JPS60200178A - Earth resistance meter - Google Patents

Earth resistance meter

Info

Publication number
JPS60200178A
JPS60200178A JP5669884A JP5669884A JPS60200178A JP S60200178 A JPS60200178 A JP S60200178A JP 5669884 A JP5669884 A JP 5669884A JP 5669884 A JP5669884 A JP 5669884A JP S60200178 A JPS60200178 A JP S60200178A
Authority
JP
Japan
Prior art keywords
earthing
power source
resistance
transformer
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5669884A
Other languages
Japanese (ja)
Inventor
Tsugio Kato
次男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YONSHIN DENKI KK
Original Assignee
YONSHIN DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YONSHIN DENKI KK filed Critical YONSHIN DENKI KK
Priority to JP5669884A priority Critical patent/JPS60200178A/en
Publication of JPS60200178A publication Critical patent/JPS60200178A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separately measure the earthing resistance of an individual steel tower without generating the error based on the exciting current of a transformer, by using a square wave AC power source as an apply power source and eliminating the transformer not positive to a pulse current from a circuit. CONSTITUTION:The earthing resistor RA of a resistor R1 and an earthing electrode A to be measured and the earthing resistor RB of a first auxiliary electrode B are connected to a square wave power source 4' in series. The output voltage of the resistor R1 is applied to an amplifier 5 and one terminal of the rheostat 6 in the secondary outlet side thereof is connected to an earthing electrode A to be measured. In this state, formula I is formed. Earthing resistance RA can be indirectly calculated from the formula by R2. By this mechanism, the first auxiliary electrode B and a second auxiliary electrode C can be brought to a capacitive electrode sufficient to be merely layed to the surface of the ground. Further, the earthing resistance of a individual steel tower can be measured separately.

Description

【発明の詳細な説明】 従来の接地抵抗計を大別すると、第2図に示すように、
正弦波交流電源(以下単に、交流電源■とする)■から
変圧器■の1次巻線をとおして被測定接地極■に?[流
11■を流し、その2次側端子に出力抵抗■を接続して
これにか・る電圧と、被測定接地極■の接地抵抗RA■
にが・る電圧とを比較して、その抵抗値RA■をめる所
謂零位法によるものと、第3図に示すように、単一ステ
ップ電圧のを被測定接地極に加えて、その接地抵抗RA
■の両端に現われる電圧から所望の値をめる、単一パル
ス印加法とがある。
[Detailed Description of the Invention] Conventional earth resistance meters can be roughly classified as shown in Figure 2.
From the sine wave AC power supply (hereinafter simply referred to as AC power supply ■) ■ to the ground electrode to be measured ■ through the primary winding of the transformer ■? [Flow 11■ is applied and the output resistor ■ is connected to its secondary terminal, and the voltage applied thereto and the grounding resistance RA■ of the grounding electrode to be measured ■
As shown in Figure 3, a single step voltage is applied to the ground electrode to be measured, and the Earth resistance RA
There is a single pulse application method in which a desired value is calculated from the voltage appearing at both ends of (2).

しかし前者においては回路中に変圧器が介在しているた
め a)Ilh磁電流による誤差が生ずる b)変圧器の励磁特性が非線形であるため、印加電源と
してパルス電源が使用できずパルス電源を使用する上で
の種々の特典が得られない又後者第3図に示す電圧測定
形の接地抵抗計では、電源が単一パルスであるため C)測定が煩雑となる。
However, in the former case, since a transformer is interposed in the circuit, a) an error occurs due to the Ilh magnetic current, and b) the excitation characteristics of the transformer are nonlinear, so a pulse power source cannot be used as the applied power source, and a pulse power source is used. In the latter case, the voltage measurement type earth resistance meter shown in FIG. 3 does not provide various advantages in terms of measurement, and C) measurement becomes complicated because the power source is a single pulse.

