JPS60198451A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS60198451A
JPS60198451A JP59054221A JP5422184A JPS60198451A JP S60198451 A JPS60198451 A JP S60198451A JP 59054221 A JP59054221 A JP 59054221A JP 5422184 A JP5422184 A JP 5422184A JP S60198451 A JPS60198451 A JP S60198451A
Authority
JP
Japan
Prior art keywords
receiving element
ultrasonic
air
ultrasonic wave
guide box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59054221A
Other languages
Japanese (ja)
Inventor
Fumio Yoshinaga
吉永 文雄
Takayoshi Isobe
磯部 孝義
Masao Takai
高井 正生
Katsuji Ikenaga
池永 勝次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59054221A priority Critical patent/JPS60198451A/en
Publication of JPS60198451A publication Critical patent/JPS60198451A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce the size of an ultrasonic microscope and to make a scan on it with high precision by supporting an ultrasonic wave transmitting and receiving element on an air bearing without parting and putting the ultrasonic wave transmitting and receiving element in fast reciprocal motion with air. CONSTITUTION:An ultrasonic wave is oscillated from the acoustic lens 28 of the ultrasonic wave transmitting and receiving element 21 to a sample tabel 29. The ultrasonic wave transmitting and receiving element 21 is fitted to a reciprocal moving body 22, which is supported in a bearing guide box 23. Air is admitted into the guide vox 23 through an intake 30 and flowed to upper and lower gaps of the moving body 22 to form the air bearing, which supports the moving body 22 in high-speed reciprocal motion. Then the air discharged from the air bearing is collected and discharged without oscillating the guide box 23. Thus, the guide box 23 is formed in one body and the moving body is supported by the air bearing without parting and scanned while put in reciprocal motion, so the structure is made rigid and reduced in size and the air is discharged at a time, thereby eliminating a noise and oscillation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波顕微鏡1こ関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to an ultrasonic microscope.

〔発明の背景〕[Background of the invention]

試料を超音波を用いて観察する超音波顕微鏡の構成を第
1図tこよって説明する。同図10おいて、パルス発振
器1から発信した高周波電気パルス2は、音響レンズ3
の上面1こ形成された圧電物質41こ印加される。該圧
電物質4は、前記高周波電気パルス2によって励振され
、超音波を発する。該超音波は、前記音響レンズ3内を
伝播し、該音響レンズ3の他端面tこ設けらルた凹面部
eこよって細く集束される。この集束した超音波ビーム
を媒質5(例えば水)を介して、音響レンズ3との間で
相対的tこ二次元(x、y平面)的に走査される試料台
10の上に配置された試料6に照射する。そして、該試
料6から反射される超音波を前記音響レンズ3により受
信し、該音響レンズ3tこ接続さrLり受信器7でビデ
オ信号1こ変換する。このビデオ信号を前記試料台10
を走査させる走査装置9の作動と同期させてブラウン管
8の画面1こ表示する。
The configuration of an ultrasonic microscope for observing a sample using ultrasonic waves will be explained with reference to FIG. In FIG. 10, a high frequency electric pulse 2 transmitted from a pulse oscillator 1 is transmitted through an acoustic lens 3.
A piezoelectric material 41 formed on the top surface of the piezoelectric material 41 is applied. The piezoelectric material 4 is excited by the high frequency electric pulse 2 and emits ultrasonic waves. The ultrasonic waves propagate within the acoustic lens 3 and are narrowly focused by the concave portion e provided at the other end surface of the acoustic lens 3. This focused ultrasonic beam is placed on a sample stage 10 which is scanned two-dimensionally (x, y plane) relative to an acoustic lens 3 through a medium 5 (for example, water). Irradiate sample 6. The ultrasonic waves reflected from the sample 6 are received by the acoustic lens 3, and converted into a video signal by a receiver 7 connected to the acoustic lens 3. This video signal is transferred to the sample stage 10.
One screen of the cathode ray tube 8 is displayed in synchronization with the operation of the scanning device 9 that scans the image.

