JPS60200847A - Manufacture of alpha type hemihydrate gypsum - Google Patents

Manufacture of alpha type hemihydrate gypsum

Info

Publication number
JPS60200847A
JPS60200847A JP5879084A JP5879084A JPS60200847A JP S60200847 A JPS60200847 A JP S60200847A JP 5879084 A JP5879084 A JP 5879084A JP 5879084 A JP5879084 A JP 5879084A JP S60200847 A JPS60200847 A JP S60200847A
Authority
JP
Japan
Prior art keywords
ceracola
type
temperature
gypsum
type hemihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5879084A
Other languages
Japanese (ja)
Inventor
鋤本 峻司
修二 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5879084A priority Critical patent/JPS60200847A/en
Publication of JPS60200847A publication Critical patent/JPS60200847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は改良されたα型半水セツコウの製造方法、さら
に詳しくいえば、開放型容器中において三水セラコラを
水蒸気と接触させて、経済的有利にα型手水セッコウに
変換する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improved method for producing α-type hemihydrate, more specifically, an economically advantageous method for producing α-type hemihydrate by contacting sanmizu ceracola with steam in an open container. It concerns a method of converting it into gypsum.

半水セラコラには、結晶構造は極めて類似しているが、
水の結合状態や結晶の外形が異なシ、かつその水利特性
が著しく異なるα形とβ型が存在する。第1表に、α型
半水セッコウとβ型半水セツコウにおけろ水和特性の相
違についてその1例を示す。
Although the crystal structure is extremely similar to hemihydrate Ceracola,
There are α and β types, which have different water binding states and crystal external shapes, and have significantly different water usage characteristics. Table 1 shows an example of the difference in hydration properties between α-type hemihydrate gypsum and β-type hemihydrate gypsum.

第1表 この表から分るように、α型半水セツコウはβ型半水セ
ッコウに比べて少ない混水量で使用され、かつ凝結時間
も短かく、しかも得られた凝結体は極めて強度が大きい
という特徴を有している。したがって、α型半水セツコ
ウは、β型半水セツコウがセラコラボード、塗装用プラ
スター、陶磁器型材などに用いられているのに対し、主
として歯科用精密賦形型用や鋳造用鋳型接合材などに使
用されている。
Table 1 As can be seen from this table, α-type semi-hydrated gypsum is used with a smaller amount of water than β-type semi-hydrated gypsum, has a shorter setting time, and the resulting aggregates are extremely strong. It has the following characteristics. Therefore, while the β-type semi-hydrated polyester is used for Ceracola boards, plasters for painting, ceramic molds, etc., the α-type polyester is mainly used for precision molds for dentistry and mold bonding materials for casting. has been done.

このα型半水セツコウは、従来、オートクレーブ中にお
いて、通常径2〜3αの塊状二水セツコウを温度120
〜140℃、水蒸気圧2〜4気圧の条件で5〜8時間処
理する加圧水蒸気法、オートクレーブ中において、粉末
状三水セラコラを水溶液中で温度120〜140℃、圧
2〜4気圧の条件下1〜4時間処理する加圧水溶液法、
粉末状三水セラコラを常圧下、硫酸塩、塩酸塩、アンモ
ニウム塩などの無機塩水溶液中において、該水溶液の沸
点に近い温度で処理する常圧水溶液法などの方法によっ
て製造されている。
Conventionally, this α-type semi-hydrated slag is produced by heating a block of dihydrated slough with a diameter of 2 to 3α at a temperature of 120°C in an autoclave.
A pressurized steam method in which the treatment is carried out for 5 to 8 hours at a temperature of ~140°C and a water vapor pressure of 2 to 4 atm. In an autoclave, powdered Ceracola trihydrate is treated in an aqueous solution at a temperature of 120 to 140°C and a pressure of 2 to 4 atm. Pressurized aqueous solution method, treated for 1 to 4 hours;
It is produced by a method such as a normal pressure aqueous solution method in which powdered Ceracola trihydrate is treated under normal pressure in an aqueous solution of an inorganic salt such as a sulfate, hydrochloride, or ammonium salt at a temperature close to the boiling point of the aqueous solution.

しかしながら、前記の加圧水蒸気法や加圧水溶液法にお
いては、耐圧容器を必要とするため工業的方法として不
利であシ、また常圧水溶液法においては、耐圧容器を必
要としないものの、無機塩を用いるためコスト的に不利
であり、しかも廃水問題が生じるという欠点があって、
これらの方法は必ずしも満足しうるものではなかった。
However, the pressurized steam method and the pressurized aqueous solution method require a pressure-resistant container, which is disadvantageous as an industrial method, and the normal-pressure aqueous method does not require a pressure-resistant container, but uses inorganic salts. Therefore, it is disadvantageous in terms of cost, and it also has the disadvantage of causing wastewater problems.
These methods were not always satisfactory.

