JPS60198458A - Column for chromatography - Google Patents

Column for chromatography

Info

Publication number
JPS60198458A
JPS60198458A JP59055770A JP5577084A JPS60198458A JP S60198458 A JPS60198458 A JP S60198458A JP 59055770 A JP59055770 A JP 59055770A JP 5577084 A JP5577084 A JP 5577084A JP S60198458 A JPS60198458 A JP S60198458A
Authority
JP
Japan
Prior art keywords
column
chromatography
grain size
crystal particles
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59055770A
Other languages
Japanese (ja)
Inventor
Tsutomu Kawasaki
力 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP59055770A priority Critical patent/JPS60198458A/en
Publication of JPS60198458A publication Critical patent/JPS60198458A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To increase the limiting flow rate for supplying a fluid sample, and to make quick analysis by using hydroxy-apatite [Ca10(PO4)6(OH)2] having a specific grain size range as a stationary material 3 of column chromatography. CONSTITUTION:A stationary material 3 is packed in a column 1 of chromatography and a fluid sample is supplied thereto through a sample port 5. The sample is separated by the column 1 and is discharged through an outflow port 6. Hydroxy-apatite crystal particles are used as the stationary material. The grain size thereof is made to contain small grain sizes below <=10mum stokes equiv. diameter or even if such small particles are contained therein, the mixing rate thereof is made <=1%. The preferable grain size is in the stokes grain size range of about 20-100mum. The limiting flow rate for supply is therefore increased if the hydroxy-apatite having such grain size is used and since the sepn. accuracy is good, a molecular sepn. of DAN.RAN, etc, and sepn. of the high molecular components in blood are efficiently effected.

Description

【発明の詳細な説明】 本発明カラムクロマトグラフィ(Column Chr
omatograpbay)、即ち固定相として固体物
質を詰めた直管形・らせん形・U字管形等のカラム(分
離管)を用いるクロマトグラフィのカラムに関する。
Detailed Description of the Invention Column chromatography of the present invention (Column Chr.
The present invention relates to a chromatography column using a column (separation tube) such as a straight tube, a spiral column, or a U-shaped column packed with a solid substance as a stationary phase.

更に詳しくは、上記固体固定相物質としてハイドロキシ
アパタイト(Galo (PO,)6 (OH)2 )
の結晶粒子群を充填したカラムの改善に係る。
More specifically, hydroxyapatite (Galo (PO,)6 (OH)2) is used as the solid stationary phase material.
This invention relates to an improvement in a column packed with a group of crystal particles.

以下便宜上、上記のハイドロキシアパタイト結晶粒子群
をHA結晶粒子と、又該結晶粒子を充填したカラムをH
Aカラムと略記する。
Hereinafter, for convenience, the above hydroxyapatite crystal particle group will be referred to as HA crystal particles, and the column filled with the crystal particles will be referred to as HA crystal particles.
It is abbreviated as A column.

HAカラムを用いるクロマトグラフィはノーペル賞受賞
者チゼリウス等により開発され(A、Ti5e1ius
、S、Hjerten、and O,Levin、Ar
ch、Biochem、旧0phys、、肋、132(
1115El) ) 、鋭敏な分解能を有するものであ
り、爾来今日まで蛋白質・核酸等の分離や精製の手段と
して活用されている。
Chromatography using an HA column was developed by Nopel Prize winner Chiselius et al.
, S. Hjerten, and O. Levin, Ar.
ch, Biochem, old 0phys,, rib, 132 (
1115El)), which has a sensitive resolution, has been used as a means for separating and purifying proteins, nucleic acids, etc. ever since then.

