JPS60200945A - High elasticity aluminum alloy and its manufacture - Google Patents

High elasticity aluminum alloy and its manufacture

Info

Publication number
JPS60200945A
JPS60200945A JP5649284A JP5649284A JPS60200945A JP S60200945 A JPS60200945 A JP S60200945A JP 5649284 A JP5649284 A JP 5649284A JP 5649284 A JP5649284 A JP 5649284A JP S60200945 A JPS60200945 A JP S60200945A
Authority
JP
Japan
Prior art keywords
alloy
weight
less
powder
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5649284A
Other languages
Japanese (ja)
Inventor
Yusuke Kotani
雄介 小谷
Kiyoaki Akechi
明智 清明
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5649284A priority Critical patent/JPS60200945A/en
Priority to EP84114320A priority patent/EP0144898B1/en
Priority to DE8484114320T priority patent/DE3481322D1/en
Priority to BR8406132A priority patent/BR8406132A/en
Publication of JPS60200945A publication Critical patent/JPS60200945A/en
Priority to US06/879,704 priority patent/US4702885A/en
Priority to US06/940,168 priority patent/US4818308A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an Al alloy having a high modulus of elasticity by powdering an Al alloy contg. specified amounts of Si, Fe, Mg and Cu and by subjecting the resulting powder to hot plastic forming. CONSTITUTION:Powder of <=40 mesh particle size is formed from a molten Al alloy consisting of, by weight, 7.0-17.0% Si, <=12% Fe, <=2% Mg, <=6.5% Cu and the balance essentially Al by spraying. The molten Al alloy may be powdered by rapid solidification at >=10<2>K/S. The resulting Al alloy powder is subjected to hot plastic working such as hot extrusion or hot forging to obtain an Al alloy. Since this Al alloy contains Si at a concn. close to the concn. at the eutectic point, it has superior tensile strength and hardness as well as a high modulus of elasticity, so the alloy can be widely used as a material for an airplane, an automobile, precision machine parts, etc.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、アルミニウム合金の特性、特に弾性率の改善
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to improving the properties of aluminum alloys, particularly the modulus of elasticity.

(ロ)技術背景 アルミニウム合金は鉄系利料に比べ比重が「と軽量であ
り、耐食性も優れている。しかも、低温で塑性加工が容
易であるため機器の軽量化と省エネルギーに通した金属
材料である。
(b) Technical background Aluminum alloys are lighter in specific gravity than iron-based alloys and have excellent corrosion resistance.In addition, they can be easily plastically worked at low temperatures, making them a useful metal material for making equipment lighter and more energy efficient. It is.

しかしながらアルミニウム自体は、本質的に強度が低く
、耐熱性、耐摩耗性の劣る金属であるため強度、耐熱性
、耐摩耗性を必要とする機械部品、構造材料とし1適し
ていなかった。しかし、種々の合金化や熱処理法などの
開発によυ高機能アルミニウム材料が開発され広い分身
への応用が検討されている。
However, aluminum itself is a metal that inherently has low strength, poor heat resistance, and poor wear resistance, so it is not suitable for use as a structural material for mechanical parts or structures that require strength, heat resistance, and wear resistance. However, through the development of various alloying and heat treatment methods, high-performance aluminum materials have been developed, and their application to a wide range of applications is being considered.

高強度アルシミニウ人台金利料としては7000系、2
000系の合金系がよく知られているが、最近米国にお
いてさらに高強度を有する7090合金、7091合金
が開発されている。
High-strength aluminum base interest rate is 7000 series, 2
The 000 series alloy is well known, but recently in the United States, 7090 alloy and 7091 alloy, which have even higher strength, have been developed.

米国における高強度アルミニウム合金の用途は主に航空
機用であるが、航空機用アルミニウム合金に要求される
特性としては高弾性と高強度であり、それぞれ8500
 kg/mrl、60 kq/mrl 以上であること
が望ましい。しかしながら、現在市販のアルミニウム合
金には引張り強さが60 kg/mt/r前後と高いも
のもあるが弾性率は8001いd以下と鉄系材料の半分
以下で、さらにこれらは耐食性をかなり犠牲にしている
といわれている。このため高弾性率ヲ得るためにカーボ
ンやセラミック繊維、粒子の複合化や、Liの添加等の
試みがなされているが、い捷だ十分な実用化の段階に致
っていない。
In the United States, high-strength aluminum alloys are mainly used for aircraft, but the characteristics required of aluminum alloys for aircraft are high elasticity and high strength, each with a
kg/mrl, preferably 60 kq/mrl or more. However, some of the aluminum alloys currently on the market have a high tensile strength of around 60 kg/mt/r, but the modulus of elasticity is less than 8001 d, less than half that of iron-based materials, and these also sacrifice corrosion resistance considerably. It is said that For this reason, in order to obtain a high modulus of elasticity, attempts have been made to combine carbon, ceramic fibers, particles, and add Li, but these efforts have not yet reached the stage of practical use.