ところで、前記のような構成において、二次元走査1こ
おける一方向(X軸方向)は、試料6の高速往復運動を
行なうため、その高速往復運動?こ伴う慣性力tこよっ
て生物試料のような軟弱な物質の場合、媒質中で被観察
部がゆらぎ移動したり、あるいは、媒質が飛散し易い等
のX点があった。さらtこ、試料6の試料台10への取
4=jけが不十分な場合1こは、該試料6がずれる恐れ
があるという欠点もあった。
By the way, in the above configuration, in one direction (X-axis direction) in one two-dimensional scan, the sample 6 performs high-speed reciprocating motion, so the high-speed reciprocating motion? In the case of a soft substance such as a biological sample, the inertial force t involved causes the observed part to fluctuate in the medium, or there is an X point where the medium tends to scatter. Furthermore, if the sample 6 is not placed sufficiently onto the sample stage 10, there is a possibility that the sample 6 may shift.

これらのX点を解決するものとし、て、音響レンス3お
よび圧電物質4から成る集束超音波送受素子を高速往復
運動させる構成が考えられる。この構成を第2図および
第3図1こまって説明する。同図1こおいて、音響レン
ズ3はホルダIFMこよって保持され往復移動体11t
こ設置されている。該往復移動体11は、その両側Vこ
それぞれ配置された軸受案内箱12の圧縮空気導入口1
7を通して吐出口18より供給される圧縮空気の静圧e
こよって非接触で支持されている。このような構成tこ
おいて、前記往復移動体11を加@器の駆動軸14rこ
より高速往復動さることにより、超音波送受素子を高速
でかつ変位の少ない往復運動をさせようとするものであ
る。
As a solution to these X points, a configuration may be considered in which a focused ultrasonic transmitting/receiving element consisting of an acoustic lens 3 and a piezoelectric material 4 is moved back and forth at high speed. This configuration will be explained with reference to FIGS. 2 and 3. In FIG. 1, the acoustic lens 3 is held by the holder IFM and the reciprocating body 11t
This is installed. The reciprocating body 11 has a compressed air inlet 1 of a bearing guide box 12 arranged on each side of the reciprocating body 11.
The static pressure e of the compressed air supplied from the discharge port 18 through 7
Therefore, it is supported without contact. In such a configuration, by reciprocating the reciprocating body 11 at high speed from the drive shaft 14r of the stressor, the ultrasonic transmitting/receiving element is caused to reciprocate at high speed and with little displacement. be.

ところで、このような構成においては、往復移動体】5
の中央部に配置し、軸受案内箱12を左右に分断した構
成となっているため、吐出口18から供給された圧縮空
気が該軸受案内箱12と往復移動体11との開口部】9
から大気中に放出され、その際tこ騒音が発生するとと
も1こ、前記圧縮空気が前記ホルタ151こ衝突し、超
音波送受素子Pこ凋動を発生させるという欠点がある。
By the way, in such a configuration, the reciprocating body]5
Since the bearing guide box 12 is arranged in the center of the bearing guide box 12 and divided into left and right parts, the compressed air supplied from the discharge port 18 flows through the opening between the bearing guide box 12 and the reciprocating body 11 ]9
When the compressed air is emitted into the atmosphere and noise is generated, the compressed air also collides with the holter 151, causing the ultrasonic transmitting and receiving element P to vibrate.

さらeこ。Sara eko.

大気中?こ放出された圧縮空気は、クリンルーム等1こ
おいて大気汚染を引き起こすとともtこ、媒質5や観察
試料6を汚染するという欠点があった。また、前述のよ
う1こ軸受案内箱12を分断配置しているため、該軸受
案内箱12を支持固定および間隔保持する固定板16を
必要とする。該固定板16は2軸方向移動台13)こ片
持状態で取付けることにJ:す、極めて単純な構成とす
ることができる。
in the air? This discharged compressed air has the disadvantage of causing air pollution in a clean room, etc., and also contaminating the medium 5 and the observation sample 6. Furthermore, since the single bearing guide box 12 is arranged in sections as described above, the fixing plate 16 is required to support and fix the bearing guide box 12 and maintain the spacing therebetween. By attaching the fixed plate 16 in a cantilevered manner to the biaxially movable table 13), an extremely simple structure can be obtained.