ところでHAカラムは、液体又はガスとしての流体試料
のカラム内流量(カラム内単位断面積・単位時間当りの
流量)をある限界流量レベル或はそれ以下に押えた状態
で使用する限りに於ては流体試料のカラム内流通は継続
して安定になされるけれども、カラム内への流体試料の
供給圧力を更に大きくして流体試料のカラム内流量を」
二記のある限界流量レベル以」−に無理に増大させよう
としても、流体試料のカラム内流量は逆に限界流縫レベ
ルよりも大幅に落るか、又は流体試料のカラム内流通が
殆ど止まる事象を生じてクロマトグラフィの実行は不能
となる。
By the way, as long as the HA column is used with the flow rate (flow rate per unit cross-sectional area in the column/unit time) of a fluid sample in the column as a liquid or gas kept at or below a certain critical flow rate level, Although the flow of the fluid sample in the column continues and is stable, the supply pressure of the fluid sample into the column is further increased to increase the flow rate of the fluid sample in the column.
Even if you try to forcefully increase the flow rate above the critical flow rate level specified in 2 above, the flow rate of the fluid sample in the column will drop significantly below the critical flow level, or the flow of the fluid sample in the column will almost stop. An event occurs that makes it impossible to perform chromatography.

従ってHAカラムを利用するクロマトグラフィはカラム
内へ流し得る流体試料の最大流量が本来的に上記の限界
流量レベルまでと制限されたものとなる。而も従来のH
Aカラムのその限界流量レベルはかなり低いものであっ
た。そのために、従来のHAカラムを利用するクロマト
グラフィは実際上、1回のクロマトグラフィを行うのに
かなりの時間を必要とすることが多いという欠点があっ
た。
Therefore, chromatography utilizing HA columns is inherently limited in the maximum flow rate of fluid sample that can flow into the column up to the critical flow level described above. However, the conventional H
The critical flow level of the A column was quite low. Therefore, in practice, chromatography using conventional HA columns has the disadvantage that it often takes a considerable amount of time to perform one chromatography.

本発明はこのようなHAカラムについてその限界流量レ
ベルを従来のものよりも大幅にレベルアップさせて迅速
なりロマトグラフィの実行を可能にすることを目的とす
るもので、固体固定和物質としてHA結晶粒子群を充填
したクロマトグラフィ用カラムに於て、」二記充填HA
結晶粒子群が、ストークス等価球直径で10p、m以下
の小径結晶粒子は実質的に含まないか、含んでもその混
入率が1重量%以下のものであることを特徴とするクロ
マ)・グラフィ用カラムを要旨とする。
The purpose of the present invention is to significantly increase the critical flow level of such an HA column compared to conventional ones, thereby enabling rapid chromatography. In a chromatography column packed with particle groups,
For use in chromatography, the crystal particle group is characterized in that it does not substantially contain small-diameter crystal particles with a Stokes equivalent spherical diameter of 10p, m or less, or even if it does, the contamination rate thereof is 1% by weight or less. The column is the gist.

即ち本発明者はHAカラムの限界流量レベルを可及的に
レベルアップさせるべく種々の工夫・実験を試みたが、
そのなかで上記のようにカラム内充填HA結晶粒子群に
ついてこれを予め分別処理する等によりストークス等価
球直径(以下STと略記する)で10gm以下の小径結
晶粒子分は実質的に含まないように処置したもの、或は
含んでいてもその混入率を1重量%以下に押えたもの、
にした場合にはそのHAカラムは限界流量レベルが従来
のものよりも極めて大幅にレベルアップしたものとなる
ことを知見して」−記の本発明を完成したものである。
That is, the present inventor tried various ideas and experiments to raise the critical flow level of the HA column as much as possible, but
Among these, as mentioned above, by pre-separating the HA crystal particles packed in the column, etc., it is possible to substantially exclude small-diameter crystal particles with a Stokes equivalent spherical diameter (hereinafter abbreviated as ST) of 10 gm or less. treated, or even if it does contain it, the contamination rate is kept below 1% by weight,
The present invention was completed based on the finding that when the HA column was used, the critical flow rate level of the HA column was significantly higher than that of the conventional column.

