JPS6019993B2 - Method for producing β-galactosidase - Google Patents

Method for producing β-galactosidase

Info

Publication number
JPS6019993B2
JPS6019993B2 JP6068082A JP6068082A JPS6019993B2 JP S6019993 B2 JPS6019993 B2 JP S6019993B2 JP 6068082 A JP6068082 A JP 6068082A JP 6068082 A JP6068082 A JP 6068082A JP S6019993 B2 JPS6019993 B2 JP S6019993B2
Authority
JP
Japan
Prior art keywords
gum
powder
galactosidase
culture
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6068082A
Other languages
Japanese (ja)
Other versions
JPS58179490A (en
Inventor
岑右 小林
端 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumiai Chemical Industry Co Ltd
Original Assignee
Kumiai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumiai Chemical Industry Co Ltd filed Critical Kumiai Chemical Industry Co Ltd
Priority to JP6068082A priority Critical patent/JPS6019993B2/en
Publication of JPS58179490A publication Critical patent/JPS58179490A/en
Publication of JPS6019993B2 publication Critical patent/JPS6019993B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、8ーガラクトシダーゼの改良製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing 8-galactosidase.

8−ガラクトシダーゼは、乳製品中に存在する乳糖の分
解酵素として近年食品や医薬品の分野にその利用が高ま
っているが、経済的な理由によりその利用範囲が限定さ
れており、より安価な酵素の製造法の関発が要望されて
いる。
8-Galactosidase has been increasingly used in the food and pharmaceutical fields in recent years as an enzyme that decomposes lactose present in dairy products, but its range of use has been limited due to economic reasons, and cheaper enzymes have been Involvement in manufacturing methods is requested.

一般に安価な酵素の生産には、自動化が行ないにくく、
かつ雑菌汚染の生じやすい固体培養法に比べ液体培養法
が有利とされている。
In general, it is difficult to automate the production of inexpensive enzymes.
In addition, liquid culture methods are considered to be more advantageous than solid culture methods, which tend to cause bacterial contamination.

これまで、糸状菌の生産する酸性Bーガラクトシダーゼ
にはアスベルギルス属に属する菌を生産菌として用いた
ものが多く見られる。アスベルギルス属の生産菌の生産
する8ーガラクトシダーゼに比べべニシリウム属の生産
菌の生産する3ーガラクトシダーゼは酵母特性が優れる
が、このべニシリウム属の菌株は液体培養では酵素の生
産力が著しく劣り、工業的に利用出釆なかった。また酵
母や細菌の生産する8−ガラクトシダーゼは乳糖により
誘導生産が可能であるが、これらはいずれも菌体内酵素
であり、培養液中に分泌されない。べニシリゥム属の生
産菌の3ーガラクトシダーゼも分泌性であるが乳糖によ
っては全く議導生産がおこなわれない。更に他の高分子
の植物性多糖類もべニシリウム属の簾株に対しては餌や
渡梓等の培養条件を変化させても、著しい酵素生産力を
示さない。本発明者等は安価な酵素の生産を目的として
検討した結果、培養時に培地中に‐2種類の物質を存在
させることにより酵素生産力を飛躍的に増加させること
を見し、出し、この知見に基づいて本発明をなすに至っ
た。すなわち本発明の製造法は、液体塔地中にガラクト
ースを構成成分の一部にもつ植物性多穫類と微細な水不
溶怪物質の共存させることよりなる。
Until now, acid B-galactosidase produced by filamentous fungi has often been produced using bacteria belonging to the genus Asbergillus. Compared to the 8-galactosidase produced by Asbergillus-producing bacteria, the 3-galactosidase produced by Venicillium-producing bacteria has superior yeast characteristics, but this Benicillium strain has significantly inferior enzyme productivity in liquid culture. However, it was not available for industrial use. Furthermore, although 8-galactosidase produced by yeast and bacteria can be induced and produced by lactose, these are both intracellular enzymes and are not secreted into the culture solution. Although 3-galactosidase produced by Benicillium-producing bacteria is also secretory, no secretion production occurs at all depending on lactose. Furthermore, other high-molecular plant polysaccharides do not show significant enzyme productivity for the blind strain of the genus Benicillium, even if the culture conditions such as feeding and feeding are changed. As a result of studies aimed at producing inexpensive enzymes, the present inventors discovered that the presence of two types of substances in the medium during culture dramatically increases enzyme productivity. The present invention has been made based on this. That is, the production method of the present invention consists of allowing a vegetable crop having galactose as a part of its constituent components and a fine water-insoluble monster substance to coexist in a liquid column.

