエネルギー
をガス分子に与えるのでガスが分解し目的を達すること
ができる。
In 2.537A), S1□H6 reacts, but no reaction occurs with SiH4, so when using SiH4, it is best to use mercury sensitization, and in this case, a trace amount of mercury is added to the reaction system. When the mercury is excited by light irradiation and collides with the gas molecules, it imparts energy to the gas molecules, causing the gas to decompose and achieve the desired purpose.

つぎの本発明の方法を添付の図面にもとづいて説明する
。第1図は本発明の光分解法によるa −8iO薄膜の
製造方法を示したもので、この反応器1には即熱用基台
2の上に基板3が載置されており、これは真空ポンプに
よる吸引口4からの吸引で1〜5ト一ル程度の真空状態
に保持される。
The following method of the present invention will be explained based on the accompanying drawings. FIG. 1 shows the method for producing an a-8iO thin film by the photolysis method of the present invention.In this reactor 1, a substrate 3 is placed on a base 2 for immediate heating; A vacuum state of about 1 to 5 torr is maintained by suction from the suction port 4 by a vacuum pump.

この反応器にはまたその上部に石英ガラスなどによる蓋
板5が設けられ、この石英ガラスを通して水銀ランプ6
からの光が照射されており、こ\にメチルハイドロジエ
ンシラン類導入ロア、ハイドロジエンシラン類導入口8
からキャリヤーガスに伴流されて原料ガスが導入される
と、これは水銀ランプから照射されている光エネルギー
によって分解され、こ\に生じたa −8i 0が基板
3の上に薄膜状に堆積される。また第2図はこれを水銀
増感法で実施するものを示したもので、この場合にはハ
イドロジエンシラン類を20〜70℃に保持した水銀貯
槽9を経由して導入するようにしてこれに水銀蒸気を伴
流させるようになっている。
This reactor is also provided with a lid plate 5 made of quartz glass or the like on its upper part, and a mercury lamp 6 is passed through the quartz glass.
The methylhydrogensilane introduction lower and the hydrogensilane introduction port 8 are illuminated with light from the
When the raw material gas is introduced from the carrier gas, it is decomposed by the light energy emitted from the mercury lamp, and the resulting a-8i 0 is deposited on the substrate 3 in the form of a thin film. be done. Furthermore, Fig. 2 shows a method in which this is carried out by a mercury sensitization method, in which case the hydrogen silanes are introduced via a mercury storage tank 9 maintained at 20 to 70°C. It is designed to cause mercury vapor to follow.

本発明の方法はハイドロジエンシラン類をメチルハイド
ロジエンシラン類との共存下で光分解させてa−8i 
O薄膜を得るというものであるが、このハイドロジエン
シラン類およびメチルハイドロジエンシラン類は水銀ラ
ンプなどからの光照射に上りf裳旦I−光昼fv1反宿
C二上りで自−810kか怪)このようにして得られた
a7sio薄膜はこの反応がラジカル反応であることか
ら高温とならず、またイオン衝撃によるダメージもなく
、充分な接着力で基板に密着しており、さらi二は良質
、均質でかつ導電性の高いものになるという有利性が与
えられるほか、このa’−8iO薄膜はドーピングする
ことによってn型、p型のものとすることができ、これ
から作られたセルは高い光電変換効率を示すという優位
性が与えられる。
The method of the present invention involves photolyzing hydrogen silanes in the coexistence of methylhydrodiene silanes to produce a-8i
The hydrogen silanes and methylhydrogen silanes are irradiated with light from a mercury lamp, etc., and when exposed to light from a mercury lamp, etc. ) Since this reaction is a radical reaction, the a7sio thin film obtained in this way does not reach high temperatures, is not damaged by ion bombardment, and adheres to the substrate with sufficient adhesive strength, and is of good quality. In addition to having the advantage of being homogeneous and highly conductive, this a'-8iO thin film can be made into n-type or p-type by doping, and cells made from it can have high It has the advantage of exhibiting photoelectric conversion efficiency.

つぎに本発明方法の実施例をあげる。Next, examples of the method of the present invention will be given.