上記に於てカラム内充填HA結晶粒子群中に10JLm
 S T以下の小径結晶粒子分が1重量%以上含まれる
場合には限界流量レベルのレベルアップ効果は低いか、
或は全く得られない。
In the above, 10 JLm was added to the HA crystal particles packed in the column.
If 1% by weight or more of small-diameter crystal particles smaller than ST is included, is the effect of raising the critical flow rate level low?
Or not at all.

又本発明で用いる、10ILmST以下の小径結晶粒子
分を実質的に含まない、或は含んでもその混入率が1重
量%以下のHA結晶粒子群の平均粒子径は、20gm5
T以上・ 100gm5T以下、好ましくは30pLm
ST以上・60#LmST以下がよい。
Furthermore, the average particle diameter of the HA crystal particle group used in the present invention, which does not substantially contain small-diameter crystal particles of 10 ILmST or less, or even if it does, has a mixing rate of 1% by weight or less, is 20 gm5.
T or more/100gm5T or less, preferably 30pLm
Preferably above ST and below 60#LmST.

平均粒子径が大き過ぎると粗大粒子分の混入率が大きく
なり、カラム内光*HA結晶粒子群の粒子間の間隙が増
加し、同時に間隙の大きさのバラツキをも増すことにな
り、その結果カラム内での流体試料の流れに不均一性を
生じたり、カラム内を流れる流体試料と充填HA結晶粒
子群との熱力学的平衡が準静的クロマト過程に於て破れ
たりしてクロマト分離能が低下してしまう。
If the average particle diameter is too large, the mixing rate of coarse particles will increase, and the gaps between the particles in the optical*HA crystal particle group in the column will increase, and at the same time, the variation in the size of the gaps will also increase. Chromatographic separation may be affected by non-uniformity in the flow of the fluid sample within the column, or by breaking the thermodynamic equilibrium between the fluid sample flowing within the column and the packed HA crystal particles during the quasi-static chromatographic process. will decrease.

実施例 (1)従来のHAカラムに充填使用されているHA結晶
粒子群を3種類A・BΦC入手し、各々の結晶粒子粒径
分布を調べた。−力木発明用として上記のうちBのHA
結晶粒子群を元粒子群としてこれを分別処理することに
より10gm5T以下の小径結晶粒子分を除去処理して
、該小径結晶粒子分を実質的に含まない、或は含んでも
その混入率が1重量%以下であるHA結晶粒子群を調製
した。
Example (1) Three types of HA crystal particles A and BΦC, which are used to fill conventional HA columns, were obtained, and the size distribution of each crystal particle was examined. - HA of B among the above for strength wood invention
By separating the crystal grain group as the original particle group and removing small-diameter crystal particles of 10 gm5T or less, the product substantially does not contain the small-diameter crystal particles, or even if it does, the contamination rate is 1 weight. % or less of HA crystal particles were prepared.

これを粒子群りとしてその粒径分布を調べた。以」−4
種の粒子群A−Dについての粒径分布を夫々第1図A−
I)、及び表1に示す。
This was used as a particle group and its particle size distribution was investigated. I''-4
The particle size distributions of seed particle groups A-D are shown in Figure 1A-
I) and shown in Table 1.

表 1 (2)上記4種のHA結晶粒子群A−DのうちA・B−
Cについては夫々第2図のように内径1cm(内空断面
積約0.79cm2)のガラス製の丸パイプカラム容体
2に詰めて、又りについては内径ICl11のステンレ
ス製の丸パイプカラム容体2に詰めて夫々有効長文= 
30c+oの直管形HAカラム1を構成し、夫々カラム
A−B−C−Dとした。3は充填HA結晶粒子群、4・
4はフィルタ、5命6は夫々流体試料供給口と同流出口
である。
Table 1 (2) Among the above four types of HA crystal particle groups A-D, A and B-
As shown in Fig. 2, C is filled in a round pipe column container 2 made of glass with an inner diameter of 1 cm (inner cross-sectional area of about 0.79 cm2), and a round pipe column container 2 made of stainless steel with an inner diameter of ICl 11 is packed in the case of C. Effective long sentences in each =
A straight tube type HA column 1 of 30c+o was constructed and designated as columns A-B-C-D, respectively. 3 is a group of packed HA crystal particles, 4.
4 is a filter, and 5 and 6 are a fluid sample supply port and an outflow port, respectively.

