JPS6020085A - Insertion work of heat pipe - Google Patents

Insertion work of heat pipe

Info

Publication number
JPS6020085A
JPS6020085A JP12817883A JP12817883A JPS6020085A JP S6020085 A JPS6020085 A JP S6020085A JP 12817883 A JP12817883 A JP 12817883A JP 12817883 A JP12817883 A JP 12817883A JP S6020085 A JPS6020085 A JP S6020085A
Authority
JP
Japan
Prior art keywords
container
heat pipe
liquid
expansion
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12817883A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP12817883A priority Critical patent/JPS6020085A/en
Publication of JPS6020085A publication Critical patent/JPS6020085A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To facilitate the insertion work by a method wherein a container is sealed after pipe-expanding liquid has been charged in said container of a heat pipe and inserted in a hollow metal pipe and, after that, the pipe-expanding liquid is heated up to the predetermined temperature. CONSTITUTION:A container 1 is sealed at its temporary sealing part 8 after pipe-expanding liquid 4-1 has been charged in the container 1 of a heat pipe. After that, the container 1 is inserted in a hollow metal pipe 5 and then the pipe-expanding liquid 4-1 is heated up to the predetermined temperature so as to expand the container 1 in order for the container 1 to be inserted to the hollow metal pipe 5. Due to the method as mentioned above, the similar adherence to the shrinkage fit between metals can be obtained with a simple operation and yet without employing any special device.

Description

【発明の詳細な説明】 本発明はヒートパイプの使用に際してその熱吸収部、放
熱部を被冷却体、被加熱体の挿接孔に挿接したり、又は
ヒートパイプと熱吸収部品や放熱部品を相互に挿接する
ヒートパイプの挿接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION When using a heat pipe, the present invention provides a method for inserting the heat absorbing portion and the heat dissipating portion into the insertion holes of the object to be cooled and the object to be heated, or connecting the heat pipe and the heat absorbing component or the heat dissipating component. The present invention relates to a method of inserting and connecting heat pipes to each other.

ヒートパイプは極めて熱抵抗の少ない優秀な熱伝達装置
ではあるがその使用に際してはその熱吸収部表面及び放
熱部表面を被冷却体、被加熱体に接着せしめて熱吸収又
は放熱せしめる必要がある。
A heat pipe is an excellent heat transfer device with extremely low thermal resistance, but when using it, it is necessary to adhere the surface of the heat absorption part and the surface of the heat radiation part to an object to be cooled or an object to be heated in order to absorb or radiate heat.

又その様な接触熱伝達によらない場合はヒー?1ドパイ
ブに吸放熱用フィンを挿着して熱媒流体を介して熱父換
を実施する。何れの場合もヒートパイプと被冷却体被加
熱体、又ヒートパイプとフィンを相互に接着する必要が
生ずるものである。又ヒートパイプの機械的強肝を増加
せしめる為・強靭な材質の中空管日にヒートパイプを挿
入接着せしめて使用する場合もある。それ等の接ツ8手
段としてはろう接や加圧接触に依る場合も用いられるが
最も一般的に実施される接着方法としては圧入又は挿入
に依る挿接法である。
Also, if it is not due to such contact heat transfer, is there heat? Heat absorbing and dissipating fins are inserted into the first pipe to perform heat exchange through the heat medium fluid. In either case, it is necessary to bond the heat pipe, the object to be cooled, and the object to be heated, or the heat pipe and the fins to each other. Also, in order to increase the mechanical strength of the heat pipe, the heat pipe is sometimes inserted and bonded into a hollow tube made of strong material. Although brazing or pressurized contact may be used as the bonding means, the most commonly used bonding method is an insertion method using press-fitting or insertion.

然しヒートパイプはその原理上から通常は薄肉の軟質付
属からなるA空容器で形成されであるので伝械的強度が
低く、大きな加圧力で圧入したり挿接したりすることが
困難であった。又ヒートパイプはその製造工程上通常は
その外形を精密に製作することが困難であり、又細心の
注意を払って精密な製作を実施した場合もその構造上か
ら変形を生じ易いものであった。それ等の塩山から従来
の挿接方法では挿接部に空気が残置され大きな熱抵抗を
生ずる例が多かった。その様な欠点を除く手段として一
般には挿接部間隙に低融点金属を溶融して注入する方法
、挿入の後被挿接体をm管加工して密着度を高める方法
や、ヒートパイプとして作動液を圧入する前の工程で尚
圧液体でコンテナを拡管せしめて密着度を尚める方法等
が採用されて来たものである。然しそれ等の挿接方法は
何れも作業上も独の特別な装置を必要とするばかりでな
く熟練を璧する作業であった。又ヒートパイプにフィン
群を挿接する場合、各フィンはヒートパイプの端末から
ヒートパイプ表面上を滑動せしめながら挿接するやめフ
ィンの挿接孔が拡大され易く強い慴庸度を得ることが困
難で接触熱抵抗の発生に欧ってフィン効率が低下する場
合が多かった。
However, due to its principle, a heat pipe is usually formed of an A-empty container made of a thin-walled soft attachment, so its mechanical strength is low, and it is difficult to press fit or insert the heat pipe with a large pressure. Furthermore, due to the manufacturing process of heat pipes, it is usually difficult to precisely manufacture the external shape of the heat pipe, and even if the heat pipe is manufactured precisely with great care, it is easily deformed due to its structure. . In many cases, conventional insertion and connection methods for these salt mines resulted in air remaining in the connection section, resulting in large thermal resistance. As a means to eliminate such defects, there are generally methods of injecting molten low-melting point metal into the gap between the insertion parts, a method of machining the welded object into an m-tube after insertion to increase the degree of adhesion, and a method of working as a heat pipe. A method has been adopted to improve the degree of adhesion by expanding the container with still-pressure liquid in the process before pressurizing the liquid. However, all of these insertion methods not only required special German equipment, but also required great skill. In addition, when inserting a group of fins into a heat pipe, each fin slides from the end of the heat pipe on the surface of the heat pipe, and the insertion holes of the fins tend to be enlarged, making it difficult to obtain strong efficiency and contact. In Europe, fin efficiency often decreased due to thermal resistance.

