JPS6019943A - Method of moderately controlling fuel injection quantity in diesel engine - Google Patents

Method of moderately controlling fuel injection quantity in diesel engine

Info

Publication number
JPS6019943A
JPS6019943A JP58125901A JP12590183A JPS6019943A JP S6019943 A JPS6019943 A JP S6019943A JP 58125901 A JP58125901 A JP 58125901A JP 12590183 A JP12590183 A JP 12590183A JP S6019943 A JPS6019943 A JP S6019943A
Authority
JP
Japan
Prior art keywords
amount
engine
fuel injection
allowable
accelerator opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58125901A
Other languages
Japanese (ja)
Other versions
JPH0575907B2 (en
Inventor
Masaomi Nagase
長瀬 昌臣
Kiyotaka Matsuno
松野 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58125901A priority Critical patent/JPS6019943A/en
Publication of JPS6019943A publication Critical patent/JPS6019943A/en
Publication of JPH0575907B2 publication Critical patent/JPH0575907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To effectually reduce the shock of acceleration and deceleration in a wide range of operation and prevent white smoke from being made, by gradually nearing the quantity of injected fuel or the degree of opening of an accelerator to an aimed value by every allowable alteration quantity in the acceleration or deceleration. CONSTITUTION:It is detected by sensors whether the temperature of cooling water of engine, the speed of a vehicle, the shifted position of a manual transmission and the revolution speed of the engine are higher or lower than prescribed values. The maximum of allowable increases alpha1, alpha2, alpha3, alpha4, which are determined when said quantities are lower than the prescribed values, and the maximum of allowable decreases beta1, beta2, beta3, beta4, which are determined when said quantities are higher than the prescribed values, are used as a final allowable increase alpha and a final allowable decrease beta. An aimed value Qi for the quantity of injected fuel is calculated depending on the revolution speed of the engine and the degree of opening of the accelerator. In the acceleration of the engine, the quantity of injected fuel is gradually augmented to the aimed value Qi by every allowable increase alpha. In the deceleration of the engine, the quantity of inected fuel is gradually reduced to the aimed value Qi by every allowable decreases beta. The quantity of injected fuel is thus moderately controlled. This results in reducing the shock of the acceleration and deceleration and preventing white smoke from being made by the engine furnished with an intake orifice.

Description

【発明の詳細な説明】 本発明は、ディーゼルエンジンの燃料噴射縁なまし制御
方法に係り、特に、手動変速機を備えた自動車用の電子
制御ディーゼルエンジンに用いるのに好適な、エンジン
回転速度とアクセル開度を含むエンジン運転状態に応じ
て燃料噴射量を決定ブるに際して、加減速時は燃料噴[
又はアクセル開度のなまし処理を行って加減速度を減少
させるようにしたディーゼルエンジンの燃料噴射量なま
し制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection edge smoothing control method for a diesel engine, and particularly to a method for controlling engine rotational speed and edge smoothing, which is suitable for use in an electronically controlled diesel engine for automobiles equipped with a manual transmission. When determining the fuel injection amount according to the engine operating condition including the accelerator opening, the fuel injection amount is determined during acceleration and deceleration.
The present invention also relates to an improvement in a fuel injection amount smoothing control method for a diesel engine that reduces acceleration/deceleration by smoothing the accelerator opening.

一般に、ディーゼルエンジンにおいては、高圧縮のため
シリンダ面圧力が高く、摩擦等による機械損失が大きい
。従って、アクセルペダルを全開にして減速する際に、
ガンリンエンジンに比べてエンジンブレーキのかかり方
が強く、特に、所定のエンジン回転速度以上でアクセル
ペダルが全開となった時に燃料カットを行う機能を備え
たディーゼルエンジンにおいては、エンジンブレーキに
よる負トルクが大きいので、自動車の走行速度が急速に
減速されてしまい、減速度が大きJぎて乗員に違和感を
与える恐れがあった。
Generally, in a diesel engine, cylinder surface pressure is high due to high compression, and mechanical loss due to friction and the like is large. Therefore, when decelerating by fully opening the accelerator pedal,
Compared to the Ganlin engine, engine braking is stronger, and in particular, in diesel engines that have a function to cut fuel when the accelerator pedal is fully opened at a predetermined engine speed or higher, the negative torque caused by engine braking is Because of the large size, the traveling speed of the automobile would be rapidly reduced, and there was a risk that the deceleration would be so large that it would make the occupants feel uncomfortable.

このような問題点を解消するべく、例えば、特開昭57
−28829で示される如く、急減速時に燃料噴射量の
減少速度を所定の制限値以下に制限することによって、
所謂なまし処理を行い、特にエンジンブレーキ時の減速
ショックを低Mlることが提案されている。
In order to solve these problems, for example,
-28829, by limiting the rate of decrease in fuel injection amount to below a predetermined limit value during sudden deceleration,
It has been proposed to perform so-called smoothing processing to reduce the deceleration shock, especially during engine braking.

しかしながら、エンジン回転速度、自動車の走行速度、
手動変速機の変速位置によって減速ショックのばらつき
があり、づべての運転領域で減速ショックを効果的に防
止するのは困難であった。
However, engine rotation speed, vehicle running speed,
There are variations in deceleration shock depending on the shift position of a manual transmission, and it has been difficult to effectively prevent deceleration shock in all driving ranges.

