JPS6019998B2 - Method for producing immobilized enzyme - Google Patents

Method for producing immobilized enzyme

Info

Publication number
JPS6019998B2
JPS6019998B2 JP10299977A JP10299977A JPS6019998B2 JP S6019998 B2 JPS6019998 B2 JP S6019998B2 JP 10299977 A JP10299977 A JP 10299977A JP 10299977 A JP10299977 A JP 10299977A JP S6019998 B2 JPS6019998 B2 JP S6019998B2
Authority
JP
Japan
Prior art keywords
enzyme
group
solution
pullulan
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10299977A
Other languages
Japanese (ja)
Other versions
JPS5437883A (en
Inventor
日出男 広原
成泰 鍋島
政則 藤本
恒之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10299977A priority Critical patent/JPS6019998B2/en
Priority to CA296,878A priority patent/CA1093991A/en
Priority to US05/878,572 priority patent/US4247642A/en
Priority to GB6246/78A priority patent/GB1568328A/en
Priority to FR7804395A priority patent/FR2381059A1/en
Priority to NL7801736A priority patent/NL7801736A/en
Priority to DE2806674A priority patent/DE2806674C3/en
Publication of JPS5437883A publication Critical patent/JPS5437883A/en
Publication of JPS6019998B2 publication Critical patent/JPS6019998B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は固定化酵素の製造法に関し、より詳しくは水落
性ポリマーであるプルランと二官能性物質との反応生成
物からなる水膨潤性プルランゲルにイオン性官能基を有
する化合物を反応させることによって得られるイオン性
プルランゲルを担体とする固定化酵素の製造法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an immobilized enzyme, and more specifically, a water-swellable pullulan gel comprising a reaction product of pullulan, which is a water-dropping polymer, and a bifunctional substance, which has an ionic functional group. This invention relates to a method for producing an immobilized enzyme using an ionic pullulan gel obtained by reacting a compound as a carrier.

本発明の目的は、酵素活性が高く、安定な固定イ捉酵素
の簡便な製造法を提供することにあり、基質の酵素への
連続的接触反応を可能にし、反応溶液を固定イ技酵素か
ら分離すると反応が停止するという効率的な使用を可能
にする固定化酵素の製造法を提供することにある。
An object of the present invention is to provide a simple method for producing a stable immobilized enzyme with high enzymatic activity, which enables continuous contact reaction of a substrate with an enzyme, and allows the reaction solution to be transferred from an immobilized enzyme. The object of the present invention is to provide a method for producing an immobilized enzyme that enables efficient use in which the reaction is stopped upon separation.

イオン性多榛類ゲルが酵素固定化用担体として利用され
る例としては、従来よりイオン性セルロースおよびイオ
ン性デキストランゲルなどが公知である。
Examples of ionic polygels used as carriers for enzyme immobilization include ionic cellulose and ionic dextran gels.

しかしながらセルロースは結晶性が高く、水に対する溶
解度に乏しく、イオン化反応がすみやかに進行せず、イ
オン交換能の高い生成物を得ることは困難であり、単位
担体重量当り多量の酵素を固定化することは困難で従っ
て固定化担体として十分満足すべきものとは言い難い。
また、水膨滴時において機械的強度が小さいという欠点
をも有している。一方、イオン性デキストラン化合物は
単位重量当り比較的多量の酵素を固定化できるが、希望
する重合度のデキストランを直接得ることは困難であり
、非常に高分子量物を生成した後、部分的に加水分解し
た後、希望する分子量のものを得る。また、デキストラ
ンはグルコースを単位としてQ−1,6結合により反復
結合した重合体であるので反応性の高いグルコース単位
のC−6位の水酸基を利用してイオン交換館の大きいイ
オン性ゲルを容易に得るという点では有利といえない。
こうした理由の為にイオン性デキストランゲルは非常高
価であり、この種の物質を工業的規模で酵素固定化担体
として使用することは、坦体の再使用が出釆る固定化法
の場合を除いては経済的に大きな負担となる。本発明者
らはこれらの問題を顧みて鋭意検討を行った結果、製造
の際に分子量制御が可能で種々の優れた特徴を有するプ
ルランのイオン性ゲル(袴願昭52−37787号)は
酵素の固定化雄体として種々の優れた性質を有している
ことを見し、出しこの発明を完成した。
However, cellulose is highly crystalline and has poor solubility in water, so the ionization reaction does not proceed quickly, making it difficult to obtain products with high ion exchange ability, and it is difficult to immobilize a large amount of enzyme per unit weight of the carrier. It is difficult to use this method, and therefore it cannot be said that it is fully satisfactory as an immobilization carrier.
It also has the disadvantage of low mechanical strength when water swells. On the other hand, ionic dextran compounds can immobilize a relatively large amount of enzyme per unit weight, but it is difficult to directly obtain dextran with the desired degree of polymerization, and after producing a very high molecular weight product, it is partially hydrated. After decomposition, the desired molecular weight is obtained. In addition, since dextran is a polymer in which glucose units are repeatedly bonded through Q-1,6 bonds, it is easy to form ionic gels with large ion exchange chambers by using the highly reactive hydroxyl group at the C-6 position of glucose units. It cannot be said that it is advantageous in terms of getting more.
For these reasons, ionic dextran gels are very expensive, and this type of material cannot be used as an enzyme immobilization carrier on an industrial scale, except in the case of immobilization methods that allow reuse of the carrier. This poses a huge economic burden. The inventors of the present invention have conducted intensive studies in consideration of these problems, and have found that the ionic gel of pullulan (Hakama Gan Sho 52-37787), which allows for control of the molecular weight during production and has various excellent characteristics, is an enzyme-based gel. It was discovered that the immobilized male body of the present invention has various excellent properties, and the present invention was completed.

本発明に用いられるプルランはグルコースの三量体であ
るマルトトリオースを単位として、この三量体とは異つ
た結合であるQ‐1,6結合により反復結合した線状重
合体であり、グルコース単位に含まれる水酸基の反応性
を利用してエーテル結合を形成する二官能性物質との反
応によって三次元網目構造からなる親水性ゲルが得られ
る。
The pullulan used in the present invention is a linear polymer in which maltotriose, which is a trimer of glucose, is repeatedly bonded by Q-1,6 bonds, which are different from the trimer. A hydrophilic gel having a three-dimensional network structure can be obtained by reaction with a bifunctional substance that forms an ether bond by utilizing the reactivity of the hydroxyl group contained in the unit.

更に一端にイオン性基を有し、他端にアルカリ性化合物
の存在下で水酸基とエーテル結合を形成しうる官能基を
有する化合物と反応によりイオン性プルランゲルが得ら
れる。プルランはグルコース単位から成り立っていると
はいえ、従来より知られている多糖類例えばデンプンや
その誘導体あるいはセルロースやその誘導体等とは分子
構造が全く異なり、その性質にも著しい相違がある。例
えばプルランは冷水および熱水にも極めて溶解し易く、
この水溶液の粘度が著しく低いこと、しかもこの水溶液
は他の多糖類の水溶液に比較してゲル化、老化などの現
象もなく長期間安定であり、またプルランそのものに叢
性がなく生体親和性が非常に良好である等の多くの好ま
しい性質を有している。プルランの製造方法には特に制
限はない。
Furthermore, an ionic pullulan gel is obtained by reaction with a compound having an ionic group at one end and a functional group capable of forming an ether bond with a hydroxyl group in the presence of an alkaline compound at the other end. Although pullulan is composed of glucose units, its molecular structure is completely different from conventionally known polysaccharides such as starch and its derivatives, cellulose and its derivatives, etc., and its properties are also significantly different. For example, pullulan is extremely soluble in both cold and hot water;
The viscosity of this aqueous solution is extremely low, and compared to aqueous solutions of other polysaccharides, this aqueous solution is stable for a long time without phenomena such as gelation or aging, and pullulan itself has no plexus and is biocompatible. It has many favorable properties, including very good properties. There are no particular restrictions on the method for producing pullulan.