本発明は上述の如き各種の従来のヒートパイプの挿接方
法のあらゆる欠点を改善し、極めて簡単な操作で、又殆
んど何等の特別な装置を必要とせず、金属間の焼ばめと
同様な密層性を得ることのIJIJ能な新規なヒートパ
イプの挿接方法を提供ぜんとするものである。
The present invention improves all the shortcomings of the various conventional heat pipe insertion methods as described above, is extremely simple to operate, does not require any special equipment, and is capable of shrink fitting between metals. The present invention aims to provide a new method for inserting and connecting heat pipes that can achieve similar layer density.

ヒートパイプの挿接対照としてはその応用として無数に
近い被挿接体との組合わせが考えられるが本発明におい
ては中空管内にヒートパイプを挿接して1瓶靭な二mW
コンテナのヒートパイプを形成したり、回転軸内にヒー
トパイプを挿接して放熱性の良好な回転軸を形成する2
重管構造ヒートパイプ形成におけるヒートパイプの挿接
方法、及びヒートパイプの所定の部分に放熱フィン群を
形成する場合におけるフィンとヒートパイプの相互挿接
の2例に依って本発明に係るヒートノくイブの挿接方法
について図面によって詳述説明をする。
As for the connection of heat pipes, there are an almost infinite number of possible combinations of the objects to be inserted and connected, but in the present invention, the heat pipe is inserted into a hollow tube to generate a power output of 2 mW in one bottle.
Forming a heat pipe for a container or inserting a heat pipe into a rotating shaft to form a rotating shaft with good heat dissipation 2
The heat pipe according to the present invention will be explained based on two examples: a method for inserting and connecting heat pipes in forming a heat pipe with a multi-pipe structure, and a method for mutually inserting and connecting fins and a heat pipe when forming a group of radiation fins in a predetermined portion of a heat pipe. The method of inserting the eve will be explained in detail with reference to the drawings.

第1図、第2図、及び第3図は中空金属管内に対する本
発明に係るヒートパイプの挿接の手順を示し、第4図は
本発明に係るヒートパイプの挿接方法に依りヒートパイ
プの所定の部分に放熱用フィンの挿着を光子した状態を
示しである。各部分に付せられた番号は全図面共通であ
る。
1, 2, and 3 show the procedure for inserting a heat pipe according to the present invention into a hollow metal tube, and FIG. This figure shows the state in which heat dissipation fins are inserted into predetermined portions. The numbers assigned to each part are common to all drawings.

第1図は本発明に係るヒートパイプ挿接方法の準備段階
を示す断面図である。lはコンテナでヒートパイプとし
ての原理上から基本構造として薄肉中空金f4管からな
り、金属材料としては熱伝導性の良好な材料を用いるこ
とが原則である。従って銅、アルミニウム等が使用され
ることが多く他にステンレス、ニラグル等が用いられる
こともある。然し本来の目的である良好な熱伝導性を発
揮させる局には銅が最も望ましい。従って一般的にはコ
ンテナ1は展廷性に富むが機械的強度は低いものである
。本発明に係る挿接法においてはこの点を利用してコン
テナを拡管せしめて被挿接体の挿接部に加圧密層せしめ
る。2はコンテナ端縁部でこの部分は拡管作業時の変形
防止の為厚肉に形成されである。該端縁部を薄肉に形成
する必要がある場合は端縁を拡管作業時の拡管圧力に耐
えさせる為には:bROii形状に形成しておくことが
望ましい。
FIG. 1 is a sectional view showing a preparatory stage of the heat pipe insertion method according to the present invention. 1 is a container, and its basic structure as a heat pipe is a thin-walled hollow gold F4 tube, and as a general rule, a material with good thermal conductivity is used as the metal material. Therefore, copper, aluminum, etc. are often used, and stainless steel, Niraglu, etc. may also be used. However, copper is most desirable for the purpose of achieving good thermal conductivity. Therefore, in general, the container 1 has good exhibitability but low mechanical strength. In the welding method according to the present invention, this point is utilized to expand the container and form a pressurized dense layer at the welding portion of the welded object. Reference numeral 2 denotes the edge of the container, which is made thick to prevent deformation during pipe expansion work. If it is necessary to form the end edge portion thinly, it is desirable to form the end edge into the shape of:bROii in order to withstand the tube expansion pressure during tube expansion work.

3は作動液注入細管部で、コンテナ内に拡管用液体を注
入したり、作動液を注入したり、コンテナ内の非凝縮性
ガスを排出する為に使用する。4−1は拡貢用の所定の
数体であってコンテナ内に充満充填されである。該液体
の注入は作動液注入工程の前工程に実施するものでコン
テナの清浄化処理等は総べて光子した状態で実施する。
Reference numeral 3 denotes a hydraulic fluid injection thin tube section, which is used to inject a tube expansion liquid into the container, inject the hydraulic fluid, and discharge non-condensable gas inside the container. 4-1 is a predetermined number of objects for reinforcement, which are filled to the full in the container. Injection of the liquid is carried out before the step of injecting the working liquid, and cleaning of the container and the like are all carried out in the state of photons.