又、なまし処理や減速時に一旦ある燃料111割ωで止
めて、そこからゆっくり燃料噴射量を減少させる、所謂
ガード処理を行うと、特に吸入空気量を制御するだめの
吸気絞りを装着したディーゼルエンジンにおいては、白
煙が発Ii)ることがあった本発明は、前記従来の問題
点を解消するべくなされたもので、広い運転領域で加減
速ショックを効果的に低減することができ、しがも、白
煙の発生を防止することかできるディーゼル1ンジンの
燃料噴射量なまし制御方法を提供することを目的と覆る
Also, if you perform the so-called guard process, which stops the fuel at a certain 111% ω during smoothing or deceleration, and then slowly decreases the fuel injection amount from there, it will be especially difficult for diesel engines equipped with an intake throttle to control the amount of intake air. The present invention was made in order to solve the above-mentioned conventional problems in which white smoke was sometimes generated in engines, and it is possible to effectively reduce acceleration/deceleration shocks in a wide operating range. However, the purpose of this invention is to provide a fuel injection amount smoothing control method for a diesel engine that can prevent the generation of white smoke.

本発明は、エンジン回転速度とアクセル開度を含むエン
ジン運転状態に応じて燃料噴射量を決定するに際して、
加減速時は燃料噴gA量又はアクセル開度のなまし処理
を行って加減速度を減少させるようにしたディーゼルエ
ンジンの燃料11j[Ql 足なまし制御方法において
、エンジン冷却水温、車両の走行速度、変速機の変速位
置、エンジン回転速度、アクセル開度の変化量の少なく
ともいずれか一つに応じて、燃料噴射量またはアクセル
開度の許容変化量をめる手順と、エンジン回転速度、ア
クセル開度等から燃料噴tA量又はアクセル開度の目標
値をめる手順と、加減速中であることを判定づる手順と
、加減速中である時は、燃料噴射量又はアクセル開度を
、前記許容変化量ずつ、徐々に目標値に近づける手順と
、を含むことにより、前記目的を達成したものである。
The present invention provides the following advantages when determining the fuel injection amount according to engine operating conditions including engine speed and accelerator opening.
Diesel engine fuel 11j [Ql] in which the acceleration/deceleration is reduced by smoothing the fuel injection gA amount or accelerator opening during acceleration/deceleration. A procedure for determining the permissible amount of change in fuel injection amount or accelerator opening according to at least one of the following: a change in the gear position of a transmission, an engine rotational speed, and an accelerator opening; A procedure for determining the target value of the fuel injection amount or accelerator opening from etc., a procedure for determining whether acceleration or deceleration is being performed, and a procedure for determining the fuel injection amount or accelerator opening from the above-mentioned allowable value. The above objective is achieved by including a procedure of gradually approaching the target value by the amount of change.

又、本発明の実施態様は、前記燃料噴射量又はアクセル
開度の許容変化iを、エンジン冷却水温に応じた許容変
化量、車両の走行速度に応じた許容変化量、変速機の変
速位置に応じた許容変化量、エンジンの回転速度に応じ
た許容変化量の最大値とするようにして、前記許容変化
量を多数のパラメータからめる場合においても、適切な
許容変化量が選択されるようにしたものである。
Further, in an embodiment of the present invention, the permissible change i in the fuel injection amount or accelerator opening degree is determined by a permissible change amount according to the engine cooling water temperature, an allowable change amount according to the traveling speed of the vehicle, and a shift position of the transmission. The maximum value of the permissible change according to the engine rotational speed is set so that an appropriate permissible change can be selected even when the permissible change is determined from a large number of parameters. It is something.

更に、本発明の他の実施態様は、前記エンジン冷却水温
が低い場合は、前記許容変化量を大とするようにして、
白煙の発生が増加覆るのを防止するようにしたものであ
る。
Furthermore, in another embodiment of the present invention, when the engine cooling water temperature is low, the allowable change amount is increased,
This is to prevent the generation of white smoke from increasing.

又、本発明の他の実IM態様は、前記車両の走行速度が
高い場合は、前記許容変化量を大とするようにして、加
速時の車両運転性能の低下を防止すると共に、減速時の
白煙の発生を防止し、エンジンブレーキの効きを良くす
るようにしたものである。
Further, in another practical IM aspect of the present invention, when the traveling speed of the vehicle is high, the permissible change amount is increased to prevent deterioration of the vehicle driving performance during acceleration, and to prevent deterioration of the vehicle driving performance during deceleration. This prevents the generation of white smoke and improves the effectiveness of engine braking.

更に、本発明の他の実施態様は、前記変速機の変速位置
が低速側である場合には、前記許容変化量を小とづるよ
うにして、加減速ショックを緩和するようにしたもので
ある。
Furthermore, in another embodiment of the present invention, when the shift position of the transmission is on the low speed side, the allowable change amount is set small to alleviate acceleration/deceleration shock. .

又、更に、本発明の他の実施態様は、前記アクセル開度
の変化量が正方向に大である急加速時には、前記許容変
化量を大とし、一方、前記アクセル開度の変化量が負方
向に大である急減速時には、前記許容変化量を小とづる
ようにして、加速性を向上させると共に、エンジンブレ
ーキの効きを良くするようにしたものである。
Furthermore, in another embodiment of the present invention, during sudden acceleration when the amount of change in the accelerator opening is large in the positive direction, the allowable amount of change is made large; on the other hand, when the amount of change in the accelerator opening is negative When there is a sudden deceleration in the direction of the vehicle, the permissible amount of change is reduced to improve the acceleration performance and the effectiveness of the engine brake.

本発明においては、燃料噴射量又はアクセル開度のなま
し処理を行うに際して、その許容変化量を、エンジン冷
却水温、車両の走行速度、変速機の変速位置、エンジン
回転速度、アクセル開度の変化量の少なくともいずれか
一つに応じて、変化させるようにしたので、広い運転領
域で加減速ショックを効果的に防止プることができ、し
かも、白煙の発生を防止づることができる。
In the present invention, when performing smoothing processing on the fuel injection amount or accelerator opening, the allowable change amount is defined as changes in engine cooling water temperature, vehicle running speed, transmission shift position, engine rotation speed, and accelerator opening. Since the amount is changed according to at least one of the amounts, acceleration/deceleration shock can be effectively prevented over a wide driving range, and the generation of white smoke can also be prevented.