ところで、加圧水蒸気法及び加圧水溶液法におけるα型
手水セッコウの生成機構についてtj、従来、三水セラ
コラがまず液体水又は飽和水蒸気の存在下で溶解して過
飽和状態を呈し、次に高温で安定なα型手水セッコウが
析出するという、いわゆる溶解析出機構が定説となって
いる。また無機塩水溶液中で処理する常圧水溶液法にお
いても、加圧水蒸気法や加圧水溶液法と同様に、三水セ
ラコラがまず溶解し、次にα型半水セッコウが析出する
という溶解析出機構に基づいたものであるが、α型半水
セッコウの析出温度、すなわち転移温度が無機塩の存在
で100°C以下に低下するため、常圧においてもα型
半水セッコウがその転移温度以上であれば、無機塩水溶
液中で安定に存在しうるとされている。
By the way, regarding the production mechanism of α-type hand water gypsum in the pressurized steam method and the pressurized aqueous solution method, conventionally, Sansui Ceracola first dissolves in the presence of liquid water or saturated steam to exhibit a supersaturated state, and then becomes stable at high temperatures. The so-called elution precipitation mechanism, in which α-type hand-washing gypsum is precipitated, has become a well-established theory. Similarly to the pressurized steam method and the pressurized aqueous solution method, the normal pressure aqueous solution method, in which treatment is carried out in an aqueous inorganic salt solution, is based on the dissolution precipitation mechanism in which trihydrate ceracola is first dissolved and then α-type hemihydrate gypsum is precipitated. However, since the precipitation temperature, that is, the transition temperature, of α-type hemihydrate gypsum decreases to below 100°C in the presence of inorganic salts, even at normal pressure, if α-type hemihydrate gypsum is above its transition temperature, It is said that it can exist stably in an aqueous inorganic salt solution.

このように、α型半水セッコウの生成は、従来の6方法
とも溶解析出機構に基づくとされており、したがって、
α型半水セッコウの生成には、液体水又は飽和水蒸気の
存在が必要であると考えられていた。
In this way, the production of α-type hemihydrous gypsum is said to be based on the dissolution precipitation mechanism in all six conventional methods, and therefore,
It was thought that the presence of liquid water or saturated steam was required for the production of α-type hemihydrous gypsum.

本発明者らは、α型半水セッコウを経済的に有利に製造
する方法について鋭意研究を重ねた結果、驚くべきこと
に、開放型容器中において水蒸気の存在下で三水セラコ
ラを処理することによりα型半水セツコウが容易に得ら
れることを見出し、この知見に基づいて本発明を完成す
るに至った。
As a result of extensive research into an economically advantageous method for producing α-type hemihydric gypsum, the present inventors surprisingly discovered that it was possible to process trihydric gypsum in the presence of water vapor in an open container. The inventors have found that α-type hemihydrate can be easily obtained, and have completed the present invention based on this knowledge.

すなわち、本発明は、開放型容器中において、三水セラ
コラを、分圧600〜7601111H9の水蒸気の存
在下、温度110〜150℃で処理することを特徴とす
るα型半水セッコウの製造方法を提供するものである。
That is, the present invention provides a method for producing α-type hemihydrate gypsum, which is characterized by treating trihydrate ceracola in an open container at a temperature of 110 to 150°C in the presence of steam with a partial pressure of 600 to 7601111H9. This is what we provide.

本発明方法において、原料として用いる三水セラコラは
化学式〇 a S Q4°2H20で示され、このもの
には天然セラコラと、合成又は副生によって得られる化
学セラコラとがある。天然セラコラには無色透明板状結
晶の透セッコウ、純白微細な結晶の雪化セラコラ、絹糸
光沢の繊維セラコラ、その細葉片状、粒状、生状のもの
がある。一方、化学セラコラには、例えばリン酸セッコ
ウ、チタンセラコラ、フン酸セッコウ、あるいは重油の
脱硫や排煙脱硫などによって得られるセラコラなどの副
生セラコラ、及び合成セラコラがある。
In the method of the present invention, the trihydric ceracola used as a raw material is represented by the chemical formula 〇 a S Q4°2H20, which includes natural ceracola and chemical ceracola obtained by synthesis or by-product. Natural ceracola includes transparent gypsum, which is colorless and transparent plate-like crystals, glaucoma ceracola, which is pure white fine crystals, fibrous ceracola, which has a silky luster, and its leafy, granular, and raw forms. On the other hand, chemical ceracola includes, for example, phosphoric acid gypsum, titanium ceracola, fluoric acid gypsum, by-product ceracola such as ceracola obtained by desulfurization of heavy oil or flue gas desulfurization, and synthetic ceracola.