実施例1 第1図に示した光分解装置を使用し、加熱用基台上に2
CII+角のカラス基板(コーニング7059;米国コ
ーニングガラス社製商品名)を載置したのち、反応器内
を減圧し、ここにヘリウムカスで10容量%に希釈した
SiHガス200C,C:、7分とメチル6 シラン(C)1si1+3)ガス5C,C,7分(C1
(3Sij(3/5i2t(6+He=0.025流量
比)とを供給して圧力を5トールに保持した。ついでガ
ラス基板を200℃に加熱し、低圧水銀ランプ(波長1
.849’A)からの光を60分照射したところ、この
基板上に厚さ500′Aのa −9iC薄膜が形成され
た。
Example 1 Using the photolysis apparatus shown in Fig. 1, two
After placing a CII+ square glass substrate (Corning 7059; trade name manufactured by Corning Glass Co., USA), the pressure inside the reactor was reduced, and SiH gas 200C,C diluted to 10% by volume with helium scum was added to the reactor for 7 minutes. and methyl 6 silane (C) 1si1+3) gas 5C, C, 7 minutes (C1
(3Sij (3/5i2t (6 + He = 0.025 flow rate ratio)) was supplied to maintain the pressure at 5 Torr.The glass substrate was then heated to 200°C, and a low pressure mercury lamp (wavelength 1
.. When the light from 849'A) was irradiated for 60 minutes, an a-9iC thin film with a thickness of 500'A was formed on this substrate.

つぎにこのa−SiC薄膜の光学的禁制帯巾(Eopt
)を測定したところ2.08eVであったが、前記にお
ける0H3SiH3/Si2H6+)leの流量比を0
.05,0.1,0.5としたときのEoptは2.2
0,2.28,2.34eVであり、このEoptはガ
ス流量比で自由に制御し得るものであることが判った。
Next, the optical forbidden band width (Eopt) of this a-SiC thin film is
) was measured to be 2.08 eV, but the flow rate ratio of 0H3SiH3/Si2H6+)le in the above was set to 0.
.. Eopt is 2.2 when set to 05, 0.1, 0.5
0, 2.28, and 2.34 eV, and it was found that this Eopt can be freely controlled by the gas flow rate ratio.

なお、上記においてCH35IH3を添加せず、この反
応ガスをヘリウムで10容量%に希釈したSi2H6ガ
ス単独のものとして得た薄膜のEoptが1.72eV
であることから、CH35lH3ガスを添加すればこの
添加量に比例してEoptが増加し、その光分解によっ
てa−5iCが生成することが確認された。
In addition, in the above, the Eopt of the thin film obtained using only Si2H6 gas obtained by diluting this reaction gas to 10% by volume with helium without adding CH35IH3 was 1.72 eV.
Therefore, it was confirmed that when CH35lH3 gas is added, Eopt increases in proportion to the amount of addition, and that a-5iC is generated by its photodecomposition.

実施例2 実施例1の方法においてヘリウムガスで10容量%に希
釈したS l 21(6ガスとCH35iI(3ガスと
の流量比を0.05とすると共に、水素ガスで1容量2
に希釈したBHガスをlχ、 3%、 5X 4添加し
たほかは6 実施例1と同様に処理して厚さ500′Aのa−8iC
薄膜を作ったところ、得られたa−3iC薄膜はP型で
そのEoptは2.OeVであった。
Example 2 In the method of Example 1, the flow rate ratio of S121 (6 gas) and CH35iI (3 gas) diluted to 10% by volume with helium gas was set to 0.05, and 1 volume 2 of hydrogen gas was used.
A-8iC with a thickness of 500'A was prepared in the same manner as in Example 1 except that BH gas diluted to 1x, 3%, 5X4 was added.
When a thin film was made, the obtained a-3iC thin film was of P type and its Eopt was 2. It was OeV.

つぎにこのa−3iC薄膜の暗導電率およびAMI。Next, the dark conductivity and AMI of this a-3iC thin film.