e→発明の開示 本発明はアルミニウム合金の特性を改善するために成さ
れたものであり、アルミニウム素地中にSI元素とFe
元素とCu元素とMg元素を添加することにより強度、
耐摩耗性、耐熱性の改善をはかる過程において共晶点付
近のSi濃度を含む合金は高い弾性率を有することを見
い出したものである。
e→Disclosure of the Invention The present invention was made to improve the properties of aluminum alloy, and contains SI element and Fe in the aluminum base material.
Strength by adding elements, Cu element, and Mg element,
In the process of improving wear resistance and heat resistance, it was discovered that an alloy containing a Si concentration near the eutectic point has a high elastic modulus.

本発明のアルミニウム合金の添加元素としてはSi元素
が重要であり、このSi元素の濃度は7.0重量%〜1
7.0重量%である。
Si element is important as an additive element for the aluminum alloy of the present invention, and the concentration of this Si element is 7.0% by weight to 1% by weight.
It is 7.0% by weight.

AI−旧糸合金状態図では11.7%Siが共晶点とな
つ1いるが、本合金のSi濃度はこの共晶点を含む±5
%以内となっている。本合金系においてSi量が15%
の場合、7係の場合には12Siの場合に比べ弾性率低
下する傾向があり高弾性率を得るにはSi元素の濃度が
共晶温度付近に近づくほど良い。
In the AI-old thread alloy phase diagram, 11.7%Si is the eutectic point1, but the Si concentration of this alloy is ±5 including this eutectic point.
It is within %. In this alloy system, the amount of Si is 15%
In the case of 7 modulus, the elastic modulus tends to be lower than that of 12Si, and in order to obtain a high elastic modulus, the closer the concentration of Si element is to the vicinity of the eutectic temperature, the better.

Fe元素は添加量が多いほど高弾性率を示す傾向にある
がFe元素が12重量%を越えると熱間での塑性加工性
(熱間鍛造性、熱間圧延性、熱間押出性)が著しく悪く
なるためFe元素は12重量%以下とする。
The Fe element tends to exhibit a higher elastic modulus as the amount added increases, but when the Fe element exceeds 12% by weight, the hot plastic workability (hot forgeability, hot rollability, hot extrudability) deteriorates. The Fe element content is set to 12% by weight or less, since it deteriorates significantly.

Mg、Cu元素は71−リツクスの析出強化をねらいと
するもので、それぞれ2重量%以下、65重量%以下と
する。
The Mg and Cu elements are intended to strengthen the 71-trix by precipitation, and are set at 2% by weight or less and 65% by weight or less, respectively.

Mgの添加量が多いと加工性が悪くなるため2%以下に
する。また、Cuの多量の添加は強度の著しい向上を示
さないばかりか、微細欠陥の発生を誘導するためのCu
の添加量は65重量%以下が好ましい。
If the amount of Mg added is too large, processability will deteriorate, so the amount of Mg added should be 2% or less. Moreover, addition of a large amount of Cu not only does not show a significant improvement in strength, but also adds Cu to induce the generation of micro defects.
The amount of addition is preferably 65% by weight or less.

本合金系のように多量のSi、Fe元素を含有するアル
ミニウム合金は従来の鋳造法による製造は非常に難しい
。この原因はSi、Fc元素のAβに対する固溶度は小
さいためで、AI素地中に多量のSi、Fe元素を添加
すると81とFCの粗大化した強固な初晶が生じ、これ
が合金の強度を著しくそこなうためである。
It is very difficult to manufacture aluminum alloys containing large amounts of Si and Fe elements, such as the present alloy system, by conventional casting methods. The reason for this is that the solid solubility of Si and Fc elements in Aβ is small, and when a large amount of Si and Fe elements are added to the AI matrix, coarse and strong primary crystals of 81 and FC occur, which increases the strength of the alloy. This is because it will cause significant damage.