本発明方法においては、これらの三水セラコラいずれも
用いることができ、また使用に当っては塊状でも粉末状
でもよいし、乾燥状態であっても、湿潤状態であっても
よい。
In the method of the present invention, any of these three-hydroceracola can be used, and it may be used in either lump or powder form, dry state, or wet state.

本発明の特徴は、前記の三水セラコラを塊状又71( は粉末状にして開放型容器に入れ、該二次セラコラを分
圧300〜760mrttHjjの水蒸気を用いて11
0〜150°Cの温度範囲で処理する点にある。処理温
度が110℃未満ではα型半水セッコウが生成しにくく
、処理に長時間を要して実用的でなく、一方150°C
を超えると得られた手水セラコラ中にβ型が多く含まれ
好ましくない。水蒸気の分圧が10011M Hg未満
では、α型半水セッコウは生成しにくく、β型半水セン
コウが多く生成する。なお、開放型容器中で処理を行う
ため、水蒸気の分圧は760mMHgを超えることはな
い。処理時間は水蒸気の分圧及び処理温度に左右される
が、一般に1〜240時間程度である。
A feature of the present invention is that the above-mentioned Sansui Ceracola is made into a lump or powdered form and placed in an open container, and the secondary Ceracola is heated to 11% using water vapor at a partial pressure of 300 to 760 mrttHjj.
The point is that the process is carried out in a temperature range of 0 to 150°C. If the treatment temperature is less than 110°C, α-type semi-hydrated gypsum is difficult to form and the treatment takes a long time, making it impractical;
If it exceeds 50%, the resulting hand water ceracola will contain a large amount of β type, which is not preferable. When the partial pressure of water vapor is less than 10011 M Hg, α-type hemihydrate gypsum is difficult to produce, and β-type hemihydrate gypsum is produced in large amounts. Note that since the treatment is carried out in an open container, the partial pressure of water vapor does not exceed 760 mmHg. The treatment time depends on the partial pressure of water vapor and the treatment temperature, but is generally about 1 to 240 hours.

また、処理方法については、例えば水蒸気発生装置と連
通している処理容器に塊状又は粉末状の三水セラコラを
入れ、・水蒸気の分圧が所望の値になるように水蒸気発
生装置の加熱温度を調節し、かつ所望の処理温度になる
ように該処理容器を加熱することによって処理する方法
、あるいは塔式の処理容器に塊状又は粉末状の工水セラ
コラを充填し、−力水蒸気の分圧が所望の値になるよう
に水蒸気発生装置で水蒸気を発生させ、該水蒸気を空気
や窒素ガスなどを用いて担送し、このものを処理の温度
に加熱して該処理容器に導入することによ多処理する方
法などを用いることができる。
In addition, regarding the treatment method, for example, a lump or powdered Sanhydric Ceracola is placed in a processing container communicating with a steam generator, and the heating temperature of the steam generator is adjusted so that the partial pressure of the steam becomes the desired value. There is a method in which the treatment vessel is heated to a desired treatment temperature, or a tower-type treatment vessel is filled with bulk or powdered industrial water Ceracola, and the partial pressure of water vapor is adjusted to a desired temperature. By generating water vapor with a water vapor generator to reach the desired value, transporting the water vapor using air or nitrogen gas, heating this vapor to the processing temperature, and introducing it into the processing container. A multi-processing method can be used.

このようにして得られたα型半水セツコウは六方晶系で
あり、その水和して得られた凝結体は極めて強度及び硬
度が太きいために、歯科用精密賦形型用や鋳造用鋳接合
材などに用いられる。
The α-type hemihydrate obtained in this way has a hexagonal crystal system, and the aggregate obtained by hydration has extremely high strength and hardness, so it can be used for precision molding for dentistry and for casting. Used for casting joint materials, etc.

本発明方法によると、従来のα型半水セツコウの製法の
ように耐圧容器や無機塩水溶液を用いる必要がなく、し
たがって経済的に有利であシ、かつ廃水問題などが生ぜ
ず、本発明方法は実用的価値の高いものである。
According to the method of the present invention, there is no need to use a pressure-resistant container or an aqueous inorganic salt solution unlike the conventional method for producing α-type hemihydrate, and therefore it is economically advantageous and does not cause waste water problems. is of high practical value.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、得られた半水セラコラ中のα型のものの含有量は
次の方法に従ってめた。
The content of α type in the obtained hemihydrate Ceracola was determined according to the following method.