10抛w/Cl112光照射下での光導電率を測定した
ところ、第3図のMAiに示したとおりの結果が得られ
た。また、比較のためにCH35IH3−8i2H6,
CH35iH−3iHを原料ガスとし、ドープ剤として
B2H64 を使用して基板ヒータ一温度350℃、圧力1 トール
、プラズマ出力4W、周波数13.5f1MHzの高周
波電力によるプラズマCvD法で厚さ5,0OOAのP
型のa−SiC薄膜を作り(Eopt=2.0eV)、
この光導電率および暗導電率を測定したところ、第3図
の線2(CH35iH3−Si2H6のとき)、線3(
CH3S+H3’ S+H4のとき)に示した結果が得
られ、この結果から光分解法によればプラズマCvD法
にくらべて高い導電率(高抵抗値)のa−9iC薄膜が
得られることを確認した。したがって、これを太陽電池
用窓枠材として使用すれば開放電圧が大きくなり、光電
変換効率が大幅に向上されることが期待される。
When the photoconductivity was measured under 10 w/Cl112 light irradiation, the results shown in MAi in FIG. 3 were obtained. Also, for comparison, CH35IH3-8i2H6,
Using CH35iH-3iH as a raw material gas and B2H64 as a doping agent, P was deposited to a thickness of 5,000A using a plasma CvD method using a substrate heater temperature of 350°C, pressure of 1 Torr, plasma output of 4W, and high-frequency power of a frequency of 13.5f1MHz.
A type a-SiC thin film was made (Eopt=2.0eV),
When the photoconductivity and dark conductivity were measured, line 2 (for CH35iH3-Si2H6) and line 3 (for CH35iH3-Si2H6) in Fig. 3 were measured.
CH3S+H3'S+H4) was obtained, and it was confirmed from these results that an a-9iC thin film with higher conductivity (higher resistance value) could be obtained by photolysis method than by plasma CvD method. Therefore, if this is used as a window frame material for solar cells, it is expected that the open circuit voltage will increase and the photoelectric conversion efficiency will be significantly improved.

実施例3 第2図に示した水銀増感光分解装置を使用し、加熱用基
台上に実施例1と同じガラス基板を載置して反応器を5
トールに減圧したのち、ここにヘリウムカスで10容星
zに希釈した5i2)16 ガス200C0C1/分、
ジメチルシラン[(OH) SiH] ガス5G−32
2 C,7分(流量比0.025)およびSi2H6ガスと
ジメチルシランカスニ対し0.05,0.2,1,2.
5X量の水素ガスで1容量2に希釈したB2H6ガスを
添加供給した。この際Si Hガスを温度50℃に保持
した水銀6 貯槽を径由するようにしてから、カラス基板を250℃
に加熱し、ついでここに低圧水銀ランプ(2,537A
)からの光を60分間照射したところ、この基板上に厚
さ約1,000λのP型a−5ic薄膜が形成されたの
で、この光導電率および暗導電率を測定したところ、第
4図に示したとおりの結果が得られた。
Example 3 Using the mercury-sensitized photolysis apparatus shown in Fig. 2, the same glass substrate as in Example 1 was placed on the heating base, and the reactor was heated to
After reducing the pressure to Torr, 5i2)16 gas diluted to 10 volumes with helium gas 200C0C1/min,
Dimethylsilane [(OH) SiH] Gas 5G-32
2C, 7 minutes (flow rate ratio 0.025) and 0.05, 0.2, 1, 2.
B2H6 gas diluted to 1 volume 2 with 5X amount of hydrogen gas was added. At this time, the SiH gas was passed through a mercury storage tank maintained at a temperature of 50°C, and then the glass substrate was heated to 250°C.
Then, a low-pressure mercury lamp (2,537A
) was irradiated for 60 minutes, a P-type a-5ic thin film with a thickness of approximately 1,000λ was formed on this substrate, and the photoconductivity and dark conductivity of this film were measured, as shown in Figure 4. The results shown in were obtained.

上ヒ申文例 上 実施例3において原料カスとしてのILI:H3)2S
iH,。
Example of statement ILI:H3)2S as raw material waste in Example 3 above
iH,.

をアセチレンガス(C2H2)とし、C21(2とヘリ
ウムガスで10容量%に希釈したS ’ 2 H6との
流量比を0.02としたほかは実施例3と同様に処理し
てp型a−3iC薄膜を作り、この光導電率および暗導
電率を測定したところ、第4図に併記したとおりの結果
が得られ、この場合にもP型a−9iG@膜が得られる
が、pffa−5lG薄膜を得るためのOH量は6 (c H3)2 S I H2のほうが少量ですむこと
が判った。
A p-type a- When a 3iC thin film was made and its photoconductivity and dark conductivity were measured, the results shown in Figure 4 were obtained, and in this case also a P-type a-9iG@ film was obtained, but pffa-5lG It was found that 6 (c H3) 2 S I H2 requires a smaller amount of OH to obtain a thin film.