現在は不完全菌であるプルラリャ属の菌株を培養するこ
とにより菌体外粘質物として分離採取されるのが一般的
である。必要ならば培養液から遠心分離により菌体を除
外し、メタノールで沈澱分離を行うことにより精製され
る。なお、プルランの分子量は特に制限はないが平均分
子量が1×1ぴ以上であることが望ましい。酵素の固定
化担体としてのイオン性フルランゲルの“固さ”即ち膨
潤状態における含水率は1なし、し50タノタの範囲の
ものが好ましく、また形状は10rないし500rの直
径を有する球状であることが望ましい。
Currently, it is generally isolated and collected as an extracellular mucilage by culturing a strain of the genus Plullaria, which is a deuteromycete. If necessary, bacterial cells are removed from the culture solution by centrifugation, and purified by precipitation with methanol. The molecular weight of pullulan is not particularly limited, but it is desirable that the average molecular weight is 1×1 pi or more. The "hardness" of the ionic flurane gel as an enzyme immobilization carrier, that is, the water content in the swollen state, is preferably in the range of 1 to 50 mm, and the shape is preferably spherical with a diameter of 10 to 500 mm. desirable.

球状のプルランゲルの製造は持願昭50−76267号
に従うのが鼓も効果的である。
It is also effective to manufacture spherical pullulan gel according to the patent application No. 76267/1983.

またイオン性プルランゲルは袴顔昭52一37787号
に記述されている方法に従って製造するのが最も効果的
である。適当な二官能性物質としては、ェピクロルヒド
リン、エピブロモヒドリン、ジグリシジルエーテル、エ
チレングリコールージグリシジルエーテル等が例示され
る。球状の水膨潤性のプルランゲルの製造は水酸化ナト
リウム、水酸化カリウム等のアルカリ物質の存在下で、
通常2の重量%ないし6の重量%濃度のプルラン水溶液
を該溶液と不混和性でかつポリビニルアセテ−ト、ポリ
スチレン等のような分散安定剤を含有する液体分散媒(
例えばノルマルヘキサン、ヘプタン、イソオクタン、ト
ルェン等)中に液滴として分散せしめた二相系で縄梓速
度を制御しながら反応させることによって達成される。
Furthermore, it is most effective to produce ionic pullulan gel according to the method described in Hakamagao Sho 52-37787. Suitable bifunctional substances include epichlorohydrin, epibromohydrin, diglycidyl ether, ethylene glycol-diglycidyl ether, and the like. Spherical water-swellable pullulan gel is produced in the presence of alkaline substances such as sodium hydroxide and potassium hydroxide.
A liquid dispersion medium which is immiscible with the pullulan solution and contains a dispersion stabilizer such as polyvinyl acetate, polystyrene, etc.
This is achieved by reacting in a two-phase system in which droplets are dispersed in (for example, n-hexane, heptane, isooctane, toluene, etc.) while controlling the rate of droplet formation.

イオン性プルランゲルの製造は、一般式X−R−Z〔但
し、Rは炭素数1なし、し2の固の脂肪族基または(お
よび)芳香族基を含む炭化水素基で1個またはそれ以上
の酸素原子のごとき異種原子を介在させてもよく、Zは
カルボキシル基、リン酸基、スルホン酸基、グアニド基
あるいはそれらの塩または一般式あるいは (こ こでR,,R2およびR3はそれぞれ水素、メチル基、
エチル基、ヒドロキシェチル基、ヒドロキシブロピル基
あるいはフェニル基である。
Ionic pullulan gel is produced using the general formula Z may be a carboxyl group, a phosphoric acid group, a sulfonic acid group, a guanide group, or a salt thereof, or a general formula or (where R, , R2 and R3 are each hydrogen, methyl group,
They are ethyl group, hydroxyethyl group, hydroxybropyl group or phenyl group.

)で表わされる一,二,三あるいは四級アミノ基あるい
はその塩〕で表わされる化合物を球状の水膨潤性プルラ
ンゲルと水酸化ナトリウム、水酸化カリウム等のアルカ
リ性物質の存在下で100qo以下で反応させることに
よって達成される。一般式X−R−Zで表わされる適当
な化合物として、アミ/基を有するものしては2ージェ
チルアミノクロリド、2ージメチルアミノイソブロピル
クロリド、1ージエチルアミノ−2.3ーエポキシプロ
パン、8,yーエポキシプロピルトリエチルァンモニゥ
ムクロリドおよびそれらの無機酸あるいはハロゲン化ア
ルキルとの塩などがあげられ、カルボキシル基を有する
ものとしては、クロル酢酸、ブロム酢酸、スルホン酸基
を有するものとしてはクロルェタンスルホン酸、ブロム
ェタンスルホン酸およびそれらの塩があげられる。
) is reacted with a spherical water-swellable pullulan gel in the presence of an alkaline substance such as sodium hydroxide or potassium hydroxide at 100 qo or less. This is achieved by Suitable compounds represented by the general formula Examples include 8,y-epoxypropyltriethylammonium chloride and their salts with inorganic acids or alkyl halides. Examples of those having a carboxyl group include chloroacetic acid, bromoacetic acid, and those having a sulfonic acid group. Examples include chloroethanesulfonic acid, bromethanesulfonic acid and salts thereof.

かくして調製されたイオン性ブルランゲル担体への酵素
の結合様式はイオン吸着法と共有結合法の両方が共に可
能である。イオン吸着法の場合は固定化しようとする酵
素の等電点とその酵素の作用靴との関係を考慮してカチ
オン性あるいはアニオン性のイオン性プルランゲルを挺
体として選べば良い。
The enzyme can be bound to the ionic Bullulan gel carrier thus prepared by both ion adsorption and covalent bonding methods. In the case of the ion adsorption method, a cationic or anionic ionic pullulan gel may be selected as the rod in consideration of the relationship between the isoelectric point of the enzyme to be immobilized and the action shoe of the enzyme.

例えば等亀点がpH5附近の酸性蛋白質でかつpH7附
近に至適pHを持つ酵素の場合には、ジェチルアミノェ
チル化プルランゲルの様に塩基性のプルランゲルを迫体
として使用するのが好ましく、等露点が1岬付近の塩基
性蛋白で中性附近で作用する酵素を固定化する場合はカ
ルボキシメチル化ブルランゲルの様に酸性のプルランゲ
ルを迫体として使用するのが好ましい。かくしてイオン
吸着法による固定イQ酵素の調製は常法により例えば0
.02MないしIM濃度の塩酸溶液あるいは0.02け
ないしIM濃度の苛性ソーダ溶液でイオン性プルランゲ
ルを処理することによりィン交換基を活性化させ、ある
いは各酵素の作用pHに緩衝作用を有する緩衝液(0.
02MないしIM濃度)で緩衝化させた後、固定化しよ
うとする酵素の溶液にイオン性プルランゲルを十分な時
間だけ浸潰させ、必要に応じて縄拝した後炉過し、水洗
すれば達成される。
For example, in the case of an enzyme that is an acidic protein with an isotropic point around pH 5 and has an optimum pH around pH 7, it is preferable to use a basic pullulan gel such as jethylaminoethylated pullulan gel as a support. When immobilizing an enzyme that acts near neutrality using a basic protein with a constant dew point of about 1 cape, it is preferable to use an acidic pullulan gel such as carboxymethylated pullulan gel as the immobilizer. Thus, the immobilized iQ enzyme can be prepared by the ion adsorption method using conventional methods such as
.. The ionic pullulan gel is treated with a hydrochloric acid solution at a concentration of 0.02 M to IM or a caustic soda solution at a concentration of 0.02 to IM to activate the phosphorus exchange group, or a buffer having a buffering effect on the working pH of each enzyme ( 0.
This can be achieved by buffering the ionic pullulan gel with a solution of the enzyme to be immobilized for a sufficient period of time (02M or IM concentration), immersing it in the solution of the enzyme to be immobilized for a sufficient period of time, and then filtrating it as necessary, filtering it, and washing it with water. Ru.