しかし、R17elピ左右tこ配置した軸受案内箱】2
が変位しないような十分な剛性が必要である。ところが
、該固定板16には超音波送受素子の運動空間としての
切゛入窓20が必要であるとともに、片側 3− の軸受案内箱12が片持状態で集中荷重として加わるこ
とからこの部分の強度向上のためtこ大形化する必要が
あり、全体として大きなものとなるため、電歇が増加し
、加振器を大容址なものtこしなければならない等の欠
点があったっ 〔発明の目的〕 本発明の目的とするところは、超音波送受素子を微小変
位で高速往復運動させる超音波顕微鏡1こおいて小形で
高精度の走査が行なえるようeこし、いかなる試料でも
観察できる超音波顕微鏡を提供することVこある。
However, the bearing guide box located on the left and right sides of the R17el pin]2
Sufficient rigidity is required to prevent displacement. However, the fixed plate 16 requires a cutout window 20 as a movement space for the ultrasonic transmitting/receiving element, and since the bearing guide box 12 on one side is applied as a concentrated load in a cantilevered state, this part is In order to improve the strength, it was necessary to increase the size, and as the whole became larger, the number of electric switches increased, and the vibrator had a large capacity and had to be replaced. [Purpose of the present invention] The purpose of the present invention is to develop an ultrasonic microscope 1 in which an ultrasonic transmitting/receiving element is reciprocated at high speed with minute displacements, so that high-precision scanning can be performed with a small size, and an ultrasonic microscope capable of observing any sample. This is to provide a sonic microscope.

〔発明の概要〕[Summary of the invention]

本発明は、超音波送受素子の高速往復運動案内として空
気軸受を有した超音波顕微鏡において、前記空気軸受を
分断して配置するのではなく、一体eこ形成するととも
に排気1こついても集中排出さ以下、本発明tこよる一
実施例を第4図ないし第6図によって説明する。同図1
こおいて、音響レンズ28等から成る超音波送受素子2
】は、往復移動体22の端部側中央Vこ戦利は保持さn
、該往復移動体22は軸受案内箱23にその中間部を覆
うようeこ収納され空気静圧により非接触で支持されて
いる。このようをこ非接触で支持されている往復移動体
22を加振器の駆動軸24で高速往復運動させることに
より、運動変位が極めて少なく高精度で超音波送受素子
21を走査させることかできる。さらVこ、前記往復移
動体22の超音波送受素子21と反対側の位Itこは、
バランスウェイト25が設けられており、運動精度の南
北な図っている。
The present invention provides an ultrasonic microscope having an air bearing as a guide for high-speed reciprocating movement of an ultrasonic transmitting/receiving element, in which the air bearing is not disposed separately, but is formed as an integral part, and even if one exhaust gas is exhausted, it is concentrated. Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 4 to 6. Figure 1
Here, an ultrasonic transmitting/receiving element 2 consisting of an acoustic lens 28, etc.
] is the center V on the end side of the reciprocating body 22.
The reciprocating body 22 is housed in a bearing guide box 23 so as to cover its intermediate portion, and is supported in a non-contact manner by aerostatic pressure. By causing the reciprocating body 22 supported in a non-contact manner to reciprocate at high speed using the drive shaft 24 of the vibrator, the ultrasonic transmitting/receiving element 21 can be scanned with high accuracy with extremely little movement displacement. . Furthermore, the position on the opposite side of the reciprocating body 22 from the ultrasonic transmitting/receiving element 21 is as follows.
A balance weight 25 is provided to ensure north-south movement accuracy.