d)単一パルスによって被測定接地極の接地抵抗に現わ
れる電圧を直接測定する方法であるから、メータ賦勢の
ために高電圧の電源が必要となり、そのために測定器が
大形、大重責、高価となる。
d) Since this method directly measures the voltage appearing in the grounding resistance of the grounding electrode to be measured using a single pulse, a high-voltage power supply is required to energize the meter, which requires a large measuring instrument, heavy burden, and It becomes expensive.

e)第1補助極■の接地抵抗Ra■が過大である場合、
所望の単一ステップ電流を得ることが難かしく、誤差を
生ずる。
e) If the grounding resistance Ra■ of the first auxiliary pole ■ is excessive,
Obtaining the desired single step current is difficult and introduces errors.

等々の火照がある。There is a flash of light.

この発明は印加電源として方形波交流電源を使用し、且
つこのようなパルス電流に能動的でない変圧器を回路中
から削除して、上述した従来の欠点を一挙に解決するこ
とを目的とする。
The present invention uses a square wave alternating current power source as an applied power source, and eliminates a transformer that is not active for such pulsed currents from the circuit, thereby solving the above-mentioned conventional drawbacks at once.

以下この発明を図面にもとずいて詳細に説明するに、第
1図において、抵抗R■と被測定接地極のの接地抵抗ゐ
■に第1補助極■の接地抵抗R5■を直列にして方形波
交流電源φに接続し、抵抗R■の出力電圧を増中器■に
加え、その2次出口側の加減抵抗器■の1端を被測定接
地極のに接続し、加減抵抗器■のスライド中間端子と、
被測定接地極■と第1補助極■の中間点に位する第2補
助極Ωとの間に電位差計■■を接続して、加減抵抗器■
を調整して電位差計■■の指示値が零となる点図 をめる。しかるときは同骨より I + RA = I xR2・・・・・・1)、’、
RA = R2・I2/TI=R2・+・・・・・・1
′)但し R2:加減抵抗器■の接地端子とスライド中
間端子の間の抵抗値 となりR2によって間接的に接地抵抗RAをめることが
できる。こ\に方形波交流のパルスrIJはtoooμ
S以上としなければならない。
The present invention will be explained in detail below with reference to the drawings. In Fig. 1, the grounding resistance R5 of the first auxiliary pole is connected in series with the resistor R and the grounding resistance of the grounding electrode to be measured. Connect to the square wave AC power supply φ, apply the output voltage of the resistor R to the multiplier ■, connect one end of the rheostatic resistor ■ on the secondary outlet side to the ground electrode to be measured, and connect the rheostatic resistor ■ a sliding intermediate terminal,
Connect the potentiometer ■■ between the grounding electrode to be measured ■ and the second auxiliary pole Ω located at the midpoint of the first auxiliary pole ■, and connect the rheostatic resistor ■
Adjust and draw a dot diagram where the indicated value of the potentiometer ■■ becomes zero. In such a case, from the same bone, I + RA = I x R2...1),',
RA = R2・I2/TI=R2・+・・・・・・1
') However, R2: This is the resistance value between the grounding terminal of the rheostatic resistor (2) and the slide intermediate terminal, and the grounding resistance RA can be indirectly set by R2. Here, the square wave AC pulse rIJ is toooμ
Must be S or higher.

本願はまず、従来の零位法(第2図)における変圧器に
換えて上述の如く増「11器を使用するものであるから a)変圧器の励磁電流にもとずく誤差がない。
First of all, since the present invention uses the above-mentioned 11 transformer in place of the transformer in the conventional zero-level method (FIG. 2), a) there is no error based on the excitation current of the transformer;

b)印加電源としてパルス電源が使用できる。b) A pulsed power source can be used as the applied power source.