通常、植物性多糖類は1〜10%(w/v)を溶解させ
微細な水不溶性物質は0.5〜5%(w/v)程度を懸
濁させることが好ましい。他に微生物生育の栄養源とし
て、有機および無機の窒素源、各種無機塩、ビタミン類
、必要に応じては若干の糟類を炭素源として添加するこ
とが好ましい。これら必須物質ならびに栄養源を含む培
地を殺菌後、ベニシリウム属のクーガラクトシダーゼ生
産菌を接種し、好気的条件下で液体培養を行う。培養温
度25〜35午0、培養期間3〜7日間で8−ガラクト
シダーゼは培地中に分泌蓄積される。培養は回転振とう
培養、通気境梓培養等通常の液体培養法が用いられる。
培地中に生産された8ーガラクトシダーゼは、培養終了
後、菌体及び固型物を分離した培養液区分から一般的な
酵素回収、精製手法によって回収できる。即ち、必要に
よっては濃縮した培養液区分に硫酸アンモニウム等の無
機塩による塩折や、アルコール、アセトン等の有機溶媒
により沈澱分離を行う。これらの沈澱物は少量の水に溶
解後凍結乾燥により酵素粉末とすることができる。更に
酵素の精製を行うにはイオン交換カラムクロマト法やゲ
ル炉過法、アフィニティークロマト法、露気永動法等の
酵素精製手段が用いられ純化が可能である。本発明に使
用する植物性多糖類は、この構成糖として必ずガラクト
ースを含むもので、一般に植物ガム質とよばれる多糖類
に分類されるものが多い。
Generally, it is preferable to dissolve 1 to 10% (w/v) of the vegetable polysaccharide and suspend about 0.5 to 5% (w/v) of the fine water-insoluble substances. In addition, as a nutrient source for the growth of microorganisms, it is preferable to add organic and inorganic nitrogen sources, various inorganic salts, vitamins, and if necessary, some pulp as a carbon source. After sterilizing the medium containing these essential substances and nutrient sources, Kugalactosidase-producing bacteria of the genus Benicillium are inoculated, and liquid culture is performed under aerobic conditions. 8-galactosidase is secreted and accumulated in the medium at a culture temperature of 25 to 35 p.m. and a culture period of 3 to 7 days. For culture, usual liquid culture methods such as rotary shaking culture and aerated culture are used.
The 8-galactosidase produced in the medium can be recovered from the culture solution section from which the bacterial cells and solid matter have been separated after the completion of the culture using general enzyme recovery and purification techniques. That is, if necessary, the concentrated culture solution is subjected to salting with an inorganic salt such as ammonium sulfate or precipitation separation using an organic solvent such as alcohol or acetone. These precipitates can be dissolved in a small amount of water and freeze-dried to obtain enzyme powder. Further purification of the enzyme can be achieved by using enzyme purification methods such as ion exchange column chromatography, gel filtration, affinity chromatography, and open air permanence. The plant polysaccharides used in the present invention always contain galactose as a constituent sugar, and many of them are generally classified as polysaccharides called plant gums.

例を挙げて説明すれば、ペクチン、ローカストビーンガ
ム、グアガム、アラビアゴム、タマリンドゴム、力ラヤ
ゴム、ガツテイゴム、トラガントコム、カラマツゴム、
穀類ゴム又はガラクトマンナゴム等である。これらの中
には水に溶解されることにより高粘度ゲルを生じるもの
もあるが、一般には数パーセント以下の誘導のための栄
養源としては使用できるし、必要によっては粘度低下の
ための処理を行って用)、ることもできる。通常これら
の植物性多榛の培地への添加量は1〜10%の範囲で使
用することが多いが、カラマツゴム等は更に高濃度で使
用することも可能である。次に水不溶性物質としては穀
類粉末、豆類粉末、穀類皮質粉末、豆類皮質粉末、舷芽
粉末、糠、乾燥酵母粉末、乾燥藻類粉末及びセルロース
粉末等の有機性物質と、タルク、クレー、ァルミナ、ケ
イソウ士、炭酸カルシウム、シリカ等の無機物質の粉末
化したものが挙げられる。
For example, pectin, locust bean gum, guar gum, gum arabic, tamarind gum, chikaraya gum, gatsutei gum, tragacanth gum, larch gum,
These include grain rubber or galactomanna gum. Some of these produce high viscosity gels when dissolved in water, but generally they can be used as nutritional sources for induction of less than a few percent, and if necessary, they can be treated to reduce viscosity. You can also go there. Generally, the amount of these plant-based polygonums added to the culture medium is often in the range of 1 to 10%, but larch gum and the like can also be used in higher concentrations. Next, water-insoluble substances include organic substances such as grain powder, legume powder, cereal cortex powder, legume cortex powder, bran powder, bran, dried yeast powder, dried algae powder, and cellulose powder, as well as talc, clay, alumina, Examples include powdered inorganic substances such as diatomite, calcium carbonate, and silica.