吸着固定化される温度は4び0以下が望ましく、特に4
℃前後が好ましい。吸着時間は2時間ないしはそれ以上
かけることが望ましい。かくして得られる固定イ○酵素
は通常乾燥迫体1夕当り100雌あるいはそれ以下の酵
素蛋白質を含み、高活性でイオン強度の高い塩溶液で洗
練されない限り安定である。一方、共有結合法の場合に
は、イオン性ブルランゲル中の水酸基、導入したイオン
基である1級アミノ基、2級アミ/基あるいはカルボキ
シメチル基等の反応性を利用する種々の結合方法で、イ
オン性セルロースおよびイオン性デキストランに対して
有効な結合法として公3句である方法は全て適用可館で
あり、高活性で活性保持率の高い固定イ○酵素が得られ
ることを見い出した。
The temperature at which adsorption and immobilization is performed is preferably 4.0 or lower, especially 4.0 or lower.
Preferably around ℃. It is desirable that the adsorption time be 2 hours or more. The immobilized enzyme thus obtained usually contains 100 or fewer enzyme proteins per dried morsel and is stable unless purified with a highly active, high ionic strength salt solution. On the other hand, in the case of covalent bonding, various bonding methods are used that utilize the reactivity of hydroxyl groups in ionic bullulan gel, introduced ionic groups such as primary amino groups, secondary amino/carboxymethyl groups, etc. It has been found that all of the three commonly known binding methods effective for ionic cellulose and ionic dextran are applicable, and that an immobilized enzyme with high activity and high activity retention can be obtained.

特に‘11塩化シァヌールを用いるトリァジニル誘導体
による結合法、‘21アジド結合による結合法、‘3’
ジアゾ結合による結合法、■モノハロゲンアセチル誘導
体による結合法、‘5)カルボジィミド誘導体を用いる
結合法および‘6)グルタルアルデヒドを用いての担体
との結合法等がゲル中の水酸基あるいはイオン性基とし
て導入された1級あるいは2級アミノ基またはカルボキ
シル基等の反応性を利用して固定化するのに優れている
In particular, '11 Coupling method using triazinyl derivatives using cyanuric chloride, '21 Coupling method using azide bond, '3'
Bonding methods using diazo bonds, bonding methods using monohalogen acetyl derivatives, '5) bonding methods using carbodiimide derivatives, and '6) bonding methods with carriers using glutaraldehyde, etc. are used as hydroxyl groups or ionic groups in gels. It is excellent for immobilization by utilizing the reactivity of introduced primary or secondary amino groups, carboxyl groups, etc.

こうして共有結合法による固定化法はイオン吸着法によ
る固定化よりも固定化操作は煩雑であるがイオン吸着法
における固定イ○酵素よりも安定性の高い固定イQ酵素
が縛られる。本発明の固定化法が適用される酵素は上記
結合法によって酵素活性が全くなくなるものでなければ
特に制限はない。
In this way, the immobilization method using the covalent bond method has a more complicated immobilization operation than the immobilization method using the ion adsorption method, but the immobilized IQ enzyme, which is more stable than the immobilized IQ enzyme in the ion adsorption method, is bound. The enzyme to which the immobilization method of the present invention is applied is not particularly limited as long as the enzyme activity is completely eliminated by the above-mentioned binding method.

例えばトリプシン、キモトリプシン、リパーゼ、微生物
起源のプロテアーゼ、エステラーゼ、コリンエステラー
ゼ、ウレアーゼ、プロメライン、リボヌクレアーゼ、テ
オキシリポヌクレアーゼ、ペニシリンアミダーゼ、アミ
ノアシラーゼ、Pーガラクトシダーゼ、グルコ−スイソ
メラーゼ、グルコースオキシターゼ、クレアチンキナー
ゼ、パーオキシダーゼ、パパイン、インベルダーゼ、ペ
プシン、8−アミラーゼ、イソアミラーゼ、マルターゼ
、ウリカーゼ等が効果的に固定化される。次に実施例を
あげて本発明を更に詳細に説明するが、これらは単なる
例示であって、その趣旨を越えない限り以下の実施例に
よって限定れるものではなく種々の変法が可能である。
For example, trypsin, chymotrypsin, lipase, protease of microbial origin, esterase, cholinesterase, urease, promelain, ribonuclease, theoxyliponuclease, penicillin amidase, aminoacylase, P-galactosidase, glucose isomerase, glucose oxidase, creatine kinase, Oxidase, papain, inverdase, pepsin, 8-amylase, isoamylase, maltase, uricase, etc. are effectively immobilized. Next, the present invention will be explained in more detail with reference to examples, but these are merely illustrative and the invention is not limited to the following examples and various modifications can be made as long as they do not exceed the spirit thereof.

実施例 1 平均分子量72000のプルラン4礎部を80部の水に
溶解し、更に12.5夕の水酸化ナトリウムを加え、均
一な水溶液とした。
Example 1 Pullulan 4 base having an average molecular weight of 72,000 was dissolved in 80 parts of water, and 12.5 parts of sodium hydroxide was added to form a uniform aqueous solution.