又パルス電源を使用しているから b−1)第1補助極■および第2補助極Oを大地表面に
単に敷復する丈で事足りるキャパシティブな電極とする
ことが可能となる。
Furthermore, since a pulse power source is used, b-1) the first auxiliary pole (2) and the second auxiliary pole (O) can be made into capacitive electrodes that can be simply laid down on the ground surface.

b−2)従来の単なる交流電源による測定器では、例え
ば送電鉄塔等のように各接地抵抗がグランドワイヤーで
一体となっている様なものにあっては、個々の鉄塔の接
地抵抗を個別に測定することは不可能であったが、本願
はパルス電源となっているからこれが可能となる。
b-2) With conventional measuring instruments that simply use an AC power supply, for example, in cases where each ground resistance is integrated with a ground wire, such as in a power transmission tower, it is possible to measure the ground resistance of each tower individually. Although it was impossible to measure it, this is possible because the present invention uses a pulsed power source.

更に本願は単一パルスでなく、方形波交流としているか
ら C)従来の交流電源による方法と同様、零位法による測
定法が採用でき測定器が簡単となる。
Furthermore, since the present invention uses a square wave alternating current instead of a single pulse, C) a measurement method based on the zero position method can be adopted, similar to the conventional method using an alternating current power source, and the measuring instrument can be simplified.

d)単一パルス法に比較して電源電圧が低く、小形、軽
量、廉価となる。
d) Compared to the single pulse method, the power supply voltage is lower, and the method is smaller, lighter, and cheaper.

等々の特徴が生ずる。etc. characteristics occur.

以下この発明のこのような特徴を個々に具体的に説明す
ると a)については 第2図において変圧器2次側電流■をI、とすると、1
次側電流I、■は、 It”Io+1.’ =Io+nIz ”曲2)但し 
I。:変圧器の励磁電流 I′、:変圧器の2次側電流I2に対する1次側の補償
電流 n:2次側巻数/1次側巻数 又本図においても上述の第1図で説明したと同様 1)
式が成立するがら 2)式を代入してR4=R212/
I+ =R2・口・(1+1゜/I 、) ・・・・・・1″
)一方第2図において、電源電圧をeとするとe = 
61+1 + (RA+ R11) −−3)I8.+
 (RA+Ra)−f(el) −・・−・・3’)こ
・に e、:変圧器づの一次側電圧 f(eI):(= I l>−cありelの正函数3)
式においてeは一定であるから、これは(R4十R8)
が大きければelは小さくなることを意味する。所でe
lに対するl0tI’1lIlの関係は、変圧器の励磁
特性I0が第4図の様に非線形となる所からe、が極め
て小さい領域においては、10ハ′、の比は逆に極めて
大軽くなる事を予測することがで軽る。
Below, these features of the present invention will be explained in detail individually. Regarding a), in Fig. 2, if the transformer secondary current ■ is I, then 1
The next-side current I,
I. : Excitation current I' of the transformer, : Compensation current n of the primary side for the secondary current I2 of the transformer: Number of turns on the secondary side/number of turns on the primary side. Also in this figure, as explained in Figure 1 above. Same 1)
While the formula holds true, 2) Substitute the formula and get R4=R212/
I+ =R2・mouth・(1+1゜/I,) ・・・・・・1″
) On the other hand, in Fig. 2, if the power supply voltage is e, then e =
61+1 + (RA+ R11) --3) I8. +
(RA+Ra)-f(el) -...--3') e,: Primary side voltage of transformer f(eI): (=I l>-c, positive function of el 3)
Since e is constant in the formula, this is (R4 + R8)
If is large, it means that el is small. e at the place
The relationship of l0tI'1lIl to l is that, since the excitation characteristic I0 of the transformer is nonlinear as shown in Figure 4, in the region where e is extremely small, the ratio of 10H' becomes extremely small. It is easy to predict.

従って第1補助極■の接地抵抗も■が極めて大きい場合
にはeIが小さくなり、それに従ってIo/I’+の比
は極めて大きくなることからこれを1″)に代入すれば
、&は大きくなる。
Therefore, if the ground resistance of the first auxiliary pole ■ is also extremely large, eI will be small, and the ratio of Io/I'+ will be extremely large accordingly, so if this is substituted for 1''), & will be large. Become.