以下図面を参照して、本発明に係るディーゼルエンジン
の燃料噴射量なまし制御方法が採用された、手動変速機
を備えた自動車用電子制御ディーゼルエンジンの実施例
を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electronically controlled automobile diesel engine equipped with a manual transmission, in which the fuel injection amount smoothing control method for a diesel engine according to the present invention is adopted, will be described in detail below with reference to the drawings.

本実施例は、第2図に示づ如く、ディーゼルエンジン1
0の出力軸の回転と連動して回転される駆動軸14、該
駆動軸14に固着された、燃料を圧送するためのノイー
ドポンブ1’6(i2図は90°転回した状態を承り)
、燃料供給圧を調整づるための燃圧調整弁18、前記駆
動軸14に固着されたギヤ20の同転変位から、前記へ
ト動紬14が所定のクランク角度だけ回転づるのに要す
る時間を測定してディーゼルエンジン1oの回転速度を
検知するだめの、例えば電磁ピックアップからなる回転
速度センサ22、燃料噴射時期を&!I御づるためのロ
ーラリング24、該ローラリング24を駆動Jるための
タイマピストン26、該タイマピストン26の位置を制
御するためのタイミング制御弁28、前記タイマピスト
ン26の位置を検知するだめの、例えば可変インダクタ
ンスセンサからなるタイマ位置センサ30、燃料噴射量
を制御するためのスピルリング32、該スピルリング3
2を駆動するための、プランジャ34a、圧縮ばね34
b1コイル34c及びコイルケース34(1からなるス
ピルアクチュエータ34、前記プランジャ34の変位か
ら前記スピルリング32の位置を検出づるための、例え
ば可変インダクタンスセンサからなるスピル位置センサ
36、エンジン停止時に燃料をカットづるための燃料カ
ットソレノイド(以下、FCVと称する)38、プラン
ジ1740及びデリバリパルプ42を有(る燃料UJA
則ポンプ12と、該燃料噴射ポンプ12のデリバリバル
ブ42から吐出される燃料をディーゼルエンジン10の
副燃焼室内に噴射するためのインジェクションノズル4
4と、吸気管46を介して吸入される吸入空気の圧力を
検出するための吸気圧センサ48と、同じく吸入空気の
mWを検出するための吸気温センサ50と、ディーゼル
エンジン10のシリンダブロック10aに配設された、
エンジン冷却水温を検出するための水濡センサ52と、
運転者が操作づるアクセルペダル53の踏込み角度(以
下、アクセル開瓜と称する)を検出するためのアクセル
センサ54と、自動車の走行状態に合わせて変速ギヤ比
を変えるための手動変速機55と、該手動変速機55の
出力軸の回転速度から自動車の走行速度、即ち車速を検
出づるための車速センサ56と、前記手動変速機55の
変速位置。
In this embodiment, as shown in FIG. 2, a diesel engine 1
A drive shaft 14 that rotates in conjunction with the rotation of the output shaft of 0, and a noid pump 1'6 fixed to the drive shaft 14 for pumping fuel (Figure i2 shows a state rotated by 90 degrees).
From the fuel pressure adjustment valve 18 for adjusting the fuel supply pressure, and the simultaneous rotational displacement of the gear 20 fixed to the drive shaft 14, the time required for the hetodynamic pongee 14 to rotate by a predetermined crank angle is measured. The rotation speed sensor 22, which is composed of an electromagnetic pickup, for example, is used to detect the rotation speed of the diesel engine 1o, and detects the fuel injection timing &! A roller ring 24 for controlling the roller ring 24, a timer piston 26 for driving the roller ring 24, a timing control valve 28 for controlling the position of the timer piston 26, and a mechanism for detecting the position of the timer piston 26. , a timer position sensor 30 consisting of, for example, a variable inductance sensor, a spill ring 32 for controlling the fuel injection amount, and the spill ring 3
Plunger 34a and compression spring 34 for driving 2.
b1 A spill actuator 34 consisting of a coil 34c and a coil case 34 (1), a spill position sensor 36 consisting of, for example, a variable inductance sensor for detecting the position of the spill ring 32 from the displacement of the plunger 34, and a spill position sensor 36 for cutting fuel when the engine is stopped. The fuel UJA includes a fuel cut solenoid (hereinafter referred to as FCV) 38, a plunge 1740, and a delivery pulp 42.
an injection nozzle 4 for injecting fuel discharged from the delivery valve 42 of the fuel injection pump 12 into the sub-combustion chamber of the diesel engine 10.
4, an intake pressure sensor 48 for detecting the pressure of intake air taken in through the intake pipe 46, an intake temperature sensor 50 for similarly detecting the mW of the intake air, and a cylinder block 10a of the diesel engine 10. placed in
a water wetness sensor 52 for detecting engine cooling water temperature;
An accelerator sensor 54 for detecting the depression angle of an accelerator pedal 53 operated by the driver (hereinafter referred to as accelerator opening); a manual transmission 55 for changing the gear ratio according to the driving condition of the automobile; A vehicle speed sensor 56 for detecting the traveling speed of the automobile, that is, the vehicle speed from the rotational speed of the output shaft of the manual transmission 55, and the shift position of the manual transmission 55.

即ちシフト位置を検出づるためのシフト位置スイッチ5
7と、前記アクセルセンサ54出力から検知されるアク
セル開度、前記回転速度センサ22出力から検知される
エンジン回転速度、前記冷却水温センサ52出力から検
出されるエンジン冷却水温等により目標11R躬時期及
び計紳囁射鮒をめ、前記燃料噴射ポンプ12から、目標
噴q」時期に計算@銅量の燃料が噴射されるように、前
記タイミング制御弁28、スピルアクチュエータ34等
を制御する電子制御ユニット(以下、ECUと称する・
)58と、から構成されている。
That is, a shift position switch 5 for detecting the shift position.
The target 11R error timing and An electronic control unit that controls the timing control valve 28, the spill actuator 34, etc. so that the calculated amount of fuel is injected from the fuel injection pump 12 at the target injection timing q. (hereinafter referred to as ECU)
) 58.