このような構成eこおいては、試料29が取付けらjt
ているy軸方向移動台27と超音波送受素子21との距
離を正tNIPこ調節できることが必要とされるが、前
記構成1こよnば軸受案内箱23を2軸方向移動台26
rこ固定し、該2軸方向移動台26を上下動させるとい
う単純な操作で行なえる。
In such a configuration, when the sample 29 is attached,
It is necessary to be able to adjust the distance between the y-axis moving table 27 and the ultrasonic transmitting/receiving element 21 by tNIP.
This can be done by a simple operation of fixing r and moving the biaxially movable table 26 up and down.

このような構成tこよれば、軸受案内箱23を一体tこ
構成しているため、往復移動体2しの支持部材としての
軸受案内箱23自体の剛性を従来のものeこ比べて2〜
3倍高くすることができる。このことにより、該軸受案
内箱23の断面積を小さくすることかでき、小型化およ
び構成の単純化を図ることかできる、また、該軸受案内
箱23の取付けはボルト等でZ軸方向移動台26?こ簡
単tこ行なえるとともに、該軸受案内箱23自体が変形
することも少なく、小型で高精度の空気軸受を有した超
音波顕微鏡を提供できる。
According to this configuration, since the bearing guide box 23 is integrally constructed, the rigidity of the bearing guide box 23 itself, which serves as a support member for the reciprocating body 2, is 2 to 3 times lower than that of the conventional one.
It can be made three times more expensive. As a result, the cross-sectional area of the bearing guide box 23 can be reduced, making it possible to downsize and simplify the configuration.The bearing guide box 23 can be attached to the Z-axis moving table using bolts or the like. 26? This can be done easily, and the bearing guide box 23 itself is less likely to be deformed, making it possible to provide an ultrasonic microscope having a compact and highly accurate air bearing.

前記軸受案内箱23の詳細な構成は、第5図および第6
図eこ示すようtこかつている。すなわち、圧縮空気導
入口30を通して吐出口31.32から供給される圧縮
空気は、軸受案内面33 、34を経て溝空間35.3
6に達し、大気圧付近まで減圧される。このことVこよ
って発生する空気静圧tこより適切な負荷容置と剛性を
有した空気膜が得られるので、往復移動体22を非接触
で支持でき、走査時1こおける変位を少なくできる。ま
た、前記溝空間361こ達した空気は、第6図eこ示す
ようtこ該軸受案内箱23の両側tこ排出される。そし
て、該空気は前記軸受案内箱23の両側に配置されてり
まとめて排出することかできる。したがって、前記空気
が前記軸受案内箱23から直接的tこ放出されないので
、騒音や振動の発生、クリンルーム等における大気の汚
染、媒質あるいは試料29の汚染を防止できる。なお、
クリンルーム等大気の汚染が問題とならない場合、前記
ふさぎ壁40は超音波索子21が設けられている側のみ
Vこ設置すればよい。
The detailed structure of the bearing guide box 23 is shown in FIGS. 5 and 6.
It is arranged as shown in the figure. That is, the compressed air supplied from the discharge port 31.32 through the compressed air inlet 30 passes through the bearing guide surfaces 33 and 34 and enters the groove space 35.3.
6 and the pressure is reduced to near atmospheric pressure. Since an air film having an appropriate load capacity and rigidity can be obtained from the aerostatic pressure t generated by this V, the reciprocating body 22 can be supported without contact, and the displacement per stroke during scanning can be reduced. Further, the air that has reached the groove space 361 is discharged to both sides of the bearing guide box 23, as shown in FIG. 6e. The air is arranged on both sides of the bearing guide box 23 and can be discharged all at once. Therefore, since the air is not directly discharged from the bearing guide box 23, generation of noise and vibration, pollution of the atmosphere in a clean room, etc., and contamination of the medium or the sample 29 can be prevented. In addition,
If air pollution is not a problem, such as in a clean room, the closing wall 40 may be installed only on the side where the ultrasonic cord 21 is provided.