この溶液をポリビニルアセテート1礎部、トルェン16
0部、ソルピタンモノステアレート1.2部からなる分
散煤中に添加し、毎分800回転で蝿拝しながら液滴状
に分散せしめた、水溶液を添加後1時間して2$部のェ
ピクロルヒドリンを添加し、50qoで5時間反応させ
た後、トルェンおよびメタ/ールで炉過および洗練を行
い、減圧乾燥し、含水率が2.35夕/夕である球状の
親水性プルランゲルを得た。このプルランゲル10の郡
を水酸化ナトリウム11礎部を含む48礎都の水溶液に
分散させ、室温で婿拝しながら、2ージェチルアミノェ
チルクロリド塩酸塩24礎部を水松の部に溶解させた溶
液を4時間かけて滴下させ、滴下後さらに1岬時間反応
させ、水およびメタノールで洗膝し、乾燥時の直径が3
7リないし149〃の球状ゲルで含水率が2.8夕/夕
、電導度滴定法で定量したアミン量が2.7wc/夕で
あるジェチルアミ/エチル化プルランゲル(DEAEー
プルランゲルと略記)を得た。かくして得られたDEA
E−ブルランゲル担体として市販酵素プロナーゼをイオ
ン吸着法によって以下に示す様に固定化した。即ち該D
EAE−プルランゲル1夕(乾燥時)を0.1規定濃度
の苛性ソーダ溶液で処理後十分に水洗いし、過剰の苛性
ソーダを取り去った。市販のプロナーゼE50雌を溶解
させたpH7.0で0.02M濃度のリン酸緩衝液20
の‘中に苛性ソーダで活性化させた該DEAE−プルラ
ンゲルを投入し、4℃で5時間ゆっくりと錨拝しながら
酵素をDEAEープルランゲルに吸着させた後、ガラス
炉過器で吸引炉過し、0.02M濃度(pH7.0)の
リン酸緩衝溶液および水で十分洗練した。
This solution was mixed with 1 part of polyvinyl acetate and 16 parts of toluene.
0 parts of solpitan monostearate and 1.2 parts of solpitan monostearate were added to the dispersed soot and dispersed in the form of droplets while rotating at 800 revolutions per minute. After adding epichlorohydrin and reacting at 50 qo for 5 hours, filtering and refining with toluene and methanol, drying under reduced pressure, a spherical hydrophilic product with a moisture content of 2.35 q/q. obtained pullulan gel. 10 parts of this pullulangel were dispersed in an aqueous solution of 48 parts containing 11 parts of sodium hydroxide, and while worshiping at room temperature, 24 parts of 2-jethylaminoethyl chloride hydrochloride was dissolved in the part of water pine. The solution was dropped over 4 hours, reacted for an additional hour after dropping, washed with water and methanol, and the diameter when dried was 3.
A diethylamide/ethylated pullulan gel (abbreviated as DEAE-pullulan gel) was obtained, which was a spherical gel of 7 to 149 mm, had a water content of 2.8 wc/d, and an amine amount determined by conductivity titration of 2.7 wc/d. . The DEA thus obtained
A commercially available enzyme pronase was immobilized as an E-Bullan gel carrier by an ion adsorption method as shown below. That is, the D
EAE-Pullulan gel (when dried) was treated with a 0.1 normal concentration caustic soda solution and thoroughly washed with water to remove excess caustic soda. Commercially available pronase E50 female was dissolved in a phosphate buffer solution with a pH of 7.0 and a concentration of 0.02M.
The DEAE-Pullulan gel activated with caustic soda was poured into the container, and the enzyme was adsorbed to the DEAE-Pullulan gel while slowly anchored at 4°C for 5 hours. It was thoroughly purified with phosphate buffer solution at a concentration of .02M (pH 7.0) and water.

炉液および洗総液を回収し、回収液の28仇帆1こおけ
る紫外吸収強度より、DEAEープルランゲルに吸着固
定化された酵素量は39池と算出された。この固定イは
酵素の比活性をNーベンゾイルーLーアルギニンェチル
ェステル(BAEE)を基質としてpH7.u 30℃
においてPHスタット(平沼PHstat的‐11)で
測定したところ、酵素量に対して基質量過剰の条件下で
3.2ムmoleg/M・minであった。固定化前の
溶液状酵素の35%の活性を持っていた。こ園定イQ酵
素を上記と同一条件で5回繰り返し活性を測定したとこ
ろ5回目の活性は1回目活性の約73%であった。実施
例 2 酵素プロナーゼE7妙oを4℃に保った軸6.0で0.
08M濃度のリン酸緩衝液25の‘に溶解させ。
The furnace solution and washing solution were collected, and the amount of enzyme adsorbed and immobilized on the DEAE-Pullulan gel was calculated to be 39 samples based on the ultraviolet absorption intensity of the recovered solution at 28 samples. This immobilization was carried out to determine the specific activity of the enzyme at pH 7.0 using N-benzoyl-L-arginine ethyl ester (BAEE) as a substrate. u 30℃
When measured with a PH stat (Hiranuma PHstat-11), it was 3.2 mmoleg/M min under conditions where the amount of substrate was in excess of the amount of enzyme. It had 35% activity of the enzyme in solution before immobilization. When the activity of Koen Sadai Q enzyme was measured 5 times under the same conditions as above, the activity at the 5th time was about 73% of the activity at the 1st time. Example 2 The enzyme pronase E7o was incubated at 4°C with axis 6.0 and 0.
Dissolve in 25' of phosphate buffer with a concentration of 0.8M.

この溶液に実施例1で用いたのと全く同じ性質を持つD
EAE−プルャランゲル1.0夕(乾燥時)を投入し、
約7℃に保ちながらゆっくりと縄拝しつつ、酵素を固定
化させた。固定化プロナーゼEを0.08M濃度のリン
酸緩衝液(pH6.5)、0.1M濃度の塩化ナトリウ
ム溶液および純水で洗糠液中に蛋白質の吸収が見られな
くなるまで洗練した後、洗膝液を回収し、回収液中の蛋
白質の紫外吸収強度より固定化された酵素量は49雌と
算出された。この固定化酵素の比活性をDLーリジンメ
チルェステルを基質としてpHスタットを用いて舟6.
040ooで測定したところ溶液、状酵素の37%比活
性を示した。実施例 3 市販のパパィン100の3を4℃に保ったpH6.0で
0.02M濃度のリン酸緩衝液30の‘に溶解さて、こ
の溶液にェピクロルヒドリン量を24.5部用いた以外
は実施例1で調製したのと全く同一の化合物および反応
条件で得られた含水率が2.5夕/夕の球状の親水性プ
ルランゲル3巧都1こ、3$部のモノクロル酢酸、2の
部の水を加え、20碇部のメタノール中で機拝しながら
約10℃で6時間反応させて得られた乾燥時の直径が7
4ムないし149〃の球状ゲルで含水率が2.9タノタ
、電導度滴定法により定量したカルボキシル基量が3.
1meq/タあるカルボキシメチルプルランゲル(CM
−プルランゲル)1.0夕を投入し、約4℃に保ちなが
らゆっくり縄拝しつつ酵素を固定化した。
This solution has the same properties as those used in Example 1.
Add EAE-Puljarangel 1.0 ml (dry),
The enzyme was immobilized by slowly shaking the tube while keeping it at about 7°C. The immobilized pronase E was purified with a 0.08M phosphate buffer (pH 6.5), a 0.1M sodium chloride solution, and pure water until no protein absorption was observed in the washings, and then washed. The knee fluid was collected, and the amount of immobilized enzyme was calculated from the ultraviolet absorption intensity of the protein in the collected fluid to be 49 females. The specific activity of this immobilized enzyme was measured using a pH stat using DL-lysine methyl ester as a substrate.
When measured at 0.040 oo, the specific activity of the enzyme in the form of a solution was 37%. Example 3 Three parts of commercially available papain 100 was dissolved in 30' of a 0.02M phosphate buffer solution with a pH of 6.0 kept at 4°C, and 24.5 parts of epichlorohydrin was added to this solution. A spherical hydrophilic pullulan gel with a water content of 2.5 days/day obtained using the same compound and reaction conditions as in Example 1 except for the following: 3 parts of monochloroacetic acid, Add 2 parts of water and react in 20 parts of methanol at about 10°C for 6 hours to obtain a powder with a dry diameter of 7.
It is a spherical gel with a diameter of 4 to 149 mm, a water content of 2.9 mm, and a carboxyl group content of 3.5 mm as determined by conductivity titration.
1 meq/ta carboxymethyl pullulan gel (CM
- Pullulan gel) 1.0 ml was added, and the enzyme was immobilized by slowly stirring while keeping the temperature at about 4°C.