すなわち、α型半水セツコウ(六方晶系)は190°C
近辺に、またβ型手水セツコウ(六方晶系)は650℃
近辺に斜方晶系への転移点が存在するため、得られた半
水セラコラを200°Cの温度で24時間加熱してX線
回折によシ斜方晶系への転移率を測定し、この値よりα
型半水セツコウの含有量をめた。
In other words, the α-type hemihydrate crystal (hexagonal system) is 190°C.
Nearby, β-type chezumi settsukou (hexagonal crystal system) is 650℃
Since there is a transition point to the orthorhombic system in the vicinity, the obtained hemihydrate Ceracola was heated at a temperature of 200°C for 24 hours and the transition rate to the orthorhombic system was measured by X-ray diffraction. , from this value α
The content of the mold half-water settsukou was calculated.

実施例1 装置として、1oocc枝付フラスコの上部に玉入冷却
管(長さ5ocm)を取シ付け、一方該フラスコの枝の
先にアダプター及びナス型フラスコを取υ付け、開口部
を該フラスコ上部の冷却管のみとしたものを用いた。
Example 1 As an apparatus, a ball cooling tube (length 5ocm) was attached to the top of a 10cc flask with branches, and an adapter and an eggplant-shaped flask were attached to the tip of the flask's branches, and the opening was inserted into the flask. The one with only the upper cooling pipe was used.

枝付ンラスコに約50 ccの水と沸騰石を入れ、枝の
先のナス型フラスコには約2ccの水が入った5cc容
器と約1ogの三水セラコラ粉末を入れた。この装置の
玉入冷却管の冷却部のみを外部に出し、その他の部分は
すべて乾燥器(40×40X40CIn、100V、1
01’、)中に入れ、ナス型フラスコ内が所定の温度に
なるように、乾燥器の温度を調節した。なお、ナス型フ
ラスコ内の温度は、予め封入している熱電対によシ測定
した。
About 50 cc of water and a boiling stone were put into a flask with a branch, and a 5 cc container containing about 2 cc of water and about 1 og of trihydric ceracola powder was put into an eggplant-shaped flask at the end of the branch. Only the cooling part of the ball cooling tube of this device is exposed to the outside, and all other parts are placed in a dryer (40 x 40 x 40 CIn, 100 V, 1
01'), and the temperature of the dryer was adjusted so that the inside of the eggplant-shaped flask reached a predetermined temperature. The temperature inside the eggplant-shaped flask was measured using a thermocouple sealed in advance.

また、乾燥器内の温度はナス型フラスコ内の温度よシ約
10〜15°C高いため、枝付フラスコ内の水は常に沸
騰状態にあシ、したがって系内の水蒸気圧は加熱温度の
変化にかかわらず、常に760mm1−Jを保持してい
る。
In addition, the temperature inside the dryer is about 10 to 15°C higher than the temperature inside the eggplant-shaped flask, so the water in the side flask is always in a boiling state, so the water vapor pressure in the system changes with the heating temperature. Regardless, it always maintains 760 mm1-J.

このようにして得られた半水セラコラ中のα型及びβ型
半水セッコウの含有割合をめ、その結果を第2表に示す
The content ratios of α-type and β-type hemihydrate gypsum in the hemihydrate ceracola thus obtained are calculated, and the results are shown in Table 2.

実施例2 実施例1で用いた装置と同じものを用い、該装置の板付
フラスコ部とナス型フラスコ部全別々の乾燥器に入れて
実験?行った。
Example 2 An experiment was conducted using the same equipment as used in Example 1, and placing the flask part with plate and the eggplant-shaped flask part in separate dryers. went.

ナス型フラスコ部の乾燥器は、該ナス型フラスコ内の温
度が110〜130 ℃の湿度になるように調節し、−
万板付フラスコ部の乾燥器は、水蒸気分圧が500mm
HIFになるように調節した。
The dryer in the eggplant-shaped flask section is adjusted so that the temperature and humidity inside the eggplant-shaped flask are 110 to 130°C, and -
The dryer in the flask section with plate has a water vapor partial pressure of 500 mm.
Adjusted to be HIF.

このようにして得られた半水セラコラ中のα型及びβ型
半水セツコウの含有割合全求め、その結果を第3表に示
す。
The total content ratio of α-type and β-type hemihydrate in the hemihydrate ceracola thus obtained was determined, and the results are shown in Table 3.

第 3 表 注2)温度はナス型フラスコ内の温度である。Table 3 Note 2) Temperature is the temperature inside the eggplant-shaped flask.