このSi、Feの初晶を微細化する方法としてはP等を
微量添加する等の方法もあるが、溶湯の凝固時の凝固速
度を速くすることが非常に効果的である。この為にA1
合金溶湯を水または気体あるいはか、102に/S以」
二の凝固速度で凝固させ、合金とする。40メツシユ以
下の噴霧粉は凝固速度が102に78以上となるが、1
02I(78以上の速さで凝固した合金では10μ7n
以上の析出物は見られなくなり、徽軸均−組織となる。
Although there are methods for making the primary crystals of Si and Fe finer, such as adding a small amount of P, etc., it is very effective to increase the solidification rate during solidification of the molten metal. For this purpose A1
Adding molten alloy to water, gas, or 102/S
Solidify at two solidification speeds to form an alloy. Sprayed powder of 40 mesh or less has a solidification rate of 102 to 78 or more, but 1
02I (10μ7n for alloys solidified at a speed of 78 or more
The above precipitates are no longer seen, and a horizontally uniform structure is formed.

この様にして製造した粉末を熱間塑性加工(熱間押出し
、熱間鍛造)により合金材とすると、真密度比がほぼ1
00%の均−徽#Iな組織を有する合金材とすることが
できる。
When the powder produced in this way is made into an alloy material by hot plastic processing (hot extrusion, hot forging), the true density ratio is approximately 1.
It is possible to obtain an alloy material having a uniform structure of 0.00%.

このようにして得られたA1合金材は強度、耐熱性、耐
摩性ともに従来のA4合金に比べ非常に向上する。
The A1 alloy material thus obtained has significantly improved strength, heat resistance, and wear resistance compared to the conventional A4 alloy.

実施例 エアーアトマイズにより得られたAβ−8i Fe−C
u Mg糸100メツシュ以下の合金粉末を用いて、然
間押出利を製造し、合金相の特性について調査した。
Example Aβ-8i Fe-C obtained by air atomization
Using an alloy powder of 100 meshes or less of u Mg yarn, an extruded steel was produced, and the characteristics of the alloy phase were investigated.

押出は合金粉末を成形し缶につめたものを470゛Cで
約2時間加熱し押出比的7:1で行った。
Extrusion was carried out by heating the alloy powder molded into a can at 470°C for about 2 hours at an extrusion ratio of 7:1.

以上の様にして製造したfi、1−8i −Fe Cu
 −Mg系合金利別の特性を第1表に示す。比較拐とし
て鋳造法によシ製造した2014.7’075強力アル
ミニウム合金利の特性を同時に示す。
fi, 1-8i -Fe Cu produced as above
-Characteristics of Mg-based alloys by rate are shown in Table 1. As a comparative example, the characteristics of 2014.7'075 strong aluminum alloy produced by casting method are also shown.

弾性率の測定はゲージ法と超音波法によって測定したが
両者は良い一致を示した。
The elastic modulus was measured by the gauge method and the ultrasonic method, and both showed good agreement.

表1 アルミニウム合金材の特性 Aj7−3i−Fe系合金ばCuを45重量%、Mgを
1重量%含有している。
Table 1 Characteristics of aluminum alloy material Aj7-3i-Fe based alloy contains 45% by weight of Cu and 1% by weight of Mg.

表よりわかるように共晶濃度近傍である12重量%のS
lを含む合金は共晶濃度から離れた濃度である7重量%
、155重量%合金に比べ、高い弾性率を示している。
As can be seen from the table, 12% by weight of S, which is close to the eutectic concentration,
The alloy containing l has a concentration far from the eutectic concentration of 7% by weight.
, 155% by weight alloy shows a higher elastic modulus.

また同時に材料の引張強さ、硬度も高い値を示している
が、その他に耐摩耗性、耐熱性も良く、熱膨張も小さく
塑性加工性も良いものであった。
At the same time, the material showed high values for tensile strength and hardness, and also had good wear resistance and heat resistance, small thermal expansion, and good plastic workability.

以上示しだように共晶濃度のS1元素を含有するAI 
−’Si −Fe−Cu−Mg合金は機械的特性、熱的
特性、塑性加工性ともに良好であるだめ航空機用4f1
判、自動車用A−,=I料、精密機械部品用相和等今以
上の広い範囲へのA4合金の適用が可能であると思われ
る。
As shown above, AI containing the S1 element at a eutectic concentration
-'Si -Fe-Cu-Mg alloy has good mechanical properties, thermal properties, and plastic workability.
It is thought that the A4 alloy can be applied to a wider range of applications, such as A-, =I materials for automobiles, Aiwa for precision machinery parts, etc.