これらの水不溶性物質は粉末状にして培地に分散させる
ことが必要で、そのためには徴粉化されていなくてはな
らない。その粒径の規準はJIS筋42メッシュ通過粒
度、350ミクロン以下が有効で、粒蓬が小さいほど効
果が生じやすいと推定でき、好ましくは100ミクロン
〜数ミクロンの微粉末が使用に適している。これらのう
ち有機物費粉末例えば大豆粉末は従来から微生物の培地
成分として用いられているものであるが、それは炭素源
、窒素源、ビタミン源等の栄養源として加えるものであ
る。しかし本発明はこれらの栄養源(一般には水溶化す
る)とは異り、水不落性の状態で残存するいわゆる「粕
」又は「殻」の状態で堵地中に於ける物理的な効果を求
めるものである。これを熱水処理、アルコール処理、苛
性ソーダで処理したものを用いても同様に8ーガラクト
シダーゼ生産能を向上させる。有機の窒素源としては、
ベプトン、麦芽エキス、肉エキス、酵素エキス、コーン
ステイープIJカー等が一般的であり、無機の窒素源と
しては、硫酸アンモニウム、硝酸アンモニウム、硝酸ナ
トリウム等を挙げることができる。
These water-insoluble substances need to be powdered and dispersed in the culture medium, and for this purpose they must be powdered. The effective particle size standard is JIS 42 mesh particle size, 350 microns or less, and it can be assumed that the smaller the particle size, the more likely the effect will be produced, and preferably fine powder of 100 microns to several microns is suitable for use. Among these, organic powder such as soybean powder has been conventionally used as a medium component for microorganisms, and is added as a nutrient source such as a carbon source, nitrogen source, and vitamin source. However, unlike these nutritional sources (which are generally water-solubilized), the present invention uses so-called "lees" or "husks" that remain in an immovable state to produce physical effects in the soil. This is what we seek. The 8-galactosidase production ability can be similarly improved by using products treated with hot water, alcohol, or caustic soda. As an organic nitrogen source,
Beptone, malt extract, meat extract, enzyme extract, cornstap IJ car, etc. are common, and inorganic nitrogen sources include ammonium sulfate, ammonium nitrate, sodium nitrate, etc.

各種無機塩としてはリン酸一カリウム、リン酸二カリウ
ム、リン酸二ナトリウム等のリン酸基をもつ塩類や、塩
化マグネシウム、塩化ナトリウム、硫酸第1鉄筆の塩類
の添加が有効である。ビタミン類としては各種ビタミン
含有物として酵素エキス、麦芽エキス、クロレラエキス
等が挙げられる。糠類としては、ブドウ糖、ショ糖、麦
芽糖、デキストリン、澱粉等一般的糖類の添加も可能で
ある。本発明に用いる3−ガラクトシダーゼ生産菌はべ
ニシリウム属に属する8ーガラクトシダーゼ生産菌であ
れば全て用いることができるが、とり訳べニシリウム・
マルチカラーKU−0一132熱ま有効である。
As various inorganic salts, it is effective to add salts having a phosphate group such as monopotassium phosphate, dipotassium phosphate, disodium phosphate, etc., and salts such as magnesium chloride, sodium chloride, and dibasic sulfate. Examples of vitamins include enzyme extracts, malt extracts, chlorella extracts, and the like as various vitamin-containing substances. As the bran, it is also possible to add general sugars such as glucose, sucrose, maltose, dextrin, and starch. As the 3-galactosidase-producing bacteria used in the present invention, any 8-galactosidase-producing bacteria belonging to the genus Benicillium can be used.
Multicolor KU-0-132 heat is effective.

同菌は、特開昭54−10529び旨においてB−ガラ
クトシダーゼの生産に使用されているものと同一の株で
あるが、その菌学的性質を記載すると次の通りである。
各種鑑別培地上における観察記録は次の逸りである。
This bacterium is the same strain used for the production of B-galactosidase in JP-A-54-10529, and its mycological properties are as follows.
Observation records on various differentiation media are as follows.

〔塔地〕 〔生育状態〕麦芽汁寒
天培地生育は旺盛。
[Toji] [Growth condition] Growth is strong on wort agar medium.

培養5日目で菌糸は黄〜澄色となり、一部赤味を帯び、
中央部は盛り上ってZいる。緑灰色の分生胞子着生が一
部認められる。菌糸裏面は澄褐色。黄色の拡散性の色素
の溶出が認められる。培養7日目で菌叢中央部は赤燈色
となり、周囲は緑色の分生胞子が着生する。
Jポテト・ぶどう糖寒天培地生育は
中程度。
On the 5th day of culture, the mycelia became yellow to clear in color, with some parts tinged with red.
The central part is raised and there is a Z. Some greenish-gray conidia are observed. The underside of the hyphae is clear brown. Elution of a yellow diffusible dye is observed. On the 7th day of culture, the central part of the bacterial flora turns red, and green conidia are attached to the surrounding area.
J Potato Glucose Agar Medium Growth is moderate.