該液体は熱Jye脹係数の大きな液体を使用することが
望ましく又その完全除去が極めて容易で次の工程で実施
される作!1fI]液注入工程に支障のない液体が望ま
しい。該拡管用液体としては次工程で使用される作動液
を使用することが最も望ましいが後述する拡管条件に依
ってはそれが不可能な場合がある。
It is desirable to use a liquid with a large coefficient of thermal expansion as the liquid, and its complete removal is extremely easy and can be carried out in the next step. 1fI] A liquid that does not interfere with the liquid injection process is desirable. Although it is most desirable to use the hydraulic fluid used in the next step as the tube expansion liquid, this may not be possible depending on the tube expansion conditions described below.

8は注入細管の仮封止部であって拡管作業時における内
圧に充分耐える様気密に封止されである。
Reference numeral 8 denotes a temporary sealing portion of the injection capillary, which is airtightly sealed so as to sufficiently withstand the internal pressure during the tube expansion operation.

要するに第1図例示の本発明に係るヒートパイプ挿接方
法の準、備作業としては拡管用液体を充満光JM して
仮月止するだけの極めて単純な作業である。
In short, the preparatory work for the heat pipe insertion method according to the present invention illustrated in FIG. 1 is extremely simple, just filling the pipe with liquid for expanding the pipe and temporarily fixing it.

江入赦体として最も安全で安価なものは純水であり、形
15反すべきヒートパイプの作動液が純水である場合は
挿接光子俊のコンテナ清浄化処理が不必要となり単に余
剰作動液を排出するだけで良い利点がある。
The safest and cheapest source of water is pure water, and if the working fluid of the heat pipe to be used in the Type 15 is pure water, the container cleaning process of the insertion photon-shun is unnecessary and the excess operation is simply carried out. There are advantages to simply draining the liquid.

第2図はヒートパイプの挿接段1者を示す断面図である
。第1図の準備段階を光子したコンテナ1を中空金属管
5の中に挿入して全体を所定の温度迄加熱した状態であ
る。6はコンテナの長さ方向膨1&制限手段としてのス
トッパーである。拡管用液体の体膨張係数は一定である
からストッパー6で長さ方向の膨張を制限された液体は
直径方向の膨張が増加させられて中空金属管とコンテナ
の密着力が大巾に増加させられる。図に於ける矢印は拡
管用注入液体とコンテナ及び中空金属管の膨張率差に依
り発生する内圧を示しである。液体の膨張に依り発生す
る内圧は極めて強力で金属管体が拡管して内圧が解放さ
れない限り温度上昇と共に増加し超高圧状態となり、即
ちコンテナも金属管体も確実に液の膨張体積に至る迄拡
管されるに至る。従ってコンテナは中空金属管の耐圧力
に等しい圧力で中空金属管内壁に圧着一体化される。
FIG. 2 is a sectional view showing one of the heat pipe insertion stages. The container 1, which has undergone the preparation steps shown in FIG. 1, is inserted into the hollow metal tube 5 and the whole is heated to a predetermined temperature. Reference numeral 6 denotes a stopper as means for restricting expansion 1 in the longitudinal direction of the container. Since the coefficient of body expansion of the liquid for pipe expansion is constant, the expansion of the liquid in the longitudinal direction is restricted by the stopper 6, and the expansion in the diametrical direction is increased, thereby greatly increasing the adhesion force between the hollow metal pipe and the container. . The arrows in the figure indicate the internal pressure generated due to the difference in expansion coefficient between the tube expansion injection liquid, the container, and the hollow metal tube. The internal pressure generated by the expansion of the liquid is extremely strong, and unless the metal tube expands and the internal pressure is released, it will increase as the temperature rises and reach an ultra-high pressure state.In other words, the container and the metal tube will surely reach the expanded volume of the liquid. The tubes were expanded. Therefore, the container is crimped and integrated with the inner wall of the hollow metal tube at a pressure equal to the pressure resistance of the hollow metal tube.