図において、25はカムプレート、33は引張りばねで
ある。
In the figure, 25 is a cam plate, and 33 is a tension spring.

前記ECU38は、第3図に詳細に示す如く、各種演算
処理を行うための、例えばマイクロコンピュータからな
る中央処理ユニット(以下、CPUと称する)59と、
バッファ60を介して入力される前記冷却水温センサ5
2出力、バッファ62を介して入力される前記吸気温セ
ンサ50出力、バッファ64を介して入力される前記吸
気圧センサ48出力、バッファ66を介して入力される
前記アクセルセンサ54出力、バッファ67を介して入
力される前記車速センサ56出力、センサ駆動回路68
出力のセンサ駆動用周波数信号によって駆動され、セン
サ信号検出回路70を介して入ノjされる前記スピル位
置センサ36出力、同じくセンサ駆動回路72出力のセ
ンサ駆動用周波数信号によって駆動され、センサ信号検
出回路74を介して入力される前記タイマ位置センサ3
o出力等を順次取込むためのマルチプレクサ76と、該
マルチプレクサ76出力のアナログ信号をデジタル信号
に変換Jるためのアナログ−デジタル変換器(以下、A
/D変換器と称する)78と、該A/D変換器78出力
をCPU59に取込むための入出力ボート80と、バッ
ファ82を介して入力される前記シフト位置スイッチ5
7出力を取込むための入出力ポート84と、市記回転速
1良センサ22出力を波形整形して前記CPU59に取
込むための波形整形回路94と、クロック発生回路10
2と、CPL159における演算データ等を一時的に記
憶するための、電源異常時にバックアップするバックア
ップ用ランダムアクセスメモリ(以下、バックアップR
A Mと称する)を含むランダムアクセスメモリ(以下
、RAMと称りる)104と、制御プログラムや各種デ
ータ等を記憶J−るためのリードオンリーメモリ(以下
、ROMと相、する)106と、前記CPLI59にお
ける演算結果に応じて前記タイミング制御弁28を駆動
するための駆動回路108と、同じく前記CPU59に
おける演算結果に応じて前記FCV38を駆動づるため
の駆動回路109と、デジタル−アナログ変換器(以下
、D/A変換器と称する)110によりアナログ信号に
変換された前記CPU 59出ノjと前記スピル位置セ
ンサ36出力との偏差に応じて、前記スピルアクチュエ
ータ34を駆動するためのサーボ増幅器112及び駆動
回路114とから構成されている。
As shown in detail in FIG. 3, the ECU 38 includes a central processing unit (hereinafter referred to as "CPU") 59 made of, for example, a microcomputer for performing various arithmetic processes;
The cooling water temperature sensor 5 input via the buffer 60
2 outputs, the output of the intake air temperature sensor 50 which is input via a buffer 62, the output of the intake pressure sensor 48 which is input via a buffer 64, the output of the accelerator sensor 54 which is input via a buffer 66, and the buffer 67. The vehicle speed sensor 56 output is inputted via the sensor drive circuit 68
The output of the spill position sensor 36 is driven by an output frequency signal for driving the sensor and input via the sensor signal detection circuit 70, and the output of the spill position sensor 36 is driven by the frequency signal for driving the sensor output from the sensor drive circuit 72, and the sensor signal is detected. The timer position sensor 3 input via the circuit 74
A multiplexer 76 for sequentially taking in outputs, etc., and an analog-to-digital converter (hereinafter referred to as A) for converting the analog signal output from the multiplexer 76 into a digital signal.
/D converter) 78, an input/output port 80 for inputting the output of the A/D converter 78 to the CPU 59, and the shift position switch 5 inputted via the buffer 82.
7 output, a waveform shaping circuit 94 for waveform shaping the output of the city record rotation speed 1 good sensor 22 and inputting it into the CPU 59, and a clock generation circuit 10.
2, and a backup random access memory (hereinafter referred to as backup R) that is used to temporarily store calculation data etc. in the CPL 159 and is backed up in the event of a power failure.
A random access memory (hereinafter referred to as RAM) 104 including a RAM (hereinafter referred to as RAM), and a read-only memory (hereinafter referred to as ROM) 106 for storing control programs, various data, etc. A drive circuit 108 for driving the timing control valve 28 in accordance with the calculation result in the CPLI 59, a drive circuit 109 for driving the FCV 38 in accordance with the calculation result in the CPU 59, and a digital-to-analog converter ( A servo amplifier 112 for driving the spill actuator 34 according to the deviation between the output of the CPU 59 and the output of the spill position sensor 36, which is converted into an analog signal by a D/A converter (hereinafter referred to as a D/A converter) 110. and a drive circuit 114.

以下作用を説明する。The action will be explained below.

本実施例における燃料噴射量の算出は、@4図に示Jよ
うな流れ図に従って実行される。即ち、まずステップ1
10で、前記水温センサ52出力からめられるエンジン
冷却水温が所定値、例えば60℃未満であるか否かを発
見する。判定結果が正である場合、即ち、エンジン冷却
水温が低いと判断される時には、ステップ112に進み
、エンジン冷却水温に応じた許容増加量α1、許容減少
量β1として、それぞれ比較的大きな値、例えば0.5
.6.3を入れる。一方前出ステップ110の判定結果
が否である場合には、ステップ114に進み、エンジン
冷却水温に応じた許容増加量α1、許容減少量β1とし
て、それぞれ比較的小さな値、例えば0.20.0.1
3を入れる。
Calculation of the fuel injection amount in this embodiment is performed according to the flowchart shown in Figure 4. That is, first step 1
At step 10, it is determined whether the engine cooling water temperature determined from the output of the water temperature sensor 52 is less than a predetermined value, for example, 60°C. When the determination result is positive, that is, when it is determined that the engine coolant temperature is low, the process proceeds to step 112, and the allowable increase amount α1 and allowable decrease amount β1 according to the engine coolant temperature are set to relatively large values, e.g. 0.5
.. Enter 6.3. On the other hand, if the determination result in step 110 is negative, the process proceeds to step 114, where the allowable increase amount α1 and allowable decrease amount β1 according to the engine cooling water temperature are set to relatively small values, for example, 0.20.0. .1
Enter 3.