培養5日目で菌叢外側は黄色、内側は燈色となり、中央
部に緑色の分生胞子を着生する。
On the 5th day of culture, the outside of the bacterial flora turns yellow, the inside turns light brown, and green conidia grow in the center.

菌叢裏面は黄褐色、色素の溶出は認められない。培養7
日で澄色部菌叢2は分生子でおおわれる。ッアベック寒
天培地 生育は旺盛。
The back side of the bacterial flora is yellowish brown, and no pigment elution is observed. Culture 7
As the day progresses, the clear-colored area bacterial flora 2 becomes covered with conidia. Growth on Abec agar medium is vigorous.

菌叢は盛り上りビロード状となり、黄燈色、表面はひだ
状を呈し、やがて全面濃緑色〜緑灰色の分生胞子でおお
われる。2菌叢裏面は澄褐色を呈し、同色の拡散性色素
を溶出する。
The bacterial flora swells and becomes velvety, yellowish in color, with a pleated surface, and eventually the entire surface is covered with dark green to greenish-gray conidia. The back side of the 2 bacterial flora exhibits a clear brown color, and a diffusible pigment of the same color is eluted.

オートミール寒天培地 生育は中程度。oatmeal agar medium Growth is moderate.

培養5日で菌叢外側は白色、内側は黄化し、その上に薄
く緑灰色の分生胞3子着生が認められる。中央に一部短
かいくもの巣状の気菌糸の発生がみられる。菌叢裏面は
黄色、拡散性色素はない。培養7日目で全面線灰色分生
胞子でおおわれる。YpSs寒天培地
3生育は旺盛。
After 5 days of culture, the outside of the bacterial flora turned white and the inside turned yellow, and three pale greenish-gray conidia were observed on top. Short, spider-like aerial mycelium can be seen in the center. The underside of the bacterial flora is yellow, with no diffusible pigment. On the 7th day of culture, the entire surface is covered with linear gray conidia. YpSs agar medium
3 Growth is vigorous.

培養5日で菌叢は外側2〜3肌の白色菌糸を残し全面ビ
ロード状の分生胞子を多量に着生する。菌叢裏面は黄褐
色で拡散性色素は認められない。サブロ−寒天培地
4生育は貧弱。
After 5 days of culture, the bacterial flora leaves 2 to 3 white hyphae on the outside and a large number of velvety conidia settle on the entire surface. The underside of the bacterial flora is yellowish brown and no diffusible pigments are observed. Saburo agar medium
4 Growth is poor.

菌糸は薄く白色。培養5日で中央部のこふく状の菌塊に
緑色の分生胞子の着生が一部認められる。菌糸裏面は白
色。拡散性色素はない。コーンミール寒天培地 ・生育は極めて貧弱。
The mycelium is thin and white. After 5 days of culture, some green conidia were observed on the cuff-shaped bacterial mass in the center. The back side of the mycelium is white. There are no diffusible pigments. Cornmeal agar medium: Growth is extremely poor.

栄養菌糸は薄く白色。中央部に黄色の粘質物を出す。分
生胞子の着生は培養7日まで認められない。裏面は表面
外観とほとんど同様。拡散性色素はない。酵素YM寒天
堵地 生育は良好。
The vegetative hyphae are thin and white. A yellow sticky substance appears in the center. Adhesion of conidia is not observed until the 7th day of culture. The back side is almost the same as the front side. There are no diffusible pigments. Growth on Enzyme YM agar soil is good.

培養5日で菌叢はひだ状を呈し、外縁は1〜3肌の幅で
白色、内側は澄色で薄く、中央部に緑灰色の分生胞子を
着生。
After 5 days of culture, the bacterial flora had a pleated appearance, the outer edge was white with a width of 1 to 3 skins, the inner part was pale and clear, and greenish-gray conidia were attached to the center.

菌叢裏面に鯵出物がみられる。菌叢裏面は燈褐色となり
、同色の色素拡散がある。また、その他の生理的・生態
的性質としては、生育珊範囲: 3.5〜8.5
(最適4.5〜6.0)生育温度範囲: 20〜3
ぷ0(最適25〜30℃)亜硝酸培地での生育:
不能。
Anchovies can be seen on the back side of the bacterial flora. The underside of the bacterial flora is light brown, with pigment diffusion of the same color. In addition, as for other physiological and ecological properties, coral growth range: 3.5-8.5
(Optimal 4.5-6.0) Growth temperature range: 20-3
Growth on nitrite medium (optimum 25-30℃):
Impossible.