つまり、この上うな従来の測定器によれば、一定である
べき接地抵抗RAも、第1補助極0の接地抵抗R@■の
値によって大きく左右されることを余儀なくされるので
ある。
In other words, according to such a conventional measuring device, the ground resistance RA, which should be constant, is forced to be largely influenced by the value of the ground resistance R@■ of the first auxiliary pole 0.

L′ を使用しているから、1″)式に於いて(■。置ヨ(ク
リイ町 I0)となり、馬のイ鴨に関ぜずRAは一定となる。
Since L' is used, in the 1'') equation, (■.Okiyo (Kurii Town I0)) is used, and RA is constant regardless of the horse's position.

b) について 又第2図において印加すべき電源を交流電源■に換えて
方形波パルス電源とすると、変圧器■′の一次側から見
たインピーダンスは方形波の波頭部では極めて商くなり
、従って上述の理由で電流1.は極めて小さくなるから
、1″)式における接地抵抗心は方形波の全領域で一定
値を得ることは難しくなる。一方本願は第1図の如く変
圧器に換えて増中器を使用しているからこの様なトラブ
ルは生じない。
Regarding b), if the power source to be applied in Fig. 2 is replaced with an AC power source ■ and a square wave pulse power source, the impedance seen from the primary side of the transformer ■' becomes extremely quotient at the wave head of the square wave. Therefore, for the reasons mentioned above, the current 1. is extremely small, so it is difficult to obtain a constant value for the ground resistance core in equation 1'' over the entire square wave region.On the other hand, in this application, a multiplier is used instead of a transformer as shown in Figure 1. Because of this, problems like this do not occur.

b−1)について 第3図の様に単一パルス電圧を印加して電圧V■を測定
する方法では、図において11補助極■の接地抵抗を網
状のキャパシティブ接地へ■にすると、これは第5図の
様になり電流I、■は次式のようになる。
Regarding b-1), in the method of applying a single pulse voltage and measuring the voltage V■ as shown in Figure 3, if the grounding resistance of the 11 auxiliary pole ■ is connected to the net-like capacitive ground in the figure, this becomes As shown in Fig. 5, the current I and ■ are as shown in the following equation.

但し P:演算子 E:パルス電圧波高値 単一パルス印加時のこの様な方法では、後述のd)につ
いて、の説明の項でも述べる様に電流11■を一定と見
なして電圧Vを測定し ■1へ=■ ・・・・・・5) として間接的にRAをめるものであるが、このためには
4)式において (R+ R,I)+1/PC店(R十R,) ・・・・
・・6)となることが必要となる。
However, P: Operator E: Pulse voltage peak value In this method when applying a single pulse, the voltage V is measured assuming that the current 11■ is constant, as described in the explanation section for d) below. ■ To 1 = ■ ・・・・・・5) RA can be indirectly calculated as・・・・・・
...6).

所で、この方法では印加電圧が単一ステップ電圧である
から、その波頭部ではRを17Pc、lに対して充分大
きく選ぶことは可能であり、6)式が成立し、4)式が
成立し、5)式が成立する。
By the way, in this method, since the applied voltage is a single step voltage, it is possible to select R sufficiently large with respect to 17Pc, l at the wave front, and equation 6) holds, and equation 4) becomes This holds true, and formula 5) holds true.

つまりこの方法では単一パルス波の波頭部において正し
い値を得るのである。
In other words, this method obtains the correct value at the wave front of a single pulse wave.

以上は単一パルス印加時の方法である第3図について述
べたが、零位法であるmi図についても同様である。
The above description has been made regarding FIG. 3, which is the method when applying a single pulse, but the same applies to the mi diagram, which is the zero position method.