前出ステップ112又は114終了後、ステラ7116
に進み、前記車速センサ56の出力からめられる車速が
所定値、例えば40Km/l+未満であるか否かを判定
する。判定結果が正である場合には、ステップ118に
進み、車速に応じた許容増加量α2、許容減少量β2と
して、それぞれ比較的小さな値、例えば0.24.0.
16を入れる。一方前出ステップ116の判定結果が否
である場合、即ら、車速が高いと判断される時には、ス
テップ120に進み、車速に応じた許容増加量α2、許
容減少量β2として、それぞれ、比較的大ぎな値、例え
ば0.30.0.25を入れる。
After completing step 112 or 114, Stella 7116
Then, it is determined whether the vehicle speed determined from the output of the vehicle speed sensor 56 is less than a predetermined value, for example, 40 km/l+. If the determination result is positive, the process proceeds to step 118, where the allowable increase amount α2 and allowable decrease amount β2 according to the vehicle speed are set to relatively small values, for example, 0.24.0.
Enter 16. On the other hand, if the determination result in step 116 is negative, that is, if it is determined that the vehicle speed is high, the process proceeds to step 120, and relatively Enter a large value, for example 0.30.0.25.

前出ステップ118又は120終了後、ステップ122
に進み、前記シフト位置スイッチ57の出力に応じて、
手動変速機55の271〜位画が1速であるか否かを判
定する。判定結果が正である場合、即ち、シフト位置が
低速側の1速であると判断される時には、ステップ12
4に進み、変速位置に応じた許容増加歯α3、許容減少
量β3として、それぞれ、比較的小ざな値、例えば0.
24、0.16を入れる。一方前出ステップ122の判
定結果が否である場合には、ステップ126に進み、変
速位置に応じた許容増加量α3、許容減少量β3として
、それぞれ、比較的大きな値、例えば0.32.0.2
7を入れる。
After completing step 118 or 120, step 122
, and according to the output of the shift position switch 57,
It is determined whether or not the manual transmission 55 is in the first speed. If the determination result is positive, that is, if it is determined that the shift position is the first gear on the low speed side, step 12
4, the allowable increase tooth α3 and allowable decrease amount β3 according to the shift position are set to relatively small values, for example, 0.
24, enter 0.16. On the other hand, if the determination result in step 122 is negative, the process proceeds to step 126, where the allowable increase amount α3 and allowable decrease amount β3 according to the shift position are set to relatively large values, for example, 0.32.0. .2
Enter 7.

前出ステップ124又は126終了後、ステップ128
に進み、前記回転速度センサ′22の出力に応じて、エ
ンジン回転速度NEが所定値、例えば250 Orpm
を越えているか否かを判定する。
After completing step 124 or 126, step 128
Then, the engine rotation speed NE is set to a predetermined value, for example, 250 Orpm, according to the output of the rotation speed sensor '22.
Determine whether or not it exceeds.

判定結果が正である場合、即ち、エンジン回転速度が高
いと判断された時には、ステップ130に進み、エンジ
ン回転速度に応じた許容増加量α4、許容減少量β4と
して、それぞれ、比較的大きな値、例えば0.27.0
.20を入れる。一方前出ステップ128の判定結果が
否である場合には、ステップ132に進み、エンジン回
転速度に応じた許容増加量α4、許容減少量β4として
、それぞれ、比較的小ざな値、例えば0.24.0.1
6を入れる。
If the determination result is positive, that is, if it is determined that the engine rotational speed is high, the process proceeds to step 130, and relatively large values are set as the allowable increase amount α4 and allowable decrease amount β4 according to the engine rotational speed. For example 0.27.0
.. Enter 20. On the other hand, if the determination result in step 128 is negative, the process proceeds to step 132, where the allowable increase amount α4 and allowable decrease amount β4 according to the engine speed are set to relatively small values, for example, 0.24. .0.1
Enter 6.

前出ステップ130または132終了後、ステップ13
4に進み、次式に示プ如く、前記各許容増加量α1、α
2、α3、α4、許容減少量β1、β2、β3、β4の
最大値を、それぞれ最終的な許容増加量α、許容減少量
βとする。
After the above step 130 or 132 is completed, step 13
Proceed to step 4, and calculate each allowable increase amount α1, α as shown in the following formula.
2, α3, α4, and the maximum values of the allowable decreases β1, β2, β3, and β4 are the final allowable increases α and allowable decreases β, respectively.

α←MAx[α1、α2、α3、α4コ・・・(1) β←MAX[β1、β2、β3、β4」・・・(2) 前出ステップ134終了後、ステップ136に進み、市
記回転速度センサ22の出力からめられるエンジン回転
速度、前記アクセルセンサ54出力からめられるアクセ
ル開度等に応じて、燃料噴射量の目標値Q1を算出する
。次いでステップ138に進み、例えばアクセル開度が
増大中であることから、加速中であるか否かを判定する
α<-MAX A target value Q1 of the fuel injection amount is calculated according to the engine rotational speed determined from the output of the rotational speed sensor 22, the accelerator opening degree determined from the output of the accelerator sensor 54, and the like. Next, the process proceeds to step 138, where it is determined whether or not the vehicle is accelerating, for example because the accelerator opening is increasing.