べニシラス: 単輪状。分生胞子
柄: 塔地より直立し先端が膨大。棟子:
8〜1も繊密に群生。分生胞子の連鎖:
円柱状。分生胞子: 球形
、2〜3山。糟面。であり、上記の株はべニシリゥム・
マルチカラーに属する。べニシリウム・マルチカラー(
Penicilli山mmulticolor)はザ・
ジヤパニーズ・フエデ′レーシヨン・力ルチヤー・コレ
クション・オブ・マイクロオルガニズムス(TheJa
paneseFederation of Cul
tme Collection ofMicroo
rganIsms)1957年版第81頁に記載されて
おり、上記のKU−○−132約ま、工業技術院微生物
工業技術研究所に受託番号第4375号として寄0託さ
れている。
Benicillus: Unicycle. Conidiophore: Stands upright from the base and has an enormous tip. Munnko:
8 to 1 are also densely clustered. Chain of conidia:
Cylindrical. Conidia: spherical, 2-3 mounds. Ruined face. and the above strain is Venicillium
Belongs to multicolor. Benicillium multicolor (
Penicilli Mountain (mmulticolor) is the
Japanese Federation Collection of Microorganisms (TheJa
paneseFederation of Cul
tme Collection of Microoo
rganIsms), 1957 edition, page 81, and the above-mentioned KU-○-132 compound has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology as accession number 4375.

本発明により得られた酵素の酵素的諸性質をべニシIJ
ウム・マルチカラーKU−○−132株に代表して次に
述べる。
The enzymatic properties of the enzyme obtained by the present invention were
The following is a representative example of the Umu multicolor KU-○-132 strain.

‘1) 基質特異性: 乳糖、0ーニトロフェニル−夕
3一D−ガラクトピラノシド及びPーニトロフ
エニルー8一Dーガラクトピラノシド等の基質に対して
は強い分解力を示 すが、PーニトロフェニルーQ一Dーガ ラクトピラノシドや、フエニルーB−D O −グルコピラノシドには全く作用しない。
'1) Substrate specificity: It shows strong degrading power for substrates such as lactose, 0-nitrophenyl-31D-galactopyranoside, and P-nitrophenyl-81D-galactopyranoside; It has no effect on nitrophenyl-Q1D-galactopyranoside or phenyl-B-DO-glucopyranoside.

‘21 至薄軸.作用pH: 至適pHは4.5であり
、PH2.5〜7.0の範囲内では酵素作用を示す。
'21 Very thin shaft. Action pH: The optimum pH is 4.5, and enzyme action is exhibited within the pH range of 2.5 to 7.0.

‘31至適温度、作用温度: 55℃に至適温度を有す
るが、75午0未満であれば酵素作用を有する。【41
pH安定法: pH2.5〜8.0に安定押領域をもて
)。
'31 Optimum temperature, action temperature: It has an optimal temperature at 55°C, but has enzymatic action if it is below 75:00. [41
pH stabilization method: has a stable range between pH 2.5 and 8.0).

【5} 金属イオンの影響: 鉄イオン(10‐3モル
)によりやや不安定となる。
[5} Effect of metal ions: Iron ions (10-3 mol) make it slightly unstable.

■ 等電点: アンフオラィンの軍気泳動法からのPI
値は5.37であった。
■ Isoelectric point: PI from the aerophoresis method of ampholine
The value was 5.37.

‘7} 分子量: ゲル炉過溶母位置からの推定分子量
は約120,000と考えられる。
'7} Molecular weight: The molecular weight estimated from the gel furnace superdissolved mother position is thought to be about 120,000.

本発明の方法によれば8ーガラクトシダーゼを高単位で
生産させることができる。
According to the method of the present invention, 8-galactosidase can be produced in high units.

すなわちべニシリゥム属の菌株が高い酵素生産力を発揮
するためには菌糸が培地全体にくまなく微細な状態で生
育することが必要で、この役割を350ミクロン以下の
水不溶性物質が果し、これとガラクトースを構成成分の
ひとつとする植物性多糖類との共存によりはじめて目的
とする高力価の3ーガラクトシダーゼの生産がなされた
といえる。一方この水不溶性物質が渚地中に存在下で植
物性多糖にかえて乳糖を譲導の為の栄養源に用いた場合
、菌糸の生育においては同様の効果がみられるが培養液
中に8ーガラクトシダーゼの分泌はみられない。次に試
験例を挙げて効果を説明する。尚8ーガラクトシダーゼ
の活性の測定は、0−ニト。フェニルー8一Dーガラク
トピラノシドを基質とし「370、pH4.5の条件下
で1分間に1仏molの0ーニトロフェ/−ルの生成を
もって1単位(IU)とした。試験例 1 500の‘の三角フラスコにリン酸1カリウム1g、硫
酸アンモニウム1g、コーンステイープリカー1g、酵
素エキス0.1gを入れ水100肌に溶解した基礎培地
(pH5.0)に下記の物質を添加しオートクレープ殺
菌後、ベニシリウム・マルチカラーKU−○−132朱
を接種し、30℃で5日間振とう培養を行ったのち培養
液の8ーガラクトシダーゼ活性を測定した。
In other words, in order for Benicillium strains to exhibit high enzyme productivity, it is necessary for hyphae to grow in a fine state throughout the medium, and this role is played by water-insoluble substances of 350 microns or less. It can be said that the desired high-potency 3-galactosidase was produced for the first time by coexisting with a vegetable polysaccharide containing galactose as one of its constituent components. On the other hand, when this water-insoluble substance is present in the beach and lactose is used as a nutrient source for transfer instead of vegetable polysaccharide, a similar effect is seen on the growth of mycelia, but 8 -No secretion of galactosidase is observed. Next, the effects will be explained using test examples. The activity of 8-galactosidase was measured using 0-nit. Using phenyl-81D-galactopyranoside as a substrate, 1 unit (IU) is defined as the production of 1 France mol of 0 nitropherne per minute under the conditions of 370 and pH 4.5. Put 1g of monopotassium phosphate, 1g of ammonium sulfate, 1g of cornstarch liquor, and 0.1g of enzyme extract into an Erlenmeyer flask, add the following substances to the basal medium (pH 5.0) dissolved in 100ml of water, and sterilize by autoclaving. Thereafter, Benicillium multicolor KU-○-132 vermilion was inoculated, cultured with shaking at 30°C for 5 days, and the 8-galactosidase activity of the culture solution was measured.