Claims (1)

【特許請求の範囲】[Claims] 1 開放型容器中において、三水セラコラを分圧300
〜760 flmHllの水蒸気の存在下、温度110
〜150℃で処理することを特徴とするα型半水セツコ
ウの製造方法。
1 In an open container, bring Sansui Ceracola to a partial pressure of 300
Temperature 110 in the presence of ~760 flmHll water vapor
1. A method for producing α-type hemihydrate snail, characterized by processing at ~150°C.
JP5879084A 1984-03-26 1984-03-26 Manufacture of alpha type hemihydrate gypsum Pending JPS60200847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5879084A JPS60200847A (en) 1984-03-26 1984-03-26 Manufacture of alpha type hemihydrate gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5879084A JPS60200847A (en) 1984-03-26 1984-03-26 Manufacture of alpha type hemihydrate gypsum

Publications (1)

Publication Number Publication Date
JPS60200847A true JPS60200847A (en) 1985-10-11

Family

ID=13094364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5879084A Pending JPS60200847A (en) 1984-03-26 1984-03-26 Manufacture of alpha type hemihydrate gypsum

Country Status (1)

Country Link
JP (1) JPS60200847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084791A (en) * 2015-08-17 2015-11-25 太原理工大学 Device and method for producing semi-hydrated gypsum nanometer material for 3D printing
CN105481275A (en) * 2015-12-23 2016-04-13 盐城市富仕环保科技有限公司 System and method for producing building gypsum by using industrial desulfation by-product gypsum
CN111003723A (en) * 2019-12-18 2020-04-14 武汉工程大学 Method for preparing α -hemihydrate gypsum by using chemical gypsum and α -hemihydrate gypsum prepared by using method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043096A (en) * 1973-08-20 1975-04-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043096A (en) * 1973-08-20 1975-04-18

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084791A (en) * 2015-08-17 2015-11-25 太原理工大学 Device and method for producing semi-hydrated gypsum nanometer material for 3D printing
CN105481275A (en) * 2015-12-23 2016-04-13 盐城市富仕环保科技有限公司 System and method for producing building gypsum by using industrial desulfation by-product gypsum
CN111003723A (en) * 2019-12-18 2020-04-14 武汉工程大学 Method for preparing α -hemihydrate gypsum by using chemical gypsum and α -hemihydrate gypsum prepared by using method
CN111003723B (en) * 2019-12-18 2021-06-15 武汉工程大学 Method for preparing alpha-semi-hydrated gypsum by using chemical gypsum and alpha-semi-hydrated gypsum prepared by same

Similar Documents

Publication Publication Date Title
Zürz et al. Autoclave‐free formation of α‐hemihydrate gypsum
CN106431032B (en) Microwave preparation method of α -calcium sulfate hemihydrate
JPS6287406A (en) Production of beta-tricalcium phosphate
JP2002536288A (en) Method for producing hydraulic binder based on hard gypsum III or α-type hard gypsum and hydraulic binder obtained by the method
JPS60200847A (en) Manufacture of alpha type hemihydrate gypsum
JPS6081051A (en) Manufacture of coal ash solidified body
Kurczyk et al. Paper III-S13. Concerning the Hydration Products of CS and B-C₂S
ATE129690T1 (en) SEDIMENTATION-STABLE SOLID SUSPENSIONS AND THEIR PRODUCTION AND USE.
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
US2209754A (en) Self-set magnesium carbonate composition and method of effecting setting thereof
JPH07291616A (en) Production of crystalline calcium silicate hydrate
DE3879849D1 (en) METHOD FOR HYDRATING HALF HYDRATE GYPSUM.
KR100587915B1 (en) Method for producing calcium sulfate alpa-hemihydrate from FGD gypsum by microwave
JPS565317A (en) Preparation of calcium silicate or complex of calcium silicate with gypsum
JPS61295233A (en) Production of alpha-type hemihydrate gypsum
JPS6024064B2 (en) Hollow filling material and composite material using the hollow filling material
JPS5934646B2 (en) Method for producing fibrous inorganic filler
JPS55162426A (en) Manufacture of alpha-type hemihydrate gypsum
JPS61151011A (en) Production of carbonic acid-containing hydroxy apatite
JPS6182899A (en) Caking material for sludge
Schwartz Chemical and physical properties of investment
JPS63100006A (en) Process for preparation of calcium phosphate and composite body thereof
JPH02188455A (en) Production of anhydrous gypsum
Liu et al. Study on hydrothermal synthesis dynamics of xonotlite spherical particles
UA145600U (en) METHOD OF EVALUATION OF PLASTER QUALITY