〔発明の効果〕〔Effect of the invention〕

以上説明したようVこ本う省明tこよれば、超音波送受
素子を走査させる超音波顕微鏡において、晶精度な走査
が行なえるとともに小型にでき、いかなる試料でも観察
できる。
As explained above, an ultrasonic microscope with a scanning ultrasonic transmitting/receiving element can perform crystal-accurate scanning, can be made compact, and can observe any sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波顕微鏡の構成を示す回路図、第2図は従
来の超音波顕微鏡eこおける超音波送受素子の支持構造
を示す平面図、第3図は第2図の超音波送受素子支持構
造の断面図、第4図は本発明によろ超音波顕微鏡の走査
部を示す斜視図、第5図は第4図の走査部の幅方向断面
図、第6図は第4図の走査部の長手方向断面図である。
Figure 1 is a circuit diagram showing the configuration of an ultrasound microscope, Figure 2 is a plan view showing the support structure of the ultrasound transmitting and receiving element in a conventional ultrasound microscope, and Figure 3 is the ultrasound transmitting and receiving element shown in Figure 2. 4 is a perspective view showing the scanning section of the ultrasonic microscope according to the present invention; FIG. 5 is a cross-sectional view in the width direction of the scanning section of FIG. 4; and FIG. 6 is the scanning section of FIG. 4. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1、超音波送受素子によって発生した超音波を試料に当
てその反射超音波を該超音波送受素子で受信し、該試料
と超音波送受素子との相対的力・走査を前記受信した超
音波信号と同期させて画像を形成する超音波顕微鏡にお
いて、前記超音波送受素子を走査手段tこよって支持し
、該走査全周に対応する案内面を移動方向に連続して形
成した空気軸受と、前記往復移動体を往復移動させる駆
動手段とから構成したことを特徴とする超音波顕微鏡。
1. The ultrasonic wave generated by the ultrasonic transmitting/receiving element is applied to the sample, the reflected ultrasonic wave is received by the ultrasonic transmitting/receiving element, and the received ultrasonic signal indicates the relative force/scanning between the sample and the ultrasonic transmitting/receiving element. In an ultrasonic microscope that forms an image in synchronization with the ultrasonic wave transmitting/receiving element, the ultrasonic transmitting/receiving element is supported by a scanning means t, and an air bearing having a guiding surface corresponding to the entire scanning circumference formed continuously in the moving direction; An ultrasonic microscope characterized by comprising a drive means for reciprocating a reciprocating member.
JP59054221A 1984-03-23 1984-03-23 Ultrasonic microscope Pending JPS60198451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59054221A JPS60198451A (en) 1984-03-23 1984-03-23 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59054221A JPS60198451A (en) 1984-03-23 1984-03-23 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS60198451A true JPS60198451A (en) 1985-10-07

Family

ID=12964478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054221A Pending JPS60198451A (en) 1984-03-23 1984-03-23 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS60198451A (en)

Similar Documents

Publication Publication Date Title
KR102036058B1 (en) Apparatus for Fast scanning with scanning acoustic microscopy
US4317370A (en) Ultrasound imaging system
US20070180914A1 (en) Acoustic micro imaging device having at least one balanced linear motor assembly
US3886490A (en) Apparatus for coupling an array of ultrasonic transducers to an ultrasonic compressional image field and scanning the image field
EP0084174A2 (en) Ultrasonic microscope
JP2001249300A (en) Optical scanner
JPS60198451A (en) Ultrasonic microscope
US20030013961A1 (en) Ultrasonic scanning method and apparatus
GB2099997A (en) Apparatus for ultrasonic imaging
JPH09185000A (en) Mirror device
JPS5928363Y2 (en) Ultrasonic microscope scanning device
JPH0228446Y2 (en)
JPH0231345B2 (en)
JPH0610318Y2 (en) Scanning device for ultrasonic microscope
JPH07327990A (en) Ultrasonic probe
SU771775A1 (en) Vibrodrive
JPS5811849A (en) Ultrasonic microscope
JPS61115546A (en) Ultrasonic probe
JPH0138264B2 (en)
JPS5928361Y2 (en) Sample holder for ultrasonic microscope
JPH0152693B2 (en)
JP2683719B2 (en) Ultrasound imaging device
CA1132700A (en) Apparatus for ultrasonic imaging
JPH0136583B2 (en)
JPS6324260B2 (en)