実施例4 第1図に示した光分解装置を使用して反応器内にS1□
H6ガスをキャリヤーガスと共に尋人し、実施例1の方
法に準じて第1表の/%1に示した条件でアルミニウム
板上にn型S1層を堆積したのち、第1表のA2の条件
下でこのn型S1 層の上に1型S1層を堆積させ、つ
いで第2図に示した水銀増感光分解装置内において水銀
槽の温度を50℃とし第1表のA3−/165に示した
条件下でこの1型S1層の上にp型SiO層またはp型
S1層を堆積させたのち、これに5no2・ITO層を
蒸着させ、ガラス板と積層してアルミニウム/n1p(
a −8i + a−310) / Sn o2a I
 T O/ガラスからなるセルを作り、このセルの変換
効率を測定したところ、下記および第5図に示したとお
りの結果が得られた。
Example 4 Using the photolysis device shown in Figure 1, S1
H6 gas was mixed with a carrier gas, and an n-type S1 layer was deposited on an aluminum plate under the conditions shown in /%1 in Table 1 according to the method of Example 1, and then under the conditions of A2 in Table 1. Below, a 1-type S1 layer was deposited on top of this n-type S1 layer, and then the temperature of the mercury bath was set to 50°C in the mercury-sensitized photolysis apparatus shown in FIG. After depositing a p-type SiO layer or a p-type S1 layer on this 1-type S1 layer under the same conditions, a 5no2.ITO layer was deposited on this, and a glass plate was laminated to form an aluminum/n1p (
a-8i + a-310) / Sn o2a I
When a cell made of T 2 O/glass was made and the conversion efficiency of this cell was measured, the results shown below and in FIG. 5 were obtained.

(p層形成条件) 実験/f63 (第5囚人曲線) 原料ガスSi□H,+(OH3)2SiH2Voc=0
.831(vl、l5c=13.38(mA/<1’f
i)。
(P layer formation conditions) Experiment/f63 (5th prisoner curve) Source gas Si□H,+(OH3)2SiH2Voc=0
.. 831 (vl, l5c=13.38(mA/<1'f
i).

FF = 0.609 、 EFF=6.77 (%)
実験Δ64 (第5図IB曲線) 原料ガスS1□H6+c2H2 Voc=0.800tvJ、l5c=12.37(mA
/cm)。
FF=0.609, EFF=6.77 (%)
Experiment Δ64 (Figure 5 IB curve) Raw material gas S1□H6+c2H2 Voc=0.800tvJ, l5c=12.37(mA
/cm).

F”F O,634,EFF=6.28(%)実験腐5
 (第5図C曲線) 原料ガス Sl。H6 Voc=0.799tvl、l5c=11.10(mA
/m)。
F”F O,634,EFF=6.28(%) Experimental rot 5
(Curve in Figure 5) Raw material gas Sl. H6 Voc=0.799tvl, l5c=11.10(mA
/m).

FF=0.610. EFF=5.41(%)したがっ
て、このことからセルの変換効率は原料ガスの種類によ
りSi2H6+ (OH3)2 BIH2> 5i2H
s+ 02H2> Si2 H6の順となることが確認
された。
FF=0.610. EFF=5.41 (%) Therefore, from this, the conversion efficiency of the cell depends on the type of raw material gas: Si2H6+ (OH3)2 BIH2> 5i2H
It was confirmed that the order was s+ 02H2>Si2H6.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に使用される光分解装置の縦断面要
図、第2図は本発明方法に使用される水銀増感光分解装
置の縦断面要図、第3図は実施例2で得られたa−3i
Cン’! IIAの光導電率曲線、第4図は実施例3お
よび比較例1で得られたa−3iG光導電率曲線、暗導
電率曲線、および光学的禁制帯IIJ(Eopt)曲線
、第5図は実施例4で得られたセルの変換効率曲線を示
したものである。 l・・・反応器 2・拳・加熱用基台 3・・・基板 4・・・吸引口 5・・・蓋イ反 6・・・水銀ランプ 7.8−・・反応ガス導入口 8・・・水銀貯槽 特許出願人 信越化学工業株式会社 第1図 第2図 −82H6/ [S i (CH3)H3÷Si2H6
or SiH4] (%)第4図 82H6/ (Si2H6÷5i(CH3)2H2) 
(%第5図 □毫反(V) )
Fig. 1 is a schematic vertical cross-sectional view of the photolysis device used in the method of the present invention, Fig. 2 is a schematic longitudinal cross-sectional view of the mercury-sensitized photolysis device used in the method of the present invention, and Fig. 3 is a schematic longitudinal cross-sectional view of the photolysis device used in the method of the present invention. Obtained a-3i
C-n'! The photoconductivity curve of IIA, FIG. 4 shows the a-3iG photoconductivity curve, dark conductivity curve, and optical forbidden band IIJ (Eopt) curve obtained in Example 3 and Comparative Example 1, and FIG. 3 shows a conversion efficiency curve of the cell obtained in Example 4. l...Reactor 2.Fist/Heating base 3...Substrate 4...Suction port 5...Lid cover 6...Mercury lamp 7.8-...Reaction gas inlet 8. ...Mercury storage tank patent applicant Shin-Etsu Chemical Co., Ltd. Figure 1 Figure 2-82H6/ [S i (CH3)H3÷Si2H6
or SiH4] (%) Fig. 4 82H6/ (Si2H6÷5i(CH3)2H2)
(%Fig. 5 □Kamari (V))