固定イ&酵素を実施例2と同機にして洗撤し、回収液中
の蛋白質量をローリー法により定量し、固定化酵素量は
30.1雌と算出された。この固定化酵素の比活性を基
質としてBAEEを用い、解6.2、40℃でPHスタ
ツトによって測定したところ、1.70〃moles/
蛾・minでこれは固定化前の溶液状酵素の比活性の2
3%であった。なお固定イQ酵素および溶液状酵素の活
性測定時には、2×10‐3M濃度のエチレンジァミン
4酢酸と5×10‐3M濃度のシスティンと0.3M濃
度の塩化ナトリウムを共存させた。実施例 4 市販の精製トリプシン5仇pを4℃に保った舟7.5で
0.02M濃度のトリス−塩酸緩衝液30の上(0.0
2M濃度の塩化カルシウムを含む)に溶解させ、この溶
液に実施例3で用いたCM−プルランゲル1.0夕を投
入し、約4℃に保ちながら約3時間ゆっくりと蝿拝しつ
つ酵素を固定化した。
The immobilized enzyme and enzyme were washed and removed using the same machine as in Example 2, and the amount of protein in the recovered solution was determined by the Lowry method, and the amount of immobilized enzyme was calculated to be 30.1 female. The specific activity of this immobilized enzyme was measured by PH stat at 40°C using BAEE as a substrate and found to be 1.70 moles/
moth/min, which is 2 of the specific activity of the enzyme in solution before immobilization.
It was 3%. When measuring the activity of the fixed IQ enzyme and the enzyme in solution, ethylenediaminetetraacetic acid at a concentration of 2x10-3M, cysteine at a concentration of 5x10-3M, and sodium chloride at a concentration of 0.3M were allowed to coexist. Example 4 5 ml of commercially available purified trypsin was added to 30 ml of 0.02 M Tris-HCl buffer (0.0
CM-Pullulan Gel 1.0 used in Example 3 was added to this solution (containing 2M calcium chloride), and the enzyme was immobilized while being kept at about 4°C and slowly stirred for about 3 hours. It became.

固定イは酵素量は洗糠回収液中の蛋白質の紫外線吸収強
度より滋の9と算出された。この固定化トリプシンの比
活性をBAEEを基質としてpH7.5、30℃で0.
02M濃度の塩化カルシウム存在下でpHスタツトで測
定したところ5.5一〆moles/概・minで、こ
れは溶液状酵素の21%の比活性であった。実施例 5
ストレプトマィセスフェクロモゲネス生菌体を破砕し、
冷凍遠心機にかけ、その上燈液をアセトン沈澱法によっ
て精製した750肌nitの活性を持ち、ローリー法で
定量した蛋白質量84のoのグルコースィソメラーゼを
PH7.5で0.08M濃度のリン酸塩緩衝液25の【
中に溶解した。
For immobilization, the amount of enzyme was calculated to be 9 from the ultraviolet absorption intensity of the protein in the washed rice bran recovery solution. The specific activity of this immobilized trypsin was determined at pH 7.5 and 30°C using BAEE as a substrate.
In the presence of calcium chloride at a concentration of 0.02 M, the pH value was 5.5 moles/min, which was 21% of the specific activity of the enzyme in solution. Example 5
Crush the Streptomyces phaechromogenes viable cells,
Glucose disomerase with an activity of 750 skin nits and a protein amount of 84 o, which was determined by the Lowry method, was purified by the acetone precipitation method using a refrigerated centrifuge. Salt buffer solution 25 [
dissolved in it.

この溶液に実施例3で調整した親水性プルランゲル32
郡を水酸化ナトリウム35部、水15礎邦のアルカリ水
溶液に浸潤丁分散させ、水4礎邦1こ溶解した磯部の2
−ジェチルァミノェチルクロリド塩酸塩を滴下し、室温
で18時間反応させることによって得られた乾燥時の直
径が39ムないし1494の球状ゲルで含水率が30タ
ノタ、電導度滴定法により定量したジェチルアミノェチ
ル(DEAE)基量が2.8heq/夕であるDEAE
−プルランゲル3.0夕を投入し、約15℃に溶液と保
ちながら10時間、回転数6皿PMで振蓋し固定化させ
た。固定化後、固定化酵素を炉別し、pH7.5で0.
08M濃度のリン酸塩緩衝液で十分洗膝し、炉液の活性
測定および蛋白質測定より固定化された活性は6斑山肌
、蛋白質量は71の9と算出された。かくして得られた
固定化グルコースィソメラーゼを直径1.0肌の外套管
付きカラムにつめ、外套管の温度を6ぴ0に保ちながら
54W/V%の結晶グルコース水溶液(5×10‐3M
濃度のMgHイオンを含み、pH7.5に調節したもの
)をカラムの上部からポンプで流下させ異性化反応を行
わせた。流下速度はSV=がr‐1に保った。昼夜連続
反応を行わしめた結果、反応開始後約35奴時間の間フ
ラトースへの異性化率51.5%を保ち、その後ゆっく
りと活性が低下した。半減期は約50日であつた。注1
)グルコースイソメラーゼ1肌itは、0.08M濃度
のリン酸塩緩衝溶液と0.003M濃度のMgS04・
7日20の存在下でpH7.0 70℃で0.1M濃度
のDーグルコースを基質として1時間反応させ、1地の
フラクトースを生成する酵素量である。
Hydrophilic pullulan gel 32 prepared in Example 3 was added to this solution.
35 parts of sodium hydroxide and 15 parts of water were dissolved in an alkaline aqueous solution, and 2 parts of Isobe was dissolved in 4 parts of water and 1 part of water.
- A spherical gel with a dry diameter of 39 μm to 1494 μm obtained by dropping jetylaminoethyl chloride hydrochloride and reacting at room temperature for 18 hours, with a water content of 30 μm, determined by conductometric titration. DEAE whose basic amount of ethylaminoethyl (DEAE) is 2.8 heq/night
- Pullulan Gel 3.0 was added, and while the solution was kept at about 15° C., it was shaken and fixed in a PM at 6 rotations for 10 hours. After immobilization, the immobilized enzyme was separated in a furnace and incubated at pH 7.5 to 0.
After thorough washing with a phosphate buffer solution of 0.8M concentration, the immobilized activity was calculated to be 6 points, and the protein amount was calculated to be 71/9 by measuring the activity and protein of the furnace solution. The thus obtained immobilized glucose isomerase was packed into a column with a jacket tube having a diameter of 1.0 mm, and while the temperature of the jacket tube was maintained at 600m, a 54W/V% crystalline glucose aqueous solution (5 x 10-3M
(containing concentrated MgH ions and adjusted to pH 7.5) was pumped down from the top of the column to perform an isomerization reaction. The flow rate was kept at SV = r-1. As a result of continuous reaction day and night, the isomerization rate to flatose was maintained at 51.5% for about 35 hours after the start of the reaction, after which the activity slowly decreased. The half-life was approximately 50 days. Note 1
) Glucose isomerase 1 skin it was prepared using a phosphate buffer solution with a concentration of 0.08M and MgS04 with a concentration of 0.003M.
This is the amount of enzyme that will produce 1 ounce of fructose when reacted for 1 hour with 0.1 M concentration of D-glucose as a substrate at pH 7.0 and 70° C. in the presence of 7 days and 20 days.

注2)フラクトースの定量はJASの規定に従ってシス
テインーカルバゾール硫酸法で測定した。
Note 2) Fructose was determined by the cysteine-carbazole sulfuric acid method according to the JAS regulations.

以下の実施例においてもグルコースィソメラーゼの肌i
tおよびフラクトースの定量は注1)および注2)に従
った。実施例 6 実施例5と同様にして精製し、760肌血の活性を持ち
蛋白質量が70雌であるグルコースィソメラーゼを餌7
.5で0.08M濃度のリン酸塩緩衝液25必中に溶解
した。
In the following examples, glucose
t and fructose were determined according to Note 1) and Note 2). Example 6 Glucose isomerase purified in the same manner as in Example 5 and having an activity of 760 and a protein amount of 70 was fed to bait 7.
.. 5 and dissolved in phosphate buffer at a concentration of 0.08M for 25 minutes.