液体の膨張は金属の膨張より充分に大きいので、挿入時
におけるコンテナの外径と中空全域管内径は軽い加圧力
で挿入出来る程度の間隙のある直径差に形成してあって
も全体を加熱すれば、液膨張はこの間隙を容易に消滅せ
しめ且つコンテナを中空金Am ”t!内壁に加圧接着
せしめることが可能である。コンテナ及び中空金属管の
材料は銅であるものとし、拡管用液体は純水とし、コン
テナ肉厚は計算簡略化の為無視して考えた場合、更に常
温20Cから加熱上昇湿層を100′Cとし、水の20
゛C〜1200間の平均体膨張係数を0.6 x 10
”−” D/C)即ち一近似的線膨張係数を0.2 X
 10−” [:1/C)即ち近似的線膨張係数を0.
2 X 10 [1/′C〕とした場合、直径20 u
nのコンテナ内の水の直径増大は20 rttsa x
O,2x’l0−x 100 = 0.’4IIsとな
る。コンテナ、及び金へ看内壁の直径増大は銅の線膨張
係数は(j、o 168 x ’10−3[1/C〕で
あるから20 +d X 010168X 10−” 
X 1 ’OO= 0.0336鶴に過ぎないので挿入
時の間隙を0.11/IJにした場合でもコンテナ内の
純水は間隙を消滅せしめた上更に0.27 r馴の拡管
に依り中空金属管内壁に圧接されることになる。
The expansion of liquid is sufficiently larger than that of metal, so even if the outer diameter of the container and the inner diameter of the entire hollow tube are formed to have a diameter difference that allows insertion with a light pressure, the entire container must be heated. For example, the expansion of the liquid can easily eliminate this gap, and the container can be pressure-adhered to the inner wall of the hollow metal tube.The material of the container and the hollow metal tube is copper, and the expansion liquid is pure water, and the container wall thickness is ignored to simplify calculations. Furthermore, if the heating rise moist layer is 100'C from room temperature 20C,
The average body expansion coefficient between ゛C and 1200 is 0.6 x 10
"-" D/C), that is, the approximate coefficient of linear expansion is 0.2
10-” [:1/C), that is, the approximate linear expansion coefficient is 0.
When 2 x 10 [1/'C], the diameter is 20 u
The diameter increase of water in a container of n is 20 rttsa x
O, 2x'l0-x 100 = 0. '4IIs. Increasing the diameter of the inner wall of the container and gold is due to the coefficient of linear expansion of copper being (j, o 168 x '10-3 [1/C], so 20 + d x 010168 x 10-"
X 1 'OO = only 0.0336 cranes, so even if the gap at the time of insertion is set to 0.11/IJ, the pure water in the container will not only eliminate the gap but also become hollow due to the tube expansion of 0.27 r. It will be pressed against the inner wall of the metal tube.

拡管挿着時の加圧力を更に増大せしめたり、挿入時の間
隙を更に大きくして作業を容易ならしめたい場合は拡管
用注入液体を膨張係数の更に大きな液体に変更するとよ
い。例えばメチルアルコ−# ハ体膨Ill 係i カ
20℃ニ:k イテ1.2 X 10−”[: 1/”
C〕近似的線膨張係数が0.4 X 10 C1/”C
〕と純水の2倍に達し、上記例のコンテナの直径増大ヲ
0.8びとすることが出来る。又このことは70℃程贋
の低い温度上昇でも能率的に拡管作業を実施することを
可能にする。
If it is desired to further increase the pressurizing force during tube expansion and insertion, or to further increase the gap during insertion to make the work easier, the injection liquid for tube expansion may be changed to a liquid with a higher expansion coefficient. For example, methyl alcohol # H body swelling Ill coefficient i F20℃ D: k ite 1.2 X 10-" [: 1/"
C] Approximate coefficient of linear expansion is 0.4 x 10 C1/”C
] is twice that of pure water, and the diameter of the container in the above example can be increased by 0.8 times. Moreover, this makes it possible to carry out the pipe expansion work efficiently even at a temperature rise as low as 70°C.

挿接作業時の温度上昇手段として、沸騰点以下の加熱水
に浸漬することは、加熱効率が高く、安全性も扁〈且つ
両生的でもあるので、液膨張オリ用のヒートパイプ挿接
方法を実施する手段として極めて望ましい手段である。
As a means of raising the temperature during insertion work, immersion in heated water below the boiling point has high heating efficiency, is safe, and is also amphibious, so we recommend a heat pipe insertion method for liquid expansion orifices. This is an extremely desirable means of implementation.

又温度上昇手段として加熱水を用いる場合でも水温を5
0 ”C以下で実施するこ♂が作業性の点で望まれる場
合が多い。又拡管液体を作画液と兼用してアンモニア液
を用いて実砲する場合、その飽和蒸気圧はi o o 
”cで60気圧にも達して作業が極めて危険なものとな
る。
Also, even when using heated water as a temperature raising means, the water temperature should be kept at 5.
In many cases, it is desirable to carry out the operation at a temperature below 0 ''C from the point of view of workability.Also, when ammonia liquid is used as the tube expansion liquid and the drawing liquid is used for actual firing, its saturated vapor pressure is i o o
``The pressure can reach as high as 60 atmospheres at C, making the work extremely dangerous.

この場合は上限温度を2501飽和蒸気圧上限を10気
圧以下位に制限して実施することが望ましい。これ等の
場合液体の初期温度を常温で実施すると温1敦変化不足
に依り充分な液膨張をさせることが不CiJ TJヒと
なる。この様な場合は拡管用液体を零点以下数10℃の
低温に冷却したものをコンテナ内に充満充填せしめるこ
とに依り充分な温度差を得ることが出来る。この様な低
温拡管用液体としては一般に低温用ヒートパイプ作動液
として用いラレルエチルアルコール、メチルアルコール
、フレオン、アンモニア等を使用することが望ましい。
In this case, it is desirable to limit the upper limit temperature to 2501 and the saturated vapor pressure to 10 atm or less. In these cases, if the initial temperature of the liquid is set to room temperature, sufficient liquid expansion will not be possible due to insufficient change in temperature. In such a case, a sufficient temperature difference can be obtained by filling the container with a tube-expanding liquid that has been cooled to a low temperature of several tens of degrees below zero. As such a liquid for low-temperature pipe expansion, it is desirable to use larylethyl alcohol, methyl alcohol, freon, ammonia, etc., which are generally used as a working fluid for low-temperature heat pipes.