判定結果が正である場合には、ステップ140に進み、
燃料噴射量を、加速判定の直前の燃料噴射量から前記目
標値Qiまで、前出ステップ134でめられた許容増加
量αずつ徐々に増加させることによって、燃料噴射量の
なまし処理を行う。
If the determination result is positive, proceed to step 140;
The fuel injection amount is smoothed by gradually increasing the fuel injection amount from the fuel injection amount immediately before the acceleration determination to the target value Qi by the allowable increase amount α determined in step 134 described above.

一方、前出ステップ138の判定結果が否である場合に
は、ステップ142に進み、例えばアクセル開度が減少
中であることから減速中であるか否かを判定する。判定
結果が正である場合には、ステップ144に進み、燃料
噴射量を、減速判定の直前の燃料噴9Afflから前記
目標値Q1まで、前記前出ステップ134でめられIC
許容減少量βずつ徐々に減少させることによって、燃料
噴射量のなまし処理を行う。
On the other hand, if the determination result in step 138 is negative, the process proceeds to step 142, where it is determined whether or not the vehicle is decelerating because, for example, the accelerator opening is decreasing. If the determination result is positive, the process proceeds to step 144, and the fuel injection amount is increased from the fuel injection amount 9Affl immediately before the deceleration determination to the target value Q1 determined in the aforementioned step 134.
The fuel injection amount is smoothed by gradually reducing it by the allowable reduction amount β.

一方、前出ステップ142の判定結果が否である場合、
即ち、加減速時のなまし処理を行う必要がないと判断さ
れる時には、燃料噴!)l量が前記目標値Ql と一致
Jるように制御する。
On the other hand, if the determination result in step 142 is negative,
In other words, when it is determined that there is no need to perform smoothing processing during acceleration and deceleration, fuel injection is performed! ) is controlled so that it matches the target value Ql.

このように、燃料噴射量の許容変化量α、βを、エンジ
ン冷却水温、車速、変速機の変速位置、エンジン回転速
度等に応じて変化させることによって、広い運転領域で
加減速ショックを効果的に低減することができる。又、
吸気絞り装置を装着したディーゼルエンジンにおいても
、白煙が発生することがない。
In this way, acceleration/deceleration shocks can be effectively suppressed over a wide driving range by changing the allowable changes α and β in the fuel injection amount according to engine cooling water temperature, vehicle speed, transmission position, engine rotational speed, etc. can be reduced to or,
Even in a diesel engine equipped with an intake throttle device, no white smoke is generated.

本実施例においては、前記各許容増加量α1、α2、α
3、α4、許容減少量β4、β2、β3、β、として、
それぞれ大小2つの値をとるようにしているので、制御
が単純である。尚、許容増加量や許容減少量を、エンジ
ン冷却水温等の関数どして、計算式でめることも可能で
ある。
In this embodiment, each allowable increase amount α1, α2, α
3. α4, allowable reduction amount β4, β2, β3, β,
The control is simple because each of them takes two values, large and small. Note that it is also possible to determine the allowable increase amount and allowable decrease amount using a calculation formula as a function of engine cooling water temperature, etc.

又、本実施例においては、許容変化量を、水温、車速、
変速位置、エンジン回転速度の4個のパラメータに応じ
て変化させ、最終的な許容変化量をその最大値としてい
るので、きめ細かな制御が行われ、しかも、許容変化量
の決定が容易である。
In addition, in this example, the allowable change amount is determined by water temperature, vehicle speed,
Since the change is made according to the four parameters of the shift position and the engine speed, and the final allowable change amount is the maximum value, fine control is performed and the allowable change amount is easy to determine.

尚、パラメータの数、最終的な許容変化量の法定方法等
は、これに限定されない。
Note that the number of parameters, the legal method for determining the final allowable change amount, etc. are not limited to these.

尚、前記実施例においては、加速中又は減速中は、それ
ぞれ−伸の許容増加量α、許容減少8βによるなまし処
理を行うようにしていたが、許容増加量α、許容減少量
βの値を、アクセル開度の変化量に応じて変え、例えば
、アクセル開度の変化量が正方向に大である急加速時に
は、前記許容増加量αを大とし、一方、前記アクセル開
度の変化量が負方向に大である急減速時には、前記許容
減少量βを小として、急加減速時により適切ななまし処
理が行われるようにするこ六も可能である。
In the above embodiment, during acceleration or deceleration, the smoothing process was performed using the allowable increase amount α and allowable decrease amount 8β of − elongation, respectively, but the values of the allowable increase amount α and allowable decrease amount β is changed according to the amount of change in the accelerator opening. For example, during sudden acceleration when the amount of change in the accelerator opening is large in the positive direction, the allowable increase amount α is set to be large, while the amount of change in the accelerator opening is During sudden deceleration when is large in the negative direction, it is also possible to set the allowable reduction amount β to a small value so that more appropriate smoothing processing can be performed during sudden acceleration and deceleration.

又、前記実施例においては、加減速時のなまし処理が燃
料噴射量に対して行われていたが、なまし処理を行う対
象はこれに限定されず、アクセル開度に対してなまし処
理を行うように構成することも可能である。
Further, in the above embodiment, the smoothing process during acceleration/deceleration was performed on the fuel injection amount, but the target to which the smoothing process is performed is not limited to this, and the smoothing process is performed on the accelerator opening degree. It is also possible to configure the system to perform the following.

前記実施例においては、本発明が、手動変速機を備えた
自動車用の電子制御ディーゼルエンジンに適用されてい
たが、本発明の適用範囲はこれに限定されず、自動変速
機を備えた自動車用電子制御ディーゼルエンジンや一般
のディーゼルエンジンにも同様に適用できることは明ら
かである。
In the above embodiments, the present invention was applied to an electronically controlled diesel engine for an automobile equipped with a manual transmission, but the scope of application of the present invention is not limited thereto, and is applicable to an automobile equipped with an automatic transmission. It is clear that the present invention can be similarly applied to electronically controlled diesel engines and general diesel engines.