この溶液に実施例3で調製した親水性プルランゲル1礎
都‘こ、3$都のソ−ク。ルー0−ヒドロキシプロピル
トリメチルアンモニウムクロリドを6部の水酸化ナトリ
ウムでェポキシ化した、B−ソーエボキシプロピルトリ
エチルアンモニウムクロリドのアルカリ性水溶液100
部を加え、約5ぴ0で6時間燭拝しながら反応させて得
られた乾燥時の直径が39ムないし149ムの球状ゲル
でプルランより調製した乾燥時の直径が39山ないし1
49ムの球状ゲルで含水率が2.8タノタ、電導度滴定
法により定草したrーハィドロオキシプロビルトリメチ
ルアミ/(8一HPTMA)基量が0.57meq/夕
である8−HPTMA−プルランゲル3.0夕を投入し
、15q0から20q0に保ちながら10時間、回転数
8皿PMで振函し、固定化させた。固定化後、実施例5
と同様にして固定イは酵素を洗液し、洗糠回収液より固
定化された活性は711山miL固定化蛋白質は65の
oと算出された。
Soak the hydrophilic pullulan gel prepared in Example 3 in this solution for 1 and 3 dollars. An alkaline aqueous solution of B-0-hydroxypropyltrimethylammonium chloride epoxidized with 6 parts of sodium hydroxide.
A spherical gel with a dried diameter of 39 mm to 149 mm is obtained by adding 1.5 mm to 149 mm in dry diameter.
8-HPTMA, which is a spherical gel of 49 μm and has a water content of 2.8 meq, and a base amount of r-hydroxypropyltrimethylamine/(8-HPTMA) determined by conductivity titration method is 0.57 meq/unit. - Pullulan gel 3.0 was added, and while maintaining the temperature from 15q0 to 20q0, it was shaken for 10 hours at a PM rotation rate of 8 to immobilize it. After immobilization, Example 5
The immobilized enzyme was washed in the same manner as above, and the immobilized activity was calculated to be 711 m and the miL immobilized protein was calculated to be 65 o from the washed rice bran recovery liquid.

かくして得られた固定化グルコースィソメラーゼを直径
15肋の外套管付きカラムにつめ外套管の温度を65℃
に保ちながら54W/V%の結晶グルコース水溶液(5
×10‐3M濃度のMgS04・7日20を含み、pH
7.5に調節したもの)をカラムの上部からポンプでS
V〕水r‐1の速度で流下させ、連続異性化反応を行っ
た。反応開始後、35q時間の間球.5%の異性イG率
を保ちつづけた。実施例 7 アスパラギレス・オリーゼの菌体外酵素として得られ、
アルコール沈澱法で部分精製した8−ガラクトシダーゼ
100のcを0.02M濃度でpH5.5のクエン酸−
リン酸塩緩衝液25の‘‘こ溶解した。
The thus obtained immobilized glucose isomerase was packed into a column with a jacket tube of 15 ribs in diameter and the temperature of the jacket tube was kept at 65°C.
54 W/V% crystalline glucose aqueous solution (5
x10-3M concentration of MgSO4・7days20, pH
7.5) from the top of the column with a pump.
V] Water was allowed to flow down at a rate of r-1 to perform a continuous isomerization reaction. After the start of the reaction, the spheres remained for 35 q hours. The heterosexual IG rate was maintained at 5%. Example 7 Obtained as an extracellular enzyme of Asparagillus oryzae,
8-galactosidase 100c partially purified by alcohol precipitation was mixed with citric acid at pH 5.5 at a concentration of 0.02M.
25'' of phosphate buffer was dissolved.

この溶液に実施例5で用いたのと同じDEAE−プルラ
ンゲル1.0夕を投入し、約4℃に液を保ちながら10
時間回転数60RPMで振顔し、固定化させた。固定化
後、0.02M濃度でpH5.5クエン酸−リン酸塩緩
衝液および純水で洗糠水に蛋白質の紫外吸収強度から固
定化された酵素蛋白質量は40雌と算出された。ローリ
ー法によっても固定イQ酵素量を算出したところ43の
oであった。この園定イ○酵素の活性を5W/V%のラ
クトースを基質としてpH4.ふ30℃で測定したとこ
ろ比活性は1.74rmoles/妙・minであった
。活性の測定は反応によって生成したグルコース量をグ
ルコースオキシダーゼー色素の混合試薬と反応させ比色
法で行った。実施例 8 実施例1で使用したのと同じDEAEープルランゲル2
夕をIN濃度の苛性ソーダ25の‘に最簿し、室温で1
8分間燈拝後、過剰のアルカリ溶液を炉過し、取り除い
た。
To this solution, the same DEAE-Pullulan gel 1.0 as used in Example 5 was added, and while keeping the liquid at about 4°C,
The face was shaken at a rotation speed of 60 RPM and fixed. After immobilization, the amount of immobilized enzyme protein was calculated to be 40 females from the ultraviolet absorption intensity of the protein in the rice bran water washed with a 0.02M concentration pH 5.5 citric acid-phosphate buffer and pure water. The amount of immobilized iQ enzyme was also calculated by the Lowry method and was found to be 43o. The activity of this Enzyme was measured at pH 4.0 using 5W/V% lactose as a substrate. When measured at 30°C, the specific activity was 1.74 rmoles/min. The activity was measured by a colorimetric method in which the amount of glucose produced by the reaction was reacted with a mixed reagent of glucose oxidase dye. Example 8 The same DEAE-Pullangel 2 used in Example 1
In the evening, add 25% of caustic soda to an IN concentration of 1% at room temperature.
After lighting for 8 minutes, excess alkaline solution was removed by filtering.

次にこのDEAE−ブルランゲルを5分間室温で25の
‘のジオキサンに浸潰し、前もって調製しておいた4夕
の塩化シアネールを含む20のZのジオキサン溶液を加
え、室温で縄拝した。1分後、25の‘の氷冷水、次い
で25の‘の酢酸を加え反応を停止させた。
The DEAE-Bullan gel was then soaked for 5 minutes at room temperature in 25% dioxane, and a previously prepared 20% dioxane solution containing 40% cyanate chloride was added and stirred at room temperature. After 1 minute, the reaction was stopped by adding 25' of ice-cold water followed by 25' of acetic acid.

混合液を炉過後、DEAEープルランゲルを手ばやく冷
アセトンおよび氷冷水で洗篠し、直ちに固定化反応に供
した。即ち、170雌のプロナーゼを20の【のリン酸
、緩衝液に溶解し、pH80.4℃に保持しておいた溶
液に上述の方法で得られたS−トリアジニル化DEAE
ープルランゲルを加え、縄拝しながら0.が濃度の苛性
ソ−ダの添加によりpHを8.0に保ち、温度を4℃以
上に上昇させないように注意しながら5時間固定化を行
った。5時間後、固定化酵素を炉刺し、8 M濃度の塩
化ナトリウム溶液と0.1M濃度のリン酸緩衝液(pH
6.0)および冷水で洗液に蛋白質が見し、出されなく
なるまで洗総した。
After filtering the mixture, the DEAE-pullulan gel was quickly washed with cold acetone and ice-cold water, and immediately subjected to a fixation reaction. That is, 170 female pronase was dissolved in 20% phosphate buffer and the S-triazinylated DEAE obtained by the above method was added to a solution kept at pH 80.4°C.
- Add pulluranger and add 0. The pH was maintained at 8.0 by the addition of caustic soda at a concentration of 100.degree. C., and fixation was carried out for 5 hours while being careful not to raise the temperature above 4.degree. After 5 hours, the immobilized enzyme was pierced in an oven and mixed with 8 M sodium chloride solution and 0.1 M phosphate buffer (pH
6.0) and cold water until protein was found in the washing solution and no protein was removed.