結果を第1表に示す。第1表 表中修1〜修13は比較区,修14〜修20は本発明区
である。
The results are shown in Table 1. In Table 1, 1 to 13 are comparative areas, and 14 to 20 are inventive areas.

試験例 2500M三角フラスコにアラビアゴム滋、リ
ン酸1カリウム1g、硫酸アンモニウム1g、コーンス
テイープリカー1g、酵素エキス0.1gを入れ100
の‘の水に溶かした培地(pH5.0)に下記の処理を
した脱脂大豆、酵母粉末、米糠の残笹(抽出粕)を添加
した。
Test example Put gum arabic, 1 g of monopotassium phosphate, 1 g of ammonium sulfate, 1 g of cornstarch liquor, and 0.1 g of enzyme extract in a 2500M Erlenmeyer flask.
Defatted soybeans, yeast powder, and rice bran residue (extracted lees) that had been treated as described below were added to a medium (pH 5.0) dissolved in water.

処理1 各滋に水100舷を加え100つ0に加溢して
水及び熱りK溶解物を溶出させたのち、遠心分離して水
区分をはずし務漣とする。
Processing 1: Add 100 ml of water to each tank and overflow to 100 ml to elute the water and hot K dissolved matter, then centrifuge to remove the water section and use the water.

処理2 各滋にアルコール100のZを加え激しく猿と
う抽出後遠心分離してアルコール区分をはずし残簿とす
る。
Process 2: Add 100% Z of alcohol to each juice, extract vigorously, and centrifuge to remove the alcohol category and keep the residue.

処理3 各蟹に0.がNaOH液looの‘を加え蛋白
質等を境梓抽出したのち遠心分離して0.州Nao瓜夜
区分をはずし、残澄を水にて懸濁中和後、再び遠心分離
して孫澄を集める。
Treatment 3: 0 for each crab. After adding NaOH solution LOOO' and extracting proteins etc., centrifugation is performed. After removing the sieve, the remaining liquid is suspended and neutralized with water, and then centrifuged again to collect the remaining liquid.

次いで、オートクレープ殺菌を行い、ベニシリゥム・マ
ルチカラーKU−○−132株を接種し、30q0にて
5日間振とう培養を行ったのち、培養液の3−ガラクト
シダーゼ活性を測定した。
Next, autoclave sterilization was performed, Benicillium multicolor KU-○-132 strain was inoculated, and after shaking culture was performed at 30q0 for 5 days, the 3-galactosidase activity of the culture solution was measured.

結果を第2表に示す。第2表 試験例 3 500の‘の三角フラスコにカラマツゴム聡、リン酸1
カリウム1g、硫酸アンモニウム1g、コーンステイー
プリカー1g、酵素エキス0.1gを入れ水100泌に
溶かした培地(pH5.0)に粉砕節別した脱脂大豆粉
末滋を加えオートクレ−ブ殺菌後べニシリウム・マルチ
カラーKU−○−132株を接種30q Cにて5日間
振とう培養を行った後培養液の8−ガラクトシダーゼ活
性を測定した。
The results are shown in Table 2. Table 2 Test Example 3 In a 500' Erlenmeyer flask, larch gum sato, phosphoric acid 1
To a culture medium (pH 5.0) containing 1 g of potassium, 1 g of ammonium sulfate, 1 g of cornstarch liquor, and 0.1 g of enzyme extract dissolved in 100 g of water, pulverized defatted soybean powder was added, and after sterilization in an autoclave, Benicillium. Multicolor KU-○-132 strain was inoculated and cultured with shaking at 30qC for 5 days, and then the 8-galactosidase activity of the culture solution was measured.