Claims (1)

【特許請求の範囲】 (+l 7. O型皿%〜17.0重量%のSi元素と
12重量%以下のFe元素を含有し、かつ2重量%以下
のMg元素と6.5重量%以下のCu元素を含有し残部
が実質的にAlからなシ、弾性率が8000 kg/m
d以上であることを特徴とする高弾性アルミニウム合金
。 +2] 7.0重量%〜170重量%の置元素と12重
量%以下のFe元素を含有し、かつ2重量%以下のMg
元素と65重量%以下のCu元素を含有し残部が実質的
にAlからなるアルミニウム合金であり、噴霧法によシ
、溶湯から製造した40メツシユ以下の粒度の粉末か、
捷だけ102に78以上で急速凝固させることによって
得られた粉末を熱間塑性加工法によって成形することを
特徴とする高弾性アルミニウム合金の製造方法。
[Claims] (+l 7. O-type plate containing % to 17.0% by weight of Si element and 12% by weight or less of Fe element, and 2% by weight or less of Mg element and 6.5% by weight or less Contains Cu element with the remainder being substantially Al, and has an elastic modulus of 8000 kg/m
A high modulus aluminum alloy characterized by having a modulus of d or more. +2] Contains 7.0% to 170% by weight of elemental elements and 12% by weight or less of Fe element, and 2% by weight or less of Mg
It is an aluminum alloy containing 65% by weight or less of the Cu element and the remainder substantially consisting of Al, and is a powder with a particle size of 40 mesh or less produced from molten metal by a spraying method,
1. A method for producing a highly elastic aluminum alloy, characterized in that powder obtained by rapid solidification at a 102 to 78 or higher temperature is formed by a hot plastic working method.
JP5649284A 1983-12-02 1984-03-23 High elasticity aluminum alloy and its manufacture Pending JPS60200945A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5649284A JPS60200945A (en) 1984-03-23 1984-03-23 High elasticity aluminum alloy and its manufacture
EP84114320A EP0144898B1 (en) 1983-12-02 1984-11-27 Aluminum alloy and method for producing same
DE8484114320T DE3481322D1 (en) 1983-12-02 1984-11-27 ALUMINUM ALLOYS AND METHOD FOR THEIR PRODUCTION.
BR8406132A BR8406132A (en) 1983-12-02 1984-11-30 ALUMINUM ALLOY AND PROCESS FOR YOUR PRODUCTION
US06/879,704 US4702885A (en) 1983-12-02 1986-06-27 Aluminum alloy and method for producing the same
US06/940,168 US4818308A (en) 1983-12-02 1986-12-10 Aluminum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5649284A JPS60200945A (en) 1984-03-23 1984-03-23 High elasticity aluminum alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPS60200945A true JPS60200945A (en) 1985-10-11

Family

ID=13028586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5649284A Pending JPS60200945A (en) 1983-12-02 1984-03-23 High elasticity aluminum alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS60200945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159344A (en) * 1987-09-22 1989-06-22 Kobe Steel Ltd Parts for retaining of working means in high speed and high accuracy shifter
JP2020037730A (en) * 2018-09-05 2020-03-12 トヨタ自動車株式会社 Aluminum alloy and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159344A (en) * 1987-09-22 1989-06-22 Kobe Steel Ltd Parts for retaining of working means in high speed and high accuracy shifter
JP2020037730A (en) * 2018-09-05 2020-03-12 トヨタ自動車株式会社 Aluminum alloy and method for producing the same

Similar Documents

Publication Publication Date Title
US4818308A (en) Aluminum alloy and method for producing the same
JPH03257133A (en) High strength heat resistant aluminum-based alloy
US3325279A (en) Aluminum-high silicon alloys
JP2703840B2 (en) High strength hypereutectic A1-Si powder metallurgy alloy
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPH0153342B2 (en)
EP0171798B1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
EP0668806B1 (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
JPS5914096B2 (en) Al-Si based vibration absorbing alloy and its manufacturing method
JPH0253501B2 (en)
US5833772A (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPS60200945A (en) High elasticity aluminum alloy and its manufacture
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPS60234936A (en) Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
JP2711296B2 (en) Heat resistant aluminum alloy
JPS60121203A (en) Manufacture of aluminum alloy material
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPS63307240A (en) High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS6157380B2 (en)
JPS63310937A (en) High strength heat resistant aluminum alloy member
JPS62188739A (en) Al alloy stock