しかし従来の如く単なる交流電源を使用する方法では1
 / PCdj’極めて大きくなり、6)式は成立せず
従って5)式も成立しなくなる。
However, in the conventional method of using a simple AC power supply, 1
/ PCdj' becomes extremely large, so that equation 6) does not hold, and therefore, equation 5) also does not hold.

b−2)について 上述の様1こ電源としてパルス電源を使用する場合は、
パルス波頭部で接地抵抗ゐの正しい値が得られることを
述べた。
Regarding b-2), when using a pulse power source as the power source as mentioned above,
It has been stated that the correct value of ground resistance can be obtained at the head of the pulse wave.

送電線鉄塔等のように多数の塔脚接抗(RA・R2・瓜
′・・・)が716図の様に、グランドワイヤーを通し
て並列に接続されている場合は、一般にはその接地抵抗
はそれらの合成値として測定されるのが普通である。し
かしパルス電圧を印加して測定する本願等では例えば図
中&を測定する場合パルス電圧波が亀からR′Aの間を
往復する時間までの間であるパルス波頭部において測定
を終息すればRA丈の真値が得られることとな9す、上
述のパルス印加時において波頭部で正しい値が得られる
と言う不法の内容に合致する。
When a large number of tower leg connections (RA, R2, 瓜'...) such as a transmission line tower are connected in parallel through a ground wire as shown in Figure 716, the ground resistance is generally It is usually measured as a composite value of However, in the present application, etc., where pulse voltage is applied and measured, for example, when measuring & in the figure, if the measurement is terminated at the head of the pulse wave, which is the time when the pulse voltage wave travels back and forth between the turtle and R'A. This means that the true value of the RA length can be obtained, and this conforms to the illegal content that the correct value can be obtained at the wave head when applying the pulse described above.

C) について 本願は電源として方形波交流を使用するのであるから、
通常の交流電源を使用する場合と同様零位法が適用でき
測定器が簡単となる。
Regarding C), since this application uses square wave alternating current as the power source,
The zero point method can be applied in the same way as when using a normal AC power supply, and the measuring instrument can be simplified.

なお単一パルス法による場合精度を上げるために繰返し
測定する必要が生じることもあるがこの様な場合、大地
中に空間電荷が生じ、かえって測定誤差となることがあ
る。電源を交流とすることはこのためにも必要である。
Note that when using the single pulse method, it may be necessary to repeat measurements in order to improve accuracy, but in such cases, space charges may be generated in the ground, which may even lead to measurement errors. For this reason, it is also necessary to use alternating current as the power source.

d) について 単一パルス法では第3図において流れる電流I。d) Regarding In the single pulse method, the current I flowing in FIG.

は一定と見なして5)式で述べる様に1.RA=Vを測
定し、間接的にRAの値をめると言うものであるが、1
1については本牛揄図ではここで上述のように、電流I
tを(R4+RB)の如何に関せず見掛上一定となるご
とくするためにはR)(RA+R8) の如くRを極めて大きな値としなければならない、一方
Rを大きくすれば■、は小さくなりめる測定値(1,R
A=V)も小さくなるから、これをメータの測定範囲に
おくために7)式中の電圧Eを大きくしなければならな
くなり、測定器は大形、大重量、高価となることをまぬ
がれない。
Assuming that is constant, 1. It is said to measure RA=V and calculate the value of RA indirectly, but 1
1, in this cow diagram, as mentioned above, the current I
In order to make t apparently constant regardless of (R4+RB), R must be set to an extremely large value, as shown in R)(RA+R8). On the other hand, if R is increased, ■ becomes smaller. Measured value (1, R
Since A=V) also becomes smaller, in order to bring it within the measurement range of the meter, the voltage E in equation 7) must be increased, and the measuring instrument inevitably becomes larger, heavier, and more expensive. .

本願は方形波交流を使用した零位法によるものであるか
らこの様な欠点がない。
The present invention does not have such drawbacks because it uses a zero-level method using square wave alternating current.