結果を第3表に示す。第3表 表中豚1〜修2は比較区,修3〜修7は本発明区である
o次に本発明の実施例を挙げるが、本発明はこの実施例
に限定されるものではない。
The results are shown in Table 3. In Table 3, pigs 1 to 2 are comparative areas, and 3 to 7 are inventive areas. Examples of the present invention are listed next, but the present invention is not limited to these examples. .

実施例 1 アラビアゴム3%、ベプトン1%、麦芽エキス1%、セ
ルロース粉末(42〜100メッシュ)2%、硫酸アン
モニウム0.5%、リン酸1カリウム0.5%、硫酸マ
グネシウム0.05%を含む培地(餌5.2)100の
‘を500の【客三角フラスコにとり、オートクレープ
殺菌後、ベニシリウム・マルチカラーKU−○−132
珠を接種し、30℃にて5日間回転振とう培養を行い、
8−ガラクトシダーゼを生産させた。
Example 1 3% gum arabic, 1% beptone, 1% malt extract, 2% cellulose powder (42-100 mesh), 0.5% ammonium sulfate, 0.5% monopotassium phosphate, 0.05% magnesium sulfate. Transfer 100 ml of culture medium (bait 5.2) into 500 Erlenmeyer flasks, sterilize by autoclave, and add Benicillium multicolor KU-○-132.
The beads were inoculated and cultured with rotary shaking at 30°C for 5 days.
8-galactosidase was produced.

培養液は130U/の【の8ーガラクトシダーゼ活性を
有していた。実施例 2 実施例1のアラビアゴムをカラマツゴムに、セルロース
粉末をケィソウ士粉末にかえて、以下同様の操作を行っ
た。
The culture fluid had an 8-galactosidase activity of 130 U/. Example 2 The same procedure as in Example 1 was carried out except that gum arabic was replaced with larch gum, and cellulose powder was replaced with diatom powder.

培養液の8ーガラクトシダ−ゼ活性は125U/の【で
あった。実施例 3 カラマツゴム4%、脱脂大豆粉末(100〜200メッ
シュ)3%、リン酸1カリ1.0%、硫酸アンモニウム
1.0%、酵素エキス0.1%を含む培地20夕を30
〆客のジャーファーメンターに入れ、120qCで20
分蒸気殺菌後、あらかじめ同培地400の‘に別培養し
ておいたべニシリウム・マルチカラーKU−○−132
森種菌を接種し、3ぴ0にて6日間通気燈梓培養を行っ
た。
The 8-galactosidase activity of the culture solution was 125 U/. Example 3 A medium containing 4% larch gum, 3% defatted soybean powder (100-200 mesh), 1.0% potassium phosphate, 1.0% ammonium sulfate, and 0.1% enzyme extract was mixed for 20 to 30 days.
〆Put in the customer's jar fermentor and heat at 120qC for 20 minutes.
After steam sterilization, Benicillium multicolor KU-○-132 was cultured separately in the same medium 400' in advance.
The Mori seed fungus was inoculated, and Aedato Azusa culture was carried out for 6 days at 300°C.

培養後、遠心分離にて菌体等の固型物を除去し、清澄な
培養ブロスを得た。この培養液は150山/私の3ーガ
ラクトシダーゼを有していた。次いで培養ブロス15〆
を分画分子量13,000の限外炉過膜で1/10まで
濃縮した。
After culturing, solid substances such as bacterial cells were removed by centrifugation to obtain a clear culture broth. This culture had 150 m/i 3-galactosidase. Next, 15% of the culture broth was concentrated to 1/10 using an ultrafilter membrane with a molecular weight cutoff of 13,000.

Claims (1)