以上説明した通り、本発明によれば、広い運転領域に亘
って、加減速ショックを効果的に低減することができる
。又、吸気絞り装置を装着したディーゼルニ[ンジンに
おいても、白煙の発生を低減することができる。従って
、重両運転性能および排気ガス浄化性能を向上すること
ができるという優れた効果を有する。
As explained above, according to the present invention, acceleration/deceleration shocks can be effectively reduced over a wide driving range. Further, even in a diesel engine equipped with an intake throttle device, the generation of white smoke can be reduced. Therefore, it has the excellent effect of improving heavy vehicle operation performance and exhaust gas purification performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るディーゼルエンジンの燃料噴射
量なまし制御方法の要旨を示ず流れ図、第2図は、本発
明が採用された、手動変速機を備えた、自動車用電子制
御ディーゼルエンジンの実施例の構成を示づ、一部ブロ
ック線図を含む断面図、第3図は、前記実施例で用いら
れいる電子制御ユニットの構成を示タブロック線図、第
4図は、同じく、燃料噴射量を算出するためのルーチン
の要部を示す流れ図である。 10・・・ディーゼルエンジン、 12・・・燃料噴射ポンプ、 22・・・回転速度セン
サ、52・・・水温センサ、 54・・・アクセルセン
サ、55・・・手動変速機、 56・・・車速センサ、
57・・・シフト位置スイッチ、 58・・・電子制御ユニット(ECtJ)。 代理人 高 矢 論 (ほか1名)
FIG. 1 is a flowchart without showing the gist of the fuel injection amount smoothing control method for a diesel engine according to the present invention, and FIG. 2 is an electronically controlled automobile diesel engine equipped with a manual transmission to which the present invention is adopted. FIG. 3 is a cross-sectional view showing the configuration of an embodiment of the engine, including a partial block diagram; FIG. 3 is a block diagram showing the configuration of the electronic control unit used in the embodiment; FIG. , is a flowchart showing the main part of a routine for calculating the fuel injection amount. DESCRIPTION OF SYMBOLS 10... Diesel engine, 12... Fuel injection pump, 22... Rotational speed sensor, 52... Water temperature sensor, 54... Accelerator sensor, 55... Manual transmission, 56... Vehicle speed sensor,
57...Shift position switch, 58...Electronic control unit (ECtJ). Agent Takaya Ron (and 1 other person)

Claims (6)

【特許請求の範囲】[Claims] (1)エンジン回転速度とアクセル開度を含むエンジン
運転状態に応じて燃料噴射量を決定するに際して、加減
速時は燃料噴射量又はアクセル開度のなまし処理を行っ
て加減速度を減少させるようにしたディーゼルエンジン
の燃料噴射量なまし制御方法において、エンジン冷却水
温、車両の走行速度、変速機の変速位置、エンジン回転
速度、アクセル開度の変化量の少なくともいずれか一つ
に応じて、燃料噴!11mまたはアクセル開度の許容変
化量をめる手順と、エンジン回転速度、アクセル開度等
から燃料噴射量又はアクセル開度の目標値をめる手順と
、加減速中であることを判定する手順と、加減速中であ
る時は、燃料噴射量又はアクセル開度を、前記許容変化
量ずつ、徐々に目標値に近づける手順と、を含むことを
特徴とするディーゼルエンジンの燃料噴射量なまし制御
方法。
(1) When determining the fuel injection amount according to engine operating conditions including engine speed and accelerator opening, when accelerating or decelerating, smoothing processing is performed on the fuel injection amount or accelerator opening to reduce acceleration/deceleration. In the fuel injection amount smoothing control method for a diesel engine, the fuel injection amount is adjusted according to at least one of the following: engine cooling water temperature, vehicle traveling speed, transmission shift position, engine rotation speed, and amount of change in accelerator opening. Spout! 11m or accelerator opening, a procedure for calculating the target value of the fuel injection amount or accelerator opening from the engine rotation speed, accelerator opening, etc., and a procedure for determining whether acceleration or deceleration is in progress. and, during acceleration/deceleration, a step of gradually bringing the fuel injection amount or accelerator opening degree closer to the target value by the permissible change amount. Method.
(2)前記燃料噴射量又はアクセル開度の許容変化量を
、エンジン冷却水温に応じた許容変化量、車両の走行速
度に応じた許容変化量、変速機の変速位置に応じた許容
変化蓋、エンジンの回転速度に応じた許容変化量の最大
値とづるようにした特許請求の範囲第1項に記載のディ
ーゼルエンジンの燃料萌射鯖なまし制御方法。
(2) The permissible amount of change in the fuel injection amount or accelerator opening is determined according to the engine cooling water temperature, the vehicle running speed, and the gear position of the transmission; 2. The fuel eruption annealing control method for a diesel engine according to claim 1, wherein the maximum value of the permissible change amount is determined according to the rotational speed of the engine.
(3)前記エンジン冷却水温が低い場合は、前記許容変
化量を大とづるようにした特許請求の範囲第1項又は第
2項に記載のディーゼルエンジンの燃料噴射量なまし制
御方法。
(3) The fuel injection amount smoothing control method for a diesel engine according to claim 1 or 2, wherein when the engine cooling water temperature is low, the allowable change amount is increased.
(4)前記車両の走行速度が高い場合は、前記許容変化
量を大とりるようにした特許請求の範囲第1項又は第2
項に記載のディーゼルエンジンの燃料噴射量なまし制御
方法。
(4) When the traveling speed of the vehicle is high, the permissible change amount is increased.
The fuel injection amount smoothing control method for a diesel engine described in .
(5)前記変速機の変速位置が低速側である場合には、
前記許容変化量を小とするようにした特許請求の範囲第
1項又は第2項に記載のディーゼルエンジンの燃料噴射
量なまし制御方法。
(5) If the shift position of the transmission is on the low speed side,
The fuel injection amount smoothing control method for a diesel engine according to claim 1 or 2, wherein the allowable change amount is made small.
(6)前記アクセル開度の変化量が正方向に大である急
加速時には、前記許容変化量を大とし、一方、前記アク
セル開度の変化量が負方向に大である急減速時には、前
記許容!化量を小とするようにした特許請求の範囲第1
項に記載のディーゼルエンジンの燃料噴射量なまし制御
方法。
(6) During sudden acceleration when the amount of change in the accelerator opening is large in the positive direction, the allowable amount of change is set to be large; on the other hand, during sudden deceleration when the amount of change in the accelerator opening is large in the negative direction, the above-mentioned Acceptable! Claim 1 in which the amount of quantification is reduced
The fuel injection amount smoothing control method for a diesel engine described in .
JP58125901A 1983-07-11 1983-07-11 Method of moderately controlling fuel injection quantity in diesel engine Granted JPS6019943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125901A JPS6019943A (en) 1983-07-11 1983-07-11 Method of moderately controlling fuel injection quantity in diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125901A JPS6019943A (en) 1983-07-11 1983-07-11 Method of moderately controlling fuel injection quantity in diesel engine