而して上記の各カラムA−Dについて夫々流体として稀
薄リン酸緩衝液を供給し、水位差70c+m相当の供給
圧力下に於いての流体のカラム内流量〔m文/(分・0
.79cm2) )を実測した。その結果を表2のI欄
に示した。
A dilute phosphate buffer solution was supplied as a fluid to each of the columns A to D above, and the flow rate in the column of the fluid [m/(min・0
.. 79cm2)) was actually measured. The results are shown in column I of Table 2.

(3)次に各カラムA−Dに対する流体の導入圧力を徐
々に上げ、それに伴なうカラム内流量変化を実測するこ
とによりピーク流量即ち各カラムについての限界流量レ
ベルを調べた。その結果を表2のTI欄に示した。尚カ
ラムDに対する流体供給は該カラムの限界流量レベルが
高いものであるからプランジャポンプを使用するように
した。
(3) Next, the peak flow rate, that is, the critical flow rate level for each column, was investigated by gradually increasing the pressure of fluid introduced into each column A to D and actually measuring the change in the flow rate in the column as a result. The results are shown in the TI column of Table 2. Note that a plunger pump was used to supply fluid to column D, since the critical flow level of this column is high.

表 2 以上の(2)・ (3)により本発明に係るHAカラム
Dは従来のものA−Cに比べて波体の流通性−限界流量
レベルが格段に優れていることがわかる。
Table 2 From (2) and (3) above, it can be seen that the HA column D according to the present invention is significantly superior in wave body flowability-critical flow rate level compared to the conventional columns A to C.

(4)前記4種のHA結晶粒子群A−Dを夫々内径0.
6C1l・有効長10cmの高速液体クロマトグラフィ
装置(HPLC)用ステンレス製カラムに充填し、それ
等のHAカラムにより、典形的な球状蛋白質であるリゾ
チームとチトクロームCとの相互分離を、HPLC用高
圧ポンプによるカラムに対する試料液供給圧力を20乃
至25Kg/ cm2に選定して行うものとした。
(4) Each of the four types of HA crystal particle groups A to D has an inner diameter of 0.
Packed into a stainless steel column for high performance liquid chromatography (HPLC) with a 6C1L effective length of 10 cm, lysozyme and cytochrome C, which are typical globular proteins, are mutually separated using the HA column. The sample solution supply pressure to the column was selected to be 20 to 25 kg/cm2.

しかしながら粒子群A−B−Cを充填したカラムの場合
は何れも試料液供給開始後直ちに試料液のカラム内流通
が止ってしまい、クロマトグラフィの実行は不能となっ
た。
However, in all cases of columns packed with particle groups A-B-C, the flow of the sample liquid in the column stopped immediately after the sample liquid supply started, making it impossible to perform chromatography.

これに対して粒子群D、即ち10ILmST以下の小径
結晶を実質的に含まない、或は含んでもその混入率が1
重量%以下であるHA結晶粒子群を充填した本発明に係
るHAカラムの場合はカラム内を試料が8.9mJL/
(分・0.79cm2)(カラム内径を1cmに換算し
ての流量)の流量で継続して安定に流通し、第3図示の
ようなきれいなりロマトグラム(イ)が得られた。又別
途そのHAカラムの限界流量レベルを実測したところI
B、7m見/(分・0.79c璽2)(カラム内径をl
c脂に換算しての流量)の優れたものであった。
On the other hand, particle group D, that is, does not substantially contain small-diameter crystals of 10 ILmST or less, or even if it does, the mixing rate is 1
In the case of the HA column according to the present invention packed with HA crystal particles of less than 8.9 mJL/wt.
(min/0.79 cm2) (flow rate converted to column inner diameter of 1 cm) was continuously and stably circulated, and a clear chromatogram (a) as shown in Figure 3 was obtained. In addition, we separately measured the critical flow level of the HA column and found that I
B, 7m viewing/(min・0.79cm2) (column inner diameter 1)
(Flow rate calculated in terms of fat) was excellent.