これ等は挿接作業完了の後の排出及び清浄化が極めて容
易で充分な加熱のみで完全に除去することが可能な特徴
がある。又、アンモニア液は熱#脹係数が20 ’CI
C於イT−2,45x 10 C1/”C]と極めて大
きいので比較的小さな温度差で大きな挿接時加圧力を得
ることが出来る。
These materials have the characteristic that they are extremely easy to discharge and clean after the completion of the insertion work, and can be completely removed only by sufficient heating. Also, ammonia liquid has a thermal expansion coefficient of 20' CI
Since the C is extremely large, T-2, 45x 10 C1/''C], a large pressure during insertion can be obtained with a relatively small temperature difference.

更にこの様な低温度拡管液体を使用する場合はコンテナ
自身も大きく熱収縮するので、コンテナ外径は被挿接体
の挿接孔内径よりあまり小さく形成しておく必要が無く
、又挿接時に挿接孔内壁とコンテナ外壁間に発生する加
圧力は液体膨張とコンテナの金h4膨張との合力となり
極めて強力なものとなる。
Furthermore, when using such a low-temperature tube expansion liquid, the container itself will undergo significant heat shrinkage, so there is no need to make the outer diameter of the container much smaller than the inner diameter of the welding hole of the object to be welded. The pressurizing force generated between the inner wall of the insertion hole and the outer wall of the container is the resultant force of the liquid expansion and the gold H4 expansion of the container, and becomes extremely strong.

第3図はヒートパイプの挿接を完了した2重管中空金属
管の状態を示した断面図である。図において4−2 c
′iヒートパイプの作動液で、拡管用液体4−1を完全
に排出除去した後所定量の作動液が注人足量化されであ
る。9は封止部であり、前玉4,1において挿接完了の
後仮封止部8の封止を解除した後、コンテナ内に所定量
の作動液を注入した後溶接、ろう接等の手段で完全に封
止されである。前工程において充?a’j充填された拡
管用液体4−1に作動液が使用された場合は作動液注入
定量化作業では拡管用液体4−1の排出作業やコンテナ
内7#沖化作業は省略して、余分量の作動液を排出する
作業のみで第3図の2重管構造のヒートパイプは完成さ
せることが可能である。
FIG. 3 is a sectional view showing the state of the double hollow metal tube after the heat pipe has been inserted and connected. In the figure 4-2 c
'i After the pipe expansion liquid 4-1 is completely discharged and removed using the working fluid of the heat pipe, a predetermined amount of the working fluid is poured into the heat pipe. Reference numeral 9 is a sealing part, and after the insertion of the front balls 4 and 1 is completed, the temporary sealing part 8 is unsealed, a predetermined amount of hydraulic fluid is injected into the container, and then welding, brazing, etc. The device is completely sealed. Is it full in the previous process? a'j If hydraulic fluid is used for the filled pipe expansion liquid 4-1, the work of discharging the pipe expansion liquid 4-1 and the 7# offshore work in the container will be omitted in the hydraulic fluid injection and quantification work. The double-tube structure heat pipe shown in FIG. 3 can be completed by simply discharging the excess amount of working fluid.

第4図は本発明に係るヒートパイプの挿接方法を応用し
てヒートパイプコンテナの所にの部分1−2に747群
5を挿接した状態を示す一部断面図である。この場合は
コンテナの所足の部分1−2のみを拡管させることに依
り全体を拡管させる場合よりも1−2の部分の拡管率を
増大せしめて実施した例を示しである。図では既に拡管
用液体4−1は排出されであるが、充満充填された液体
が加熱膨張する場合は拡管を制限された部分1−1内の
作動液のj彪脹相当量の液体は1−2部分に移動してこ
の部の管径拡大率を倍増させることが出来る。コンテナ
の1−1部分の拡管防止手段としてはこの部分のコンテ
ナ肉厚を厚くするか、1−2部分の肉厚を薄くして本発
明を実施すると拡管作用は1−2部分に集中的に発生さ
せることが出来る。然しこの場合も1−1部分も若干の
拡管が生じるので完全に1−1部の拡管を防止するため
には第4図に例示の如き拡管防止手段7を用いる必要が
ある。図においては分離可能な構造の金型をコンテナ1
−1部分に被せて拡管防止手段としている。一般にフィ
ン群の挿着はコンテナの一端から挿接孔付フィンを順次
圧入して実施する。
FIG. 4 is a partial sectional view showing a state in which the 747 group 5 is inserted into the portion 1-2 of the heat pipe container by applying the heat pipe insertion method according to the present invention. In this case, an example is shown in which by expanding only the necessary portion 1-2 of the container, the expansion rate of the portion 1-2 is increased compared to the case where the entire container is expanded. In the figure, the pipe expansion liquid 4-1 has already been discharged, but if the filled liquid is heated and expanded, the amount of liquid equivalent to the amount of working fluid in the part 1-1 where pipe expansion is restricted will be 1. By moving to the -2 section, the tube diameter expansion rate of this section can be doubled. As a means to prevent pipe expansion in the 1-1 portion of the container, if the present invention is carried out by increasing the container wall thickness in this portion or thinning the wall thickness in the 1-2 portion, the tube expansion action will be concentrated in the 1-2 portion. It can be generated. However, in this case as well, a slight expansion occurs in the 1-1 section, so in order to completely prevent the tube expansion in the 1-1 section, it is necessary to use a tube expansion prevention means 7 as illustrated in FIG. 4. In the figure, a mold with a separable structure is shown in container 1.
-1 section is used as a means to prevent tube expansion. Generally, the insertion of the fin group is carried out by sequentially press-fitting the fins with insertion holes from one end of the container.