Publications (2)

Publication Number Publication Date
JPS6019943A true JPS6019943A (en) 1985-02-01
JPH0575907B2 JPH0575907B2 (en) 1993-10-21

Family

ID=14921708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125901A Granted JPS6019943A (en) 1983-07-11 1983-07-11 Method of moderately controlling fuel injection quantity in diesel engine

Country Status (1)

Country Link
JP (1) JPS6019943A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250873A2 (en) * 1986-06-27 1988-01-07 Hella KG Hueck &amp; Co. Automotive vehicle driving speed adjustment device
US5090379A (en) * 1990-06-04 1992-02-25 Toyota Jidosha Kabushiki Kaisha Fuel injection device of an engine for a vehicle
EP0924417A3 (en) * 1997-12-22 2000-10-18 Toyota Jidosha Kabushiki Kaisha Transient injection quantity control apparatus and method of diesel engine
KR20040051895A (en) * 2002-12-13 2004-06-19 현대자동차주식회사 Apparatus for emission control of diesel vehicle and method thereof
EP2428671A2 (en) 2010-09-13 2012-03-14 Volkswagen Aktiengesellschaft Method and device for controlling a combustion engine
WO2012089293A1 (en) 2010-12-29 2012-07-05 Volkswagen Aktiengesellschaft Method and device for controlling an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728829A (en) * 1980-07-29 1982-02-16 Nissan Motor Co Ltd Controller for diesel engine
JPS59224426A (en) * 1983-06-02 1984-12-17 Nissan Motor Co Ltd Fuel controller for diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728829A (en) * 1980-07-29 1982-02-16 Nissan Motor Co Ltd Controller for diesel engine
JPS59224426A (en) * 1983-06-02 1984-12-17 Nissan Motor Co Ltd Fuel controller for diesel engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250873A2 (en) * 1986-06-27 1988-01-07 Hella KG Hueck &amp; Co. Automotive vehicle driving speed adjustment device
US5090379A (en) * 1990-06-04 1992-02-25 Toyota Jidosha Kabushiki Kaisha Fuel injection device of an engine for a vehicle
EP0924417A3 (en) * 1997-12-22 2000-10-18 Toyota Jidosha Kabushiki Kaisha Transient injection quantity control apparatus and method of diesel engine
KR20040051895A (en) * 2002-12-13 2004-06-19 현대자동차주식회사 Apparatus for emission control of diesel vehicle and method thereof
EP2428671A2 (en) 2010-09-13 2012-03-14 Volkswagen Aktiengesellschaft Method and device for controlling a combustion engine
DE102010045083A1 (en) 2010-09-13 2012-03-15 Volkswagen Ag Method and device for controlling an internal combustion engine
US9279381B2 (en) 2010-09-13 2016-03-08 Volkswagen Ag Method and device for controlling an internal combustion engine
WO2012089293A1 (en) 2010-12-29 2012-07-05 Volkswagen Aktiengesellschaft Method and device for controlling an internal combustion engine
DE102010064344A1 (en) 2010-12-29 2012-07-05 Volkswagen Ag Method and device for controlling an internal combustion engine

Also Published As

Publication number Publication date
JPH0575907B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
JPS6123377B2 (en)
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
JPH07108630B2 (en) Control device for vehicle with automatic transmission
JPH0751906B2 (en) Method and apparatus for controlling deceleration operation of internal combustion engine
JPS6019943A (en) Method of moderately controlling fuel injection quantity in diesel engine
JP2849322B2 (en) Engine fuel injection control device
JPH051380B2 (en)
JPH11141380A (en) Idle speed control device for on-vehicle internal combustion engine
JPH0465222B2 (en)
JP3709644B2 (en) Torque control device for internal combustion engine
JPH0320578B2 (en)
JPS59122732A (en) Fuel injection quantity control method of diesel engine for vehicle
JPH051378B2 (en)
JPH0646014B2 (en) Idle speed control method for vehicle engine
JPH0361014B2 (en)
JPH0245631A (en) Fuel feed controller for internal combustion engine
JPH051381B2 (en)
EP0913565B1 (en) Apparatus for controlling engine torque in a vehicle
JP2566144B2 (en) Throttle valve control device for internal combustion engine
JPS59183039A (en) Fuel control method for engine used in vehicle
JPH07150998A (en) Control method for fuel injection quantity of diesel engine
JP2841965B2 (en) Fuel injection control device for vehicle diesel engine
JPH09217639A (en) Torque control device of internal combustion engine
JPS6032960A (en) Fuel injection moderating control method for diesel engine
JPH04330349A (en) Fuel injecting device