Claims (1)

【特許請求の範囲】 1 基体上にハイドロジエンシラン類とメチルハイドロ
ジエンシラン類とをキャリヤーガスと共に供給し、光分
解あるいは水銀増感光分解させることを特徴とするアモ
ルファス炭化けい素薄膜の製造方法。 2、 メチルハイドロジエンシラン類が一般式%式% c、c≧1)で示されるものである特許請求の範囲第1
項記載のアモルファス炭化けい累薄膜の製造方法。
[Scope of Claims] 1. A method for producing an amorphous silicon carbide thin film, which comprises supplying hydrogen silanes and methylhydrodiene silanes together with a carrier gas onto a substrate and subjecting them to photodecomposition or mercury-sensitized photodecomposition. 2. Claim 1 in which the methylhydrodiene silane is represented by the general formula %c, c≧1)
A method for producing an amorphous silicon carbide thin film as described in 2.
JP59055887A 1984-03-23 1984-03-23 Manufacture of thin film of amorphous silicon carbide Granted JPS60200965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055887A JPS60200965A (en) 1984-03-23 1984-03-23 Manufacture of thin film of amorphous silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055887A JPS60200965A (en) 1984-03-23 1984-03-23 Manufacture of thin film of amorphous silicon carbide

Publications (2)

Publication Number Publication Date
JPS60200965A true JPS60200965A (en) 1985-10-11
JPS6261110B2 JPS6261110B2 (en) 1987-12-19

Family

ID=13011612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055887A Granted JPS60200965A (en) 1984-03-23 1984-03-23 Manufacture of thin film of amorphous silicon carbide

Country Status (1)

Country Link
JP (1) JPS60200965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273767A (en) * 1986-05-21 1987-11-27 Toshiba Corp Manufacture of solid-state image sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273767A (en) * 1986-05-21 1987-11-27 Toshiba Corp Manufacture of solid-state image sensing device

Also Published As

Publication number Publication date
JPS6261110B2 (en) 1987-12-19

Similar Documents

Publication Publication Date Title
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
JPS5989407A (en) Formation of amorphous silicon film
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPS59198718A (en) Manufacture of film according to chemical vapor deposition
JPS60117711A (en) Forming apparatus of thin film
JPS60200965A (en) Manufacture of thin film of amorphous silicon carbide
JP2588446B2 (en) Semiconductor device
JPH07221026A (en) Method for forming quality semiconductor thin film
JPS6027121A (en) Photo chemical vapor deposition device
JPS63258016A (en) Manufacture of amorphous thin film
JP3084395B2 (en) Semiconductor thin film deposition method
EP0407088B1 (en) Method of forming an amorphous semiconductor film
JP2629773B2 (en) Method of forming multilayer thin film
JPH0831413B2 (en) Method for manufacturing PIN photoelectric conversion element
JP2659401B2 (en) Method for forming carbon-containing silicon thin film
JPH02225674A (en) Production of thin unsingle crystal film
JPH0411626B2 (en)
JPH07183550A (en) Amorphous photoelectric conversion device
JPH0238570A (en) Formation of non-single crystal thin film
JP2966909B2 (en) Amorphous semiconductor thin film
JPH01278782A (en) Manufacture of photovoltaic element
JPS6284512A (en) Preparation of semiconductor film of amorphous silicon germanium hydride or germanium
JPH02163378A (en) Formation of coating film in vapor phase
JPH05275354A (en) Manufacture of silicon film
JPH023912A (en) Forming method of carbon-containing silicon thin film