本願は上述のように、零位法による接地抵抗計ル において変圧器を増1+器に換疋交流電源を方形波交流
とすることによって、従来の接地抵抗計である零位法に
よるものと単一パルス印加法によるもののそれぞれの欠
点を一挙に取払い、長所史を助長せしめる特徴がある。
As mentioned above, the present application is capable of making a ground resistance meter using the zero method by converting the transformer into an intensifier and changing the AC power source to a square wave AC. It has the feature of eliminating all the drawbacks of the one-pulse application method at once and promoting the advantages.

即ち 1) 変圧器の励磁時、性にもとずく誤差がない2) 
第1補助極及び第2補助極としてキャパシティブな網状
接地板を使用することができる。これは従来の大地を掘
削して補助極とする方法にかわるものであり、アスファ
ルト舗装されている市街地の電柱等に適用して便利であ
る。
That is, 1) There is no gender-based error when energizing the transformer 2)
A capacitive mesh ground plate can be used as the first auxiliary pole and the second auxiliary pole. This is an alternative to the conventional method of excavating the ground to make auxiliary poles, and is convenient for application to asphalt-paved utility poles in urban areas.

3) 砂礫層又は岩盤地帯等においては極端に補助接地
抵抗が高い場合があるが、この様な場合でも、これによ
って誤差を生じることがない 4) 本願はパルス法であるが、同時に零位法でもあり
、零位法におけると同様測定器が小形、簡単、軽量、廉
価である
3) The auxiliary ground resistance may be extremely high in gravel layers or rocky areas, but even in such cases, errors will not occur due to this. 4) This application uses the pulse method, but at the same time the zero position method is used. As with the zero-position method, the measuring equipment is small, simple, lightweight, and inexpensive.

【図面の簡単な説明】 第1図は本願接地抵抗計、第2図は従来の零位法にもと
ずく接地抵抗計、第3図は単一パルス印加法にもとづく
接地抵抗計、第4図は変圧器の励磁特性および負荷特性
、第5図は単一パルス印加法において補助極としてキャ
パシティブ接地とした場合の図。第6図は多数の接地極
が連接された場合の図、である。 ■:低抵抗 の:被測定接地極 ■:被測定接地極の接地抵抗R4 ■:11補助極 ■;第1補助極の接地抵抗RB■:正
弦波交流電源■:方形波交流電源φ:単−ステップ電圧
電源 ■:増11J器び:変圧器 ■:加減抵抗器 ■:電位差計 ■:1次電流1゜ ■:2次電流I2 Ω:第2補助極 [相]:第2補助極の接地抵抗Rc しHlll”’l”h:+い’I’+’、;1m %更
なし)+1図 士り図 第3図 牙5図 ヶ6図 手 続 補 正 書 (貼、i1応岐1−9月 4日ム
山昭和59年 7月 6日 特許庁長官 殿 1、事件の表示 昭和59年特許願第056698号3
、補正をする者 π件との関係 特許出願人 4、補止命令の口f1 昭和59年6月26日(発送日
)5、補正の対象 「願書1と「図面」 6、補正の内容 補正した願書(全文訂正願劉)
[Brief explanation of the drawings] Figure 1 shows the earthing resistance meter of the present invention, Figure 2 shows the earthing resistance meter based on the conventional zero method, Figure 3 shows the earthing resistance meter based on the single pulse application method, and Figure 4 shows the earthing resistance meter based on the single pulse application method. The figure shows the excitation characteristics and load characteristics of the transformer, and FIG. 5 shows the case where capacitive grounding is used as an auxiliary pole in the single pulse application method. FIG. 6 is a diagram showing a case where a large number of ground electrodes are connected. ■: Low resistance: Grounding electrode to be measured ■: Grounding resistance R4 of the grounding electrode to be measured ■: 11 auxiliary pole ■; Grounding resistance RB of the first auxiliary electrode ■: Sine wave AC power supply ■: Square wave AC power supply φ: Single -Step voltage power supply ■: Increased 11J equipment: Transformer ■: Rheostatic resistor ■: Potentiometer ■: Primary current 1° ■: Secondary current I2 Ω: Second auxiliary pole [phase]: Second auxiliary pole Earthing resistance Rc Hllll"'l"h:+'I'+';1m %No change)+1 figure 1-September 4th Muyama July 6th, 1980 Commissioner of the Japan Patent Office 1. Indication of the case Patent Application No. 056698 1988 3
, Person making the amendment π Relationship with the matter Patent applicant 4, Statement of supplementary order f1 June 26, 1980 (shipment date) 5, Subject of amendment ``Application 1 and ``Drawings'' 6. Contents of amendment Amendment Application form (full text revised by Liu)