第3図のクロマトグラム(イ)は波長280nmに於け
る紫外線吸収、即ち280nmO,口、(Optica
lden+1ty)をモニターすることにより得られた
ものである。又このクロマトグラフィはリン酸緩衝液の
線型濃度勾配をかけることにより行った。グラフ(ロ)
はそのリン酸イオンモル濃度を屈折率測定により同時に
モニターしたものである。
The chromatogram (A) in Figure 3 shows ultraviolet absorption at a wavelength of 280 nm, that is, 280 nm O, (Optica
(1den+1ty). This chromatography was also performed by applying a linear concentration gradient of phosphate buffer. Graph (b)
The phosphate ion molar concentration was simultaneously monitored by refractive index measurement.

以上本発明のHAカラムは従来のものよりも限界流量レ
ベルが大幅に高いものであり、又HA結晶粒子による本
来の高分解能も良好に保持しており、従って高速で高精
度のクロマトグラフィーの実行が可能となり、例えば、
DAM・ RAMなどの分子分離、血液の高分子成分の
分離等を行う遺伝子工学・医学研究等の分野、その他に
於けるクロマトグラフィー実行用のカラムとして極めて
有効適切なものである。
As described above, the HA column of the present invention has a significantly higher critical flow rate level than conventional ones, and also maintains the original high resolution due to HA crystal particles, thus enabling high-speed and highly accurate chromatography. For example,
It is extremely effective and suitable as a column for chromatography in fields such as genetic engineering and medical research for separating molecules such as DAM and RAM, separating high molecular components of blood, and other fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種HA結晶粒子群の粒径分布グラフ、第2図
は直管形カラムの一例の縦断面図、第3図はクロマトグ
ラムの一例である。 1はHA結晶粒子を詰めたカラム、2はカラム容体、3
は充填HA結晶粒子群、4はフィルタ、5は流体試料供
給口、6は同流出口。
FIG. 1 is a particle size distribution graph of various HA crystal particle groups, FIG. 2 is a longitudinal cross-sectional view of an example of a straight column column, and FIG. 3 is an example of a chromatogram. 1 is a column packed with HA crystal particles, 2 is a column container, 3
4 is a filter, 5 is a fluid sample supply port, and 6 is a fluid sample outlet.

Claims (2)

【特許請求の範囲】[Claims] (1)固体固定相物質としてハイドロキシアパタイト結
晶粒子群を充填したクロマトグラフィ用カラムに於て、 カラム内充填ハイドロキシアパタイト結晶粒子群が、ス
トークス等価球直径で10p−m以下の小径結晶粒子は
実質的に含まないか、含んでもその混入率が1重量%以
下のものである、 ことを特徴とするクロマトグラフィ用カラム。
(1) In a chromatography column packed with hydroxyapatite crystal particles as a solid stationary phase material, the hydroxyapatite crystal particles packed in the column are essentially small-diameter crystal particles with a Stokes equivalent spherical diameter of 10 p-m or less. A column for chromatography, characterized in that it does not contain it, or even if it does, its contamination rate is 1% by weight or less.
(2)カラム内充填ハイドロキシアパタイト結晶粒子群
の平均粒子径が、ストークス等価球直径で20pLm以
上・1100IL以下、好ましくは3f)#Lm以上・
80#Lm以下である、特許請求の範囲第1項に記載の
クロマトグラフィ用力′ラム。
(2) The average particle diameter of the hydroxyapatite crystal particles packed in the column is 20 pLm or more and 1100 IL or less in Stokes equivalent spherical diameter, preferably 3f) #Lm or more.
The chromatography power column according to claim 1, which has a power of 80 #Lm or less.
JP59055770A 1984-03-22 1984-03-22 Column for chromatography Pending JPS60198458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055770A JPS60198458A (en) 1984-03-22 1984-03-22 Column for chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055770A JPS60198458A (en) 1984-03-22 1984-03-22 Column for chromatography