洗練液を回収し、回収液の28仇mにおける紫外線吸収
強度より算出した固定イ技酵素量は乾燥ゲル1夕当り6
6のcであった。こうして得られた固定イは酵素の比活
性をDL−リジンメチルェステルを基質とし、2の重量
%の基質濃度で30℃、舟6.0においてPHスタツト
で測定したところ2.94ムmoles/奴・minで
、溶液状酵素の比活性の60%であった。実施例 9実
施例1で用いたのと全く同じ性質のDEAE−ブルラン
ゲル1.0夕を35の‘の水に浸溝し、ブロムシアン1
.0夕を加えた。
The amount of immobilized enzyme, calculated from the ultraviolet absorption intensity of the collected solution at 28 meters, is 6 per evening of dry gel.
It was 6c. The specific enzyme activity of the immobilized enzyme thus obtained was determined to be 2.94 mmoles/mole/mole when measured using DL-lysine methyl ester as a substrate at a substrate concentration of 2% by weight at 30°C and pH 6.0. The specific activity of the enzyme in solution was 60%. Example 9 DEAE-Bullanger 1.0, which had exactly the same properties as used in Example 1, was immersed in 35 cm of water, and Bromcyan 1.
.. Added 0 evenings.

4℃に冷却下、燈拝しながら混合液の州が1.10を保
つように州濃度の苛性ソーダ液を滴下し、pHの低下が
停止した後、ゲルを直ちに炉適し、0.1M濃度のホワ
酸緩衝液(pH8.0)ですばやく洗練した。
While cooling to 4°C, add a solution of caustic soda at a concentration of 1.10 to the mixed solution while keeping the pH at 1.10. After the pH has stopped decreasing, the gel is immediately heated to a furnace and heated to a concentration of 0.1M. It was quickly purified with phosphoric acid buffer (pH 8.0).

このようにして得たプロムシアンで活性化されたDEA
EープルランゲルをブロナーゼE8仇夕を含む0.1M
濃度のホウ酸緩衝溶液(pH80)10のZに移し、室
温で2時間ゆっくり往復振盤させて、プロナーゼEを固
定化した。未反応の活性基を不マ舌性化するためにプロ
ナーゼ固定化ゲルを10倍客の水で洗糠した後、1.■
け濃度のエタノールアミン溶液(pH8.0)に浸鰭し
、室温で2時間縄拝した。酵素固定化ゲルを炉別し、I
M濃度の塩化ナトリウムを含む、0.1M濃度の酢酸緩
衝溶液(pH4.0)と、IM濃度の塩化ナトリウムを
含む0.1M濃度のホウ酸緩衝溶液(pH80)および
冷水で繰り返し洗総した。洗糠液を回収し、回収液の2
8仇血における紫外吸収強度により算出した固定化酵素
量は、乾燥ゲル1.0夕当り31あ3であった。固定化
酵素の比活性をDL−リジメチルェステルを基質とし、
2の重量%の基質濃度で40℃、袖6.0において州ス
タツトで測定したところ312ムmoles/桝・mi
nで、溶液状酵素の比活性の52%であった。実施例
10 実施例6と全く同じ性質の8−HPTMA−プルランゲ
ル2.0夕を実施例8と同一条件で塩化シアネールと反
応させ、洗糠し、S−トリァジニル化B山HPTMA−
プルランゲルを得た。
DEA activated with Promcyan thus obtained
0.1M containing E-Pullangel and Bronase E8
Pronase E was immobilized by transferring it to a borate buffer solution (pH 80) with a concentration of 10 Z and gently shaking it back and forth at room temperature for 2 hours. After washing the pronase-immobilized gel with 10 times more water to immobilize unreacted active groups, 1. ■
The fins were immersed in an ethanolamine solution (pH 8.0) with a concentration of about 100 ml, and the fins were kept at room temperature for 2 hours. The enzyme-immobilized gel was separated into I
It was washed repeatedly with a 0.1 M acetate buffer solution (pH 4.0) containing an M concentration of sodium chloride, a 0.1 M borate buffer solution (pH 80) containing an IM concentration of sodium chloride, and cold water. Collect the washing bran liquid, and add 2 of the collected liquid.
The amount of immobilized enzyme calculated from the ultraviolet absorption intensity in blood was 31.3 per 1.0 of dry gel. The specific activity of the immobilized enzyme was determined using DL-lydimethyl ester as a substrate.
312 mmoles/mole as measured by State Stat at 40°C and sleeve 6.0 at a substrate concentration of 2% by weight.
n, which was 52% of the specific activity of the enzyme in solution. Example
10 8-HPTMA-Pullulan gel 2.0 having exactly the same properties as in Example 6 was reacted with cyanate chloride under the same conditions as in Example 8, washed with rice bran, and S-triazinylated HPTMA-
I got Pullulanger.

ストレプトマイセスフアェオクロモゲネスより得たグル
コースィソメラーゼ(110Unit/帆)60のcを
溶解したo.08M濃度のリン酸緩衝液25の‘にs−
トリアジニル化親水性ゲルを添加し、実施例8と同様の
操作で固定化および洗液を行った。0.1M濃度のグル
コースを含むリン酸緩衝溶液(0.09 M濃度、柵7
.ふ 0.08M濃度のマグネシウムイオン含有)50
の‘を用いて、?0℃で1時間猿盤し、この固定イQ酵
素の活性を測定したところ、固定化された酵素は627
山hitであった。
An o. s- in 25' of phosphate buffer with a concentration of 08M.
A triazinylated hydrophilic gel was added, and immobilization and washing were performed in the same manner as in Example 8. Phosphate buffer solution containing glucose at a concentration of 0.1 M (0.09 M concentration, fence 7
.. Contains magnesium ions at a concentration of 0.08M) 50
Using '? When the activity of this immobilized iQ enzyme was measured after being incubated at 0°C for 1 hour, the immobilized enzyme was 627
It was a mountain hit.

この固定化酵素を直径12肋の外套管付きカラムにつめ
、外套管に60℃の温水を循環させながら弘W/V%(
$M)濃度の結晶グルコース溶液(pH7.ふ 0.0
08M濃度のマグネシウムイオン含有)をSV=3.仇
r‐1で流入させ、流出液のフラクトース量をシスティ
ンーカルバゾール硫酸法で定量したところ、グルコース
より7ラクトースへの転換率は52%であった。実施例
11 実施例3で用いたのと同じCMープルランゲル2夕を4
0の‘のメタ/ール中に浸潰し、塩化水素ガスを用いて
常法によりメチルェステル化し、更に泡水ヒドラジンで
ヒドラジド化した。
This immobilized enzyme was packed into a column with a jacket tube with a diameter of 12 ribs, and while circulating hot water at 60°C through the jacket tube, Hiro W/V% (
$M) concentration of crystalline glucose solution (pH 7.0.0)
SV=3.08M concentration of magnesium ions). When the amount of fructose in the effluent was determined by the cysteine-carbazole sulfuric acid method, the conversion rate from glucose to 7-lactose was 52%. Example 11 The same CM-Purlangel 2 as used in Example 3 was used for 4
The mixture was immersed in 0.0 methanol and methylesterified by a conventional method using hydrogen chloride gas, and further hydrazidated with foamy hydrazine.