Claims (1)

【特許請求の範囲】[Claims] 零位法による接地抵抗計において、回路中の変圧器に換
えて増中器を用い、正弦波交流電源に換えて、方形波交
流電源を用いた接地抵抗計
A ground resistance meter using the zero-level method uses a multiplier instead of a transformer in the circuit, and a square wave AC power source instead of a sine wave AC power source.
JP5669884A 1984-03-23 1984-03-23 Earth resistance meter Pending JPS60200178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5669884A JPS60200178A (en) 1984-03-23 1984-03-23 Earth resistance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5669884A JPS60200178A (en) 1984-03-23 1984-03-23 Earth resistance meter

Publications (1)

Publication Number Publication Date
JPS60200178A true JPS60200178A (en) 1985-10-09

Family

ID=13034677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5669884A Pending JPS60200178A (en) 1984-03-23 1984-03-23 Earth resistance meter

Country Status (1)

Country Link
JP (1) JPS60200178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420951C (en) * 2003-08-19 2008-09-24 福建省电力勘测设计院 Grounded resistance measuring apparatus
JP2011112652A (en) * 2009-11-24 2011-06-09 Fluke Corp Method of measuring earth ground resistance of pylon using single clamp
JP2018132333A (en) * 2017-02-13 2018-08-23 株式会社かんでんエンジニアリング Grounding resistance measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420951C (en) * 2003-08-19 2008-09-24 福建省电力勘测设计院 Grounded resistance measuring apparatus
JP2011112652A (en) * 2009-11-24 2011-06-09 Fluke Corp Method of measuring earth ground resistance of pylon using single clamp
US9239352B2 (en) 2009-11-24 2016-01-19 Fluke Corporation Method of measuring earth ground resistance of a pylon
JP2018132333A (en) * 2017-02-13 2018-08-23 株式会社かんでんエンジニアリング Grounding resistance measuring method

Similar Documents

Publication Publication Date Title
RU2108587C1 (en) Current intensity measuring transducer
US4829239A (en) Multimeter
JPS60200178A (en) Earth resistance meter
US9053852B2 (en) Error compensation for current transformer sensors
Aristoy et al. Measuring system for calibrating high voltage instrument transformers at distorted waveforms
US7212931B2 (en) Electric energy meter for an AC mains supply
US2167162A (en) Multirange meter
US2604511A (en) Circuit for measuring inductance or capacitance
JP2022526769A (en) Verification of energy measurement of fundamental wave only
JPH06249932A (en) Measuring instrument for residual magnet of transformer core
Simonson et al. Level dependence of ac-dc transfer devices
Ackermann Current transformer measurements of distorted current waveforms with secondary load impedance
DE626802C (en) Method and device for measuring mechanical forces or moments
SU745030A1 (en) X-ray generator
RU2073250C1 (en) Method and device for determining dynamic induction of reactor
Blevin Measurements of electrical characteristics of fluorescent lamps
CN105790595B (en) Detect voltage increase adjuster
Chaffee The operating characteristics of power tubes
SU411400A1 (en)
Ayrton et al. III. The measurement of the power given by any electric current to any circuit
SU976308A1 (en) Device for measuring winding temperature of electrical machine primarily of ac type
US1701358A (en) Electric measuring apparatus
AT238311B (en) Earth resistance meter with two-stage generator
SU75410A1 (en) Device for automatic solving systems of differential equations with complex coefficients
Cockcroft et al. An electric harmonic analyser