この場合コンテナ外周面を各フィンは滑動せしめて所定
の位置に移動させる必要がある。ヒートノ(イブ外径は
あまり精密に加工されていない点、平板フィンが多少な
り共鵠斜した場合フィンの挿接孔が変形する。又、フィ
ンの材質は熱伝達を良好にする為一般的には薄肉銅板、
薄肉アルミ板等が用いられコンテナ表面を滑動する際に
変形し易すい。これらの点から従来のフィン挿着方法で
は確実且つ強い密着強度での挿着は困難であった。
In this case, each fin must be moved to a predetermined position by sliding on the outer peripheral surface of the container. Heat nozzle (The outer diameter of the fin is not processed very precisely, and if the flat plate fins are slightly tilted, the fin insertion hole will be deformed. Also, the material of the fin is generally used to improve heat transfer.) is a thin copper plate,
Thin aluminum plates are used and are easily deformed when sliding on the surface of the container. From these points, it has been difficult to insert fins reliably and with strong adhesion strength using conventional fin insertion methods.

然し本発明に係る挿接方法に依って挿接されたゲインは
夫々の所定の位置にフィン群を位置決めした後にコンテ
ナを拡管せしめ強力に密着せしめるのでフィンは確実強
固に密着挿着され、接カ虫熱抵抗が極めて小さく尚性能
のフィン群を容易な作業手順で形成することが出来る。
However, the gain inserted by the insertion method according to the present invention expands the container after positioning the fin groups at their respective predetermined positions and makes the container tightly fit, so the fins are firmly and tightly inserted and the connection is secured. A group of fins with extremely low insect heat resistance and high performance can be formed by a simple work procedure.

金属コンテナと被挿接体との金属材料が異なり、コンテ
ナの熱膨張係数の方が被挿接体の熱膨張係数より大きい
場合、両者を加熱温度上昇せしめて圧接挿着せしめた場
合、高温で一旦圧接した場合でも常温に復帰せしめた場
合、コンテナの収縮率が大きく、両者の挿接が弛緩して
しまう場合がある。この様な場合の対策としては被挿接
体の挿接部を弾性構造に形成し、コンテナの拡管はその
弾性限界内にとどめ、且つコンテナの収縮時にも直径が
その弾性限界内にある様に実施する。実例としてはフィ
ンの挿接孔にバーリング加工を施し、コンテナの膨張、
収縮時の外径変化をバーリング部の弾性限界内にとどめ
る様実施する如くである。
If the metal container and the object to be inserted are made of different metal materials, and the coefficient of thermal expansion of the container is greater than that of the object to be inserted, if the two are heated to a high temperature and then pressure-welded, it will not work at high temperatures. Even if they are once pressure-welded, when the container is returned to room temperature, the shrinkage rate of the container is large, and the connection between the two may become loose. As a countermeasure in such a case, the insertion part of the object to be inserted is formed into an elastic structure so that the expansion of the container is kept within its elastic limit, and the diameter remains within its elastic limit even when the container contracts. implement. As an example, burring is applied to the insertion hole of the fin to prevent expansion of the container.
This is done so that the change in outer diameter during contraction is kept within the elastic limit of the burring part.

又池の対策としてC1拡青用注入液体として低温用液体
を用いてコンテナ内に充満充填する場合の液温を0′C
以下にして拡管挿接温度を常温以下に制限して実施する
In addition, as a countermeasure against ponding, when filling the container with a low-temperature liquid as the injection liquid for C1 expansion, the liquid temperature should be set to 0'C.
The pipe expansion and insertion temperature is limited to below room temperature as follows.

又更に他の対策としてはコンテナと被挿接体の間に半田
合金の如き軟質金属の薄膜を介在せしめて本発明に係る
ヒートパイプの挿接方法を実施し、膨張加圧力に依りコ
ンテナ外表面と被挿接体の挿接孔内壁を相互に完全に圧
冶せしめる様にして一体化せしめ、常温に於いてコンテ
ナ収縮時の弛緩を防止する。
Furthermore, as another measure, a thin film of soft metal such as solder alloy is interposed between the container and the object to be inserted, and the heat pipe insertion method according to the present invention is implemented, and the outer surface of the container is The inner walls of the insertion hole and the insertion hole of the object to be inserted and welded are completely pressed against each other to prevent loosening when the container is contracted at room temperature.

各図に例示したと一ドパイブの断面図ではウィックが図
示されず省略されであるが本発明に係るヒートパイプの
挿接方法はウィックの有無に係わらず同様に実施するこ
とが出来る。但しコンテナ内壁の拡大に応じて、ウィッ
クもそのif径を拡大させる必要があるのでウィックと
コンテナ内壁が接着又は一体化されである型のヒートパ
イプでは問題ないが、ウィック支持体の弾性に慎ってコ
ンテナ内壁面にウィックが押圧されて支持されである凰
のヒートパイプの場合はコンテナ内壁の拡大に対応して
ウィックを押し拡げるのに充分な弾性を有する材質の支
持体を使用しておく必要がある。
Although the wick is not shown in the cross-sectional views of the single dopipe illustrated in each figure, the heat pipe insertion method according to the present invention can be carried out in the same manner regardless of whether or not there is a wick. However, as the inner wall of the container expands, the diameter of the wick also needs to expand, so a type of heat pipe in which the wick and the inner wall of the container are bonded or integrated is not a problem, but caution should be taken with the elasticity of the wick support. In the case of a heat pipe in which the wick is supported by being pressed against the inner wall of the container, it is necessary to use a support made of a material with sufficient elasticity to push and expand the wick in response to the expansion of the inner wall of the container. There is.