その後3%硝酸ソーダ溶液でアジド化し、直ちに市販ウ
レァーゼ1000サムナー単位を含むリン酸緩衝液25
の【に浸潰し、4℃で12時間ゆっくり振遼しながら固
定化反応を行った後、OM濃度のNaCそ溶液、0.1
M濃度のリン酸緩衝液(pH6.7)および蒸留水で固
定イ抗酵素を洗練した。得られた固定イは酵素の活性を
ファンスライスらの比色法で求めたところ500サムナ
ー単位であった。実施例 12 実施例5で使用したのと全く同じ性質のDEAEープル
ランゲル2.0夕を実施例8と同一の条件で塩化シアネ
ールと反応させ、実施例8と同様にし、洗濃し、S−ト
リアジニル化DEAE−プルランゲルを得た。
Thereafter, azidation was performed with 3% sodium nitrate solution, and immediately 25% of phosphate buffer containing 1000 Sumner units of commercially available urease was added.
After immobilization reaction was carried out with slow shaking at 4°C for 12 hours, a NaC solution with an OM concentration of 0.1
The immobilized enzyme was purified with M phosphate buffer (pH 6.7) and distilled water. The enzyme activity of the obtained immobilized enzyme was determined by the colorimetric method of Van Slice et al. and was found to be 500 Sumner units. Example 12 DEAE-Pullulan gel 2.0 having exactly the same properties as used in Example 5 was reacted with cyanate chloride under the same conditions as in Example 8, washed in the same manner as in Example 8, and S-triazinyl DEAE-pullulan gel was obtained.

Claims (1)

【特許請求の範囲】 1 プルランに二官能性化合物を作用せしめて得られる
架橋された水膨潤性プルランゲルと1般式X−R−Z〔
ただし、Xはハロゲンあるいはエポキシ基、Rは炭素数
1ないし20個の脂肪族基または(および)芳香族基を
含む炭化水素基で1個またはそれ以上の水酸基を含むこ
とができ、更に1個またはそれ以上の酸素原子のごとき
異種原子を介在させてもよく、Zはカルボキシル基、ス
ルホン酸基、リン酸基、グアニド基あるいはそれらの塩
、または一般式▲数式、化学式、表等があります▼ あるいは ▲数式、化学式、表等があります▼ (ここでR_1,R_2およびR_3はそれぞれ水素、
炭素数1から3までのアルキル基およびヒドロオキシア
ルキル基あるいはフエニル基である。 )で表わされる一,二,三あるいは四級アミノ基あるい
はその塩である。〕で表わされる化合物を反応して得ら
れるイオン性プルランゲルを担体として用いイオン吸着
法あるいは共有結合法によつて酵素を固定化することを
特徴とする固定化酵素の製造法。
[Claims] 1. Crosslinked water-swellable pullulan gel obtained by reacting pullulan with a bifunctional compound and 1. General formula X-R-Z [
However, X is a halogen or an epoxy group, and R is a hydrocarbon group containing an aliphatic group or (and) an aromatic group having 1 to 20 carbon atoms, which may contain one or more hydroxyl groups, and one or more hydroxyl groups. or more heteroatoms such as oxygen atoms may be interposed, and Z may be a carboxyl group, a sulfonic acid group, a phosphoric acid group, a guanide group, or a salt thereof, or a general formula▲Mathematical formula, chemical formula, table, etc.▼ Or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (Here, R_1, R_2 and R_3 are hydrogen, respectively.
These are an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group, or a phenyl group. ) or a salt thereof. A method for producing an immobilized enzyme, which comprises immobilizing the enzyme by an ion adsorption method or a covalent bond method using an ionic pullulan gel obtained by reacting a compound represented by the following as a carrier.
JP10299977A 1977-02-17 1977-08-26 Method for producing immobilized enzyme Expired JPS6019998B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10299977A JPS6019998B2 (en) 1977-08-26 1977-08-26 Method for producing immobilized enzyme
CA296,878A CA1093991A (en) 1977-02-17 1978-02-15 Enzyme immobilization with pullulan gel
US05/878,572 US4247642A (en) 1977-02-17 1978-02-16 Enzyme immobilization with pullulan gel
GB6246/78A GB1568328A (en) 1977-02-17 1978-02-16 Immobilized enzymes on pullulan carriers and preparation thereof
FR7804395A FR2381059A1 (en) 1977-02-17 1978-02-16 PROCESS FOR THE PREPARATION OF A FIXED ENZYME, THE FIXING VEHICLE BEING A PULLULANE GEL
NL7801736A NL7801736A (en) 1977-02-17 1978-02-16 METHOD OF PREPARING AN IMMOBILIZED ENZYME.
DE2806674A DE2806674C3 (en) 1977-02-17 1978-02-16 Immobilized enzymes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10299977A JPS6019998B2 (en) 1977-08-26 1977-08-26 Method for producing immobilized enzyme

Publications (2)

Publication Number Publication Date
JPS5437883A JPS5437883A (en) 1979-03-20
JPS6019998B2 true JPS6019998B2 (en) 1985-05-18

Family

ID=14342371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10299977A Expired JPS6019998B2 (en) 1977-02-17 1977-08-26 Method for producing immobilized enzyme

Country Status (1)

Country Link
JP (1) JPS6019998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222860A (en) * 1988-09-26 1990-09-05 Ind Technol Res Inst Alarm speech/time holder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222860A (en) * 1988-09-26 1990-09-05 Ind Technol Res Inst Alarm speech/time holder

Also Published As

Publication number Publication date
JPS5437883A (en) 1979-03-20

Similar Documents

Publication Publication Date Title
US4247642A (en) Enzyme immobilization with pullulan gel
US3959080A (en) Carrier matrix for the fixation of biochemically effective substances and process for the preparation thereof
JPS61254190A (en) Immobilization of enzyme on carrier
CA1289091C (en) Method for immobilization of enzyme and immobilized enzymes
JPS59113889A (en) Preparation of immobilized enzyme or immobilized microbial cell
Fahmy et al. Immobilization of Citrullus vulgaris urease on cyanuric chloride DEAE-cellulose ether: preparation and properties
US4239854A (en) Enzyme-immobilization carriers and preparation thereof
Lilly [4] Enzymes immobilized to cellulose
EP0175582A2 (en) Stabilized enzymes, their production and use
Kennedy et al. Immobilisation of biocatalysts by metal-link/chelation processes
JPS6019998B2 (en) Method for producing immobilized enzyme
Romero et al. Optimization of the pectinesterase/endo-D-polygalacturonase coimmobilization process
Simionescu et al. Bioactive polymers. III. Cellulose derivatives as support for biologically active compounds
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
US3956113A (en) Process for the manufacture of amino compounds fixed to carriers
US3833555A (en) Polysaccharide cyclic carbamate containing compounds
Roy et al. Chemically modified porous silica gel as a bioadsorbent and a biocatalyst
George et al. Flow rate dependent kinetics of urease immobilized onto diverse matrices
CA2058194A1 (en) Immobilized d-amino acid oxidase and its use for the preparation of medicaments
JP2873865B2 (en) Method for producing oligosaccharide by enzymatic decomposition of starch-containing material
Kálmán et al. A novel polyacrylamide-type support prepared by p-benzoquinone activation
JPS5950314B2 (en) Method for producing immobilized enzyme
KR950014967B1 (en) Preparation method of moranoline derivatives
US4670390A (en) Process for the immobilization of compounds comprising nucleophilic groups
CA1104110A (en) Enzyme-immobilization carriers and preparation thereof