【特許請求の範囲】 1 ペニシリウム属に属するβ−ガラクトシダーゼ生産
菌株を好気的条件下で液体培養し培養物からβ−ガラク
トシダーゼを採取するにあたり、培地中にガラクトース
を構成成分の一部にもつ植物性多糖類と、平均粒径42
メツシユ(350ミクロン)以下の水不溶性物質の存在
下で培養を行うことを特徴とするβ−ガラクトシダーゼ
の製造法。 2 植物性多糖類がベクチン、ローカストビーンガム、
グアガム、アラビアゴム、タマリンドガム、ガツテイゴ
ム、カラヤゴム、トラガントゴム、カラマツゴム、穀類
ゴム又はガラクトマンナゴム等の構成成分の一部にガラ
クトースを含む多糖類である特許請求の範囲第1項記載
のβ−ガラクトシダーゼの製造法。 2 平均粒径42メツシユ(350ミクロン)以下の水
不溶性物質が穀類粉末、豆類粉末、穀類皮質粉末、豆類
皮質粉末、胚芽粉末、糠、乾燥酵母粉末、乾燥藻類粉末
、セルロース粉末等有機性の物質である特許請求の範囲
第1項記載のβ−ガラクトシダーゼの製造法。 4 平均粒径42メツシユ(350ミクロン)以下の水
不溶性物質がタルク、クレー、アルミナ、ケイソウ土、
炭酸カルシウム、シリカ等の無機性の物質である特許請
求の範囲第1項記載のβ−ガラクトシダーゼの製造法。
[Scope of Claims] 1. When a β-galactosidase-producing strain belonging to the genus Penicillium is cultured in liquid under aerobic conditions and β-galactosidase is collected from the culture, a plant having galactose as a component in the medium is used. Polysaccharides with an average particle size of 42
A method for producing β-galactosidase, which comprises culturing in the presence of a water-insoluble substance with a size of 350 microns or less. 2 Plant polysaccharides include vectin, locust bean gum,
The β-galactosidase according to claim 1, which is a polysaccharide containing galactose as a part of its constituents, such as guar gum, gum arabic, tamarind gum, gum gatu, gum karaya, gum tragacanth, gum larch, gum gum, or gum galactomanna. manufacturing method. 2 Water-insoluble substances with an average particle size of 42 mesh (350 microns) or less are organic substances such as grain powder, legume powder, cereal cortex powder, legume coat powder, germ powder, bran, dried yeast powder, dried algae powder, cellulose powder, etc. A method for producing β-galactosidase according to claim 1. 4 Water-insoluble substances with an average particle size of 42 mesh (350 microns) or less include talc, clay, alumina, diatomaceous earth,
The method for producing β-galactosidase according to claim 1, which is an inorganic substance such as calcium carbonate or silica.
JP6068082A 1982-04-12 1982-04-12 Method for producing β-galactosidase Expired JPS6019993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068082A JPS6019993B2 (en) 1982-04-12 1982-04-12 Method for producing β-galactosidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6068082A JPS6019993B2 (en) 1982-04-12 1982-04-12 Method for producing β-galactosidase

Publications (2)

Publication Number Publication Date
JPS58179490A JPS58179490A (en) 1983-10-20
JPS6019993B2 true JPS6019993B2 (en) 1985-05-18

Family

ID=13149268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068082A Expired JPS6019993B2 (en) 1982-04-12 1982-04-12 Method for producing β-galactosidase

Country Status (1)

Country Link
JP (1) JPS6019993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9139201A (en) * 2000-11-17 2002-05-23 Mcneil-Ppc, Inc. Stable lactase compositions

Also Published As

Publication number Publication date
JPS58179490A (en) 1983-10-20

Similar Documents

Publication Publication Date Title
US4478939A (en) SPS, SPS-ase and method for producing SPS-ase
JP2020031580A (en) HIGH β-GLUCAN PRODUCING STRAINS, β-GLUCAN MANUFACTURING PROCESSES AND METHODS FOR SCREENING HIGH β-GLUCAN PRODUCING STRAINS
CN111117896B (en) Cordyceps militaris and application thereof in cordycepin production
DE1517775B2 (en) METHOD FOR PRODUCING A MILK-COAGULATING ENZYME
CN113373063B (en) Aspergillus oryzae ZA175 and application thereof
JPS6019993B2 (en) Method for producing β-galactosidase
JP4439641B2 (en) Novel mannanase, its production and use
EP1437050B1 (en) Process for producing brewer's yeast or brewer's yeast extract with improved flavour
CH641837A5 (en) BETA GALACTOSIDASE AND METHOD FOR THE PRODUCTION THEREOF.
CN111588037A (en) Euphausia superba oil phospholipid oral liquid with high EPA/DPA (eicosapentaenoic acid/docosahexaenoic acid)
EP0240741B1 (en) Process for the preparation of inulase
CN105754975A (en) Extraction of salt-resistant protease and application method for shortening fish sauce fermentation time
JP2005080502A (en) Food highly containing pyrroloquinoline quinone, and method for producing the same
CN115369054B (en) Bean pulp hydrolysate and preparation and application thereof
KR101549152B1 (en) Novel RHIZOPUS ORYZAE sp. DM07 from Daemaekjang
JP2954700B2 (en) Compound MS-347
US3058890A (en) Process for the preparation of pectolytic enzymes
JP3028856B2 (en) Production of oligosaccharides of the red alga Amanori seaweed
JPWO2003097851A1 (en) Method for producing optically active alkylcarboxylic acid derivative
KR0136299B1 (en) Cell lytic enzyme and its producing dicyma sp
KR100781053B1 (en) Novel Rhizopus sp. KSD-815 producing glucoamylase with high activity
JPH08258A (en) Microorganism belonging to genus candida and production of inositol with the same
JP3067904B2 (en) A new penicillium mold
JPS5912274B2 (en) Method for producing an enzyme that decomposes α-1,3-glucoside bonds
JPS5959198A (en) Novel preparation of antibiotic neoviridogriseins