上述した如く本発明に係るヒートパイプの挿接方法は極
めて簡単な作業方法で、又特別高価な装置をも治工具を
も必要とせず、確実な挿着が可能な挿接方法であると云
うことが出来る。特にフィンの挿接方法としては一枚一
枚のフィンを圧入する従来方法に対して弛みあるがん合
で多数のフィンを挿入して位置決めし、コンテナの拡大
で一括して一挙に圧接挿接する本方法は、挿接力の強度
増大、複雑高価なフィン圧入装置の省略等を可能にする
だけでなく、フィンを圧入する必要がないのでフィン平
板の圧入の為の強度を考慮する必要がない。従ってフィ
ンの肉厚を大巾に薄くすることが可能となり、冷却風圧
の低下防止、挿着可能なフィン枚数の増加に依る伝熱面
積の増加等多くの作用効果があり画期的な改善をするこ
とが出来る。
As mentioned above, the heat pipe insertion method according to the present invention is an extremely simple working method, does not require any particularly expensive equipment or jigs, and is an insertion method that allows reliable insertion. I can do it. In particular, the fin insertion method is different from the conventional method of press-fitting each fin one by one, by inserting and positioning a large number of fins with a loose fit, and press-fitting them all at once by enlarging the container. This method not only makes it possible to increase the strength of the insertion force and omit a complicated and expensive fin press-fitting device, but also eliminates the need to consider the strength for press-fitting the fin flat plate since it is not necessary to press-fit the fins. Therefore, it is possible to significantly reduce the thickness of the fins, which has many effects such as preventing a drop in cooling air pressure and increasing the heat transfer area by increasing the number of fins that can be inserted, resulting in revolutionary improvements. You can.

4、図面の1“パ)単な説明 第1図から第4図は本発明にをかるヒートパイプの挿接
方法を示すもので、第1図から第3図は本発明にかかる
ヒートパイプの挿接手順を示す断面図、第4図はヒート
パイプにフィン群を挿接した状態を示す一部断面図であ
る。
4. 1"P of the drawings) Simple explanation FIGS. 1 to 4 show the method of inserting and connecting the heat pipe according to the present invention, and FIGS. 1 to 3 show the method of inserting and connecting the heat pipe according to the present invention. FIG. 4 is a sectional view showing the insertion procedure, and FIG. 4 is a partial sectional view showing the state in which the fin group is inserted into the heat pipe.

1・・・コンテナ、2・・・コンテナ端縁部、3・・・
作動液注入細管部、4−1・・・拡管用液体、4−2・
・・作動液、5・・・中空金属管、6・・・ストッパ、
7・・・拡管防止手段、8・・・仮封止部、9・・・封
止部。
1... Container, 2... Container edge, 3...
Working fluid injection thin tube section, 4-1...Liquid for tube expansion, 4-2.
... Hydraulic fluid, 5... Hollow metal tube, 6... Stopper,
7... Tube expansion prevention means, 8... Temporary sealing part, 9... Sealing part.

Claims (1)