Publications (1)

Publication Number Publication Date
JPS60198458A true JPS60198458A (en) 1985-10-07

Family

ID=13008101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055770A Pending JPS60198458A (en) 1984-03-22 1984-03-22 Column for chromatography

Country Status (1)

Country Link
JP (1) JPS60198458A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235752A (en) * 1985-04-11 1986-10-21 Asahi Optical Co Ltd Material, device and method for separating cell
JPS6291410A (en) * 1985-09-23 1987-04-25 Toa Nenryo Kogyo Kk Calcium phosphate hydroxyapatite for chromatographic separation and its production
JPS62231163A (en) * 1986-03-31 1987-10-09 Toa Nenryo Kogyo Kk Column for liquid chromatography and its production
JPS62230607A (en) * 1986-03-31 1987-10-09 Toa Nenryo Kogyo Kk Apatite hydroxide particle aggregate, production and use thereof as chromatographic filler
JPS63284A (en) * 1986-03-22 1988-01-05 Toa Nenryo Kogyo Kk Cell segregating agent, production thereof, cell segregating device using said agent and method for removing immunosuppressive lymphocyte and/or immunosuppressive factor forming cell using said agent
EP0252491A2 (en) * 1986-07-07 1988-01-13 Asahi Kogaku Kogyo Kabushiki Kaisha Beta2 microglobulin adsorbent
JPS6364905A (en) * 1986-09-02 1988-03-23 Toa Nenryo Kogyo Kk Secondary particle aggregate of hydroxyapatite, production and use thereof as chromatographic packing
US4874511A (en) * 1986-03-07 1989-10-17 Koken Co., Ltd. Apatite chromatography column system
US5037543A (en) * 1986-03-31 1991-08-06 Toa Nenryo Kogyo K.K. Assemblage of hydroxyl apatite particles and liquid chromatography column using the same
US5039408A (en) * 1986-07-05 1991-08-13 Asahi Kogaku Kogyo K.K. Packing material for liquid chromatography
US5441635A (en) * 1986-07-05 1995-08-15 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography
USRE35340E (en) * 1986-07-05 1996-10-01 Asahi Kogaku Kogyo K.K. Packing material for liquid chromatography
US6306297B1 (en) 1968-07-08 2001-10-23 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography and process for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344084A (en) * 1976-10-02 1978-04-20 Kobe Steel Ltd Separation system in gas chromatograph

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344084A (en) * 1976-10-02 1978-04-20 Kobe Steel Ltd Separation system in gas chromatograph

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306297B1 (en) 1968-07-08 2001-10-23 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography and process for producing the same
JPH0513269B2 (en) * 1985-04-11 1993-02-22 Asahi Optical Co Ltd
JPS61235752A (en) * 1985-04-11 1986-10-21 Asahi Optical Co Ltd Material, device and method for separating cell
JPS6291410A (en) * 1985-09-23 1987-04-25 Toa Nenryo Kogyo Kk Calcium phosphate hydroxyapatite for chromatographic separation and its production
US4874511A (en) * 1986-03-07 1989-10-17 Koken Co., Ltd. Apatite chromatography column system
JPS63284A (en) * 1986-03-22 1988-01-05 Toa Nenryo Kogyo Kk Cell segregating agent, production thereof, cell segregating device using said agent and method for removing immunosuppressive lymphocyte and/or immunosuppressive factor forming cell using said agent
US5037543A (en) * 1986-03-31 1991-08-06 Toa Nenryo Kogyo K.K. Assemblage of hydroxyl apatite particles and liquid chromatography column using the same
JPS62230607A (en) * 1986-03-31 1987-10-09 Toa Nenryo Kogyo Kk Apatite hydroxide particle aggregate, production and use thereof as chromatographic filler
JPS62231163A (en) * 1986-03-31 1987-10-09 Toa Nenryo Kogyo Kk Column for liquid chromatography and its production
US5039408A (en) * 1986-07-05 1991-08-13 Asahi Kogaku Kogyo K.K. Packing material for liquid chromatography
US5441635A (en) * 1986-07-05 1995-08-15 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography
USRE35340E (en) * 1986-07-05 1996-10-01 Asahi Kogaku Kogyo K.K. Packing material for liquid chromatography
US5651884A (en) * 1986-07-05 1997-07-29 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography
US5651882A (en) * 1986-07-05 1997-07-29 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography and process for producing the same
EP0252491A2 (en) * 1986-07-07 1988-01-13 Asahi Kogaku Kogyo Kabushiki Kaisha Beta2 microglobulin adsorbent
JPS6364905A (en) * 1986-09-02 1988-03-23 Toa Nenryo Kogyo Kk Secondary particle aggregate of hydroxyapatite, production and use thereof as chromatographic packing

Similar Documents

Publication Publication Date Title
JPS60198458A (en) Column for chromatography
Rush et al. Influence of column temperature on the electrophoretic behavior of myoglobin and. alpha.-lactalbumin in high-performance capillary electrophoresis
Carr Jr et al. Size and density of fibrin fibers from turbidity
Potschka Universal calibration of gel permeation chromatography and determination of molecular shape in solution
Lorber et al. Purification of octyl β-D-glucopyranoside and re-estimation of its micellar size
Casassa Theoretical models for peak migration in gel permeation chromatography
Hagel Gel‐filtration chromatography
Unger et al. Preparation of porous silica spheres for column liquid
Haglund et al. Zone electrophoresis in a glass powder column
JPH06504612A (en) High viscosity polymer matrices and preparation and separation methods
Eimer et al. Selectivity tuning in pressurized-flow electrochromatography
Gwynne et al. A polypeptide chain of very high molecular weight from red blood cell membranes
EP0021817A1 (en) Filler for liquid chromatography, method for separating water-soluble substances using said filler and use of said filler in separating water-soluble biochemical substances
Nandi et al. Molecular properties of the reassembled coat protein of coated vesicles
EP3059585A1 (en) Method for manufacturing small-diameter column for chromatography
EP0315187A1 (en) Separation of hemoglobin A2 from hemoglobin mixture
Van Jaarsveld et al. Polymerization of clathrin protomers into basket structures
Austen The chromatographic separation of factor VIII on aminohexyl sepharose
Tank et al. Characterization of water‐soluble polymers and aqueous colloids with asymmetrical flow field‐flow fractionation
Matsushima et al. Small-angle X-ray scattering study by synchrotron orbital radiation reveals that high molecular weight subunit of glutenin is a very anisotropic molecule
Choudary et al. Excess volumes of 1, 1, 2, 2-tetrachloroethane+ normal alkanols (C3-C8)
Ikeda et al. Densities, Refractive Indices, and Rotations of Mixtures of Active Amyl and Isoamyl Alcohols
Moussaoui et al. Diffusion of proteins in the chromatographic gel AcA-34
US4980058A (en) Separation of hemoglobin A2 from hemoglobin mixture
Finkelstein et al. Isolation and fractionation of yeast nucleic acids. II. Rapid isolation of mitochrondrial deoxyribonucleic acid by poly (L-lysine) kieselguhr chromatography