【特許請求の範囲】 (1) ヒートパイプを所定の被挿接体に挿入装接「る
ヒートパイプの挿接方法であって、ヒートパイプの製造
工程における作動液の定量注入工程の前工程において、
ヒートパイプのコンテナ内に作動液注入作業に悪影響を
及はさない所定の液体を所定の低温度を保ちつ\充満充
填せしめた俊該コンテナを仮に封止し、該コンテナの所
定の部分を被挿接体の挿接部に挿入したる後、所定の手
段に依って、被挿接体とコンテナ及びコンテナ内の充満
液体を所定の温度迄上昇せしめて熱膨張せしめ、該液体
の熱膨張率とコンテナ及び被挿接体の熱膨張率の差に依
りコンテナを拡管せしめると共にコンテナを被挿接体の
挿接部民に加圧挿接すしめ、然る後コンテナの仮の封止
を解除し、所定の工程に依り充填液体を排除し、続いて
所定の作動液注入工程に依り所定量の作動液を注入して
コンテナを封止することを特徴とするヒートパイプの挿
接方法。 (2、特許請求の範囲第1項に記載のヒートパイプの挿
接方法において、コンテナ内に光4’ti4光填せしめ
る所定の液体としてはヒートパイプ製造の工程で定量注
入すべき作動液を用いるものとし、最終工程における作
動液注入工程においては充満充填されである作動液の余
分量を排除し定量化せしめることに依り実施するもので
あることを特徴とするヒートパイプの挿接方法。 (3) 特許請求の範囲第1項に記載のヒート−パイプ
の挿接方法において、ヒートパイプコンテナが長さ方向
に伸長することを防止する長さ方向膨張制限手段を併用
して実施することを特徴とするヒートパイプ挿接方法。 (4)特許請求の範囲第1項に記載のヒートパイプの挿
接方法において、ヒートパイプコンテナの拡管を必要と
しない部分に拡管防止手段を設けて実施することを特徴
とするヒートパイプの挿接方法。 (5) QJF許請求の範囲第1項に記載のヒートパイ
プの挿接方法において、ヒートパイプコンテナの押接部
分は非挿接部より相対的に薄肉に形成して実施すること
を特徴とするヒートパイプの挿接方法。 (6)特許請求の範囲第1項に記載のヒートパイプの挿
接方法においてコンテナ内に充満充填せしめる拡管用液
体を零度以下の所定の低温度に冷却して注入して実施す
ることをvj徴とするヒートパイプの挿接方法。
[Scope of Claims] (1) A method for inserting and mounting a heat pipe into a predetermined object to be inserted, the method comprising: inserting and mounting a heat pipe into a predetermined object to be inserted; ,
The heat pipe container is temporarily filled with a specified liquid that does not adversely affect the working fluid injection work while maintaining a specified low temperature, and a specified portion of the container is covered. After the object is inserted into the insertion part of the insertion object, the object to be inserted, the container, and the liquid filled in the container are heated to a predetermined temperature by a predetermined means to cause thermal expansion, and the coefficient of thermal expansion of the liquid is adjusted. The container is expanded due to the difference in thermal expansion coefficient between the container and the object to be inserted, and the container is pressurized to the insertion part of the object to be inserted, and then the temporary seal of the container is released. A method for inserting and connecting a heat pipe, characterized in that the filling liquid is removed in a predetermined step, and then a predetermined amount of hydraulic fluid is injected in a predetermined hydraulic fluid injection step to seal the container. (2. In the heat pipe insertion method described in claim 1, the predetermined liquid for filling the container with 4'ti4 lights is a working fluid that is to be injected in a fixed amount in the process of manufacturing the heat pipe. A heat pipe insertion method characterized in that the final process, which is the hydraulic fluid injection step, is carried out by eliminating and quantifying the excess amount of the hydraulic fluid that has been filled. (3) ) The method for inserting and connecting heat pipes as set forth in claim 1 is characterized in that the heat pipe container is carried out in combination with longitudinal expansion limiting means for preventing the heat pipe container from elongating in the longitudinal direction. (4) The heat pipe insertion method according to claim 1, characterized in that the method is carried out by providing a tube expansion prevention means in a portion of the heat pipe container that does not require tube expansion. (5) In the heat pipe insertion method described in QJF Claim 1, the pressed portion of the heat pipe container is formed to be relatively thinner than the non-inserted portion. (6) In the heat pipe insertion method according to claim 1, the tube expanding liquid to be fully filled into the container is heated to a predetermined temperature below zero. A heat pipe insertion method characterized by cooling the heat pipe to a low temperature and then injecting the heat pipe.
JP12817883A 1983-07-14 1983-07-14 Insertion work of heat pipe Pending JPS6020085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12817883A JPS6020085A (en) 1983-07-14 1983-07-14 Insertion work of heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12817883A JPS6020085A (en) 1983-07-14 1983-07-14 Insertion work of heat pipe

Publications (1)

Publication Number Publication Date
JPS6020085A true JPS6020085A (en) 1985-02-01

Family

ID=14978343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12817883A Pending JPS6020085A (en) 1983-07-14 1983-07-14 Insertion work of heat pipe

Country Status (1)

Country Link
JP (1) JPS6020085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106978A (en) * 1991-10-18 1993-04-27 Hitachi Cable Ltd Manufacture of heat pipe system heat exchanger
JP2012220108A (en) * 2011-04-08 2012-11-12 Kiko Kagi Kofun Yugenkoshi Heat dissipation device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106978A (en) * 1991-10-18 1993-04-27 Hitachi Cable Ltd Manufacture of heat pipe system heat exchanger
JP2012220108A (en) * 2011-04-08 2012-11-12 Kiko Kagi Kofun Yugenkoshi Heat dissipation device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4083093A (en) Multiple material solar panel and method and apparatus for manufacturing the same
US3769674A (en) Method for producing heat pipes
TWI329184B (en) Vapor chamber and manufacturing method thereof
CN106482562B (en) A kind of spliced space multi-branch distribution heat pipe and preparation method thereof
CN104226870B (en) A kind of cladding method of the hip moulding for aluminum-stainless steel composite pipe
CN102331203A (en) Heat pipe applied to brake pad and production method thereof
US6883220B2 (en) Method for forming a tube-walled article
JPS6020085A (en) Insertion work of heat pipe
CN116697789A (en) Metamaterial-based heat pipe structure and processing method
CN111660025A (en) Sealing welding method for multi-cavity type temperature-equalizing plate
CN111486727A (en) Temperature equalizing plate
US7275409B1 (en) Method for manufacturing a heat pipe having an enlarged portion
CN1936480A (en) Heat pipe enclosuring structure, enclosuring method and heat pipe
CN108801019B (en) Phase change heat transfer element with multilayer liquid absorption core structure and manufacturing method thereof
JPH0218195B2 (en)
JP2541056B2 (en) Method of manufacturing heat pipe type heat exchanger
JPH04124591A (en) Heat pipe heat exchanger and manufacturing method of the same
JPH07106478A (en) Boiling and cooling apparatus and its manufacture
CN109729703B (en) Heat sink and method for manufacturing the same
TWI787749B (en) Heat dissipation structure, manufacturing method of the heat dissipation structure, and device
JPH04220130A (en) Manufacture of heat exchanger
CN216632934U (en) Ceramic metal sealing manufacturing device based on brazing
CN218511555U (en) Heat pipe structure with corrosion resistance and insulation
CN219914135U (en) Large-diameter heat pipe with welded sealing tail
US20150113807A1 (en) Manufacturing method of heat pipe structure