JPS60198435A - Ir gas analyzer - Google Patents

Ir gas analyzer

Info

Publication number
JPS60198435A
JPS60198435A JP5586184A JP5586184A JPS60198435A JP S60198435 A JPS60198435 A JP S60198435A JP 5586184 A JP5586184 A JP 5586184A JP 5586184 A JP5586184 A JP 5586184A JP S60198435 A JPS60198435 A JP S60198435A
Authority
JP
Japan
Prior art keywords
light
cell
detector
comparison
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5586184A
Other languages
Japanese (ja)
Inventor
Ryuzo Kano
龍三 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP5586184A priority Critical patent/JPS60198435A/en
Publication of JPS60198435A publication Critical patent/JPS60198435A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Abstract

PURPOSE:To reduce the size and cost of the titled analyzer by measuring the concn. of the gas in a measuring cell from a difference between the detection signals of the light transmitted through the measuring cell and the light transmitted through a reference cell. CONSTITUTION:The IR rays radiated from a light source 1 are intermitted at specified time intervals by a light chopper 29 and are introduced alternately to a sample cell 2 and a reference cell 3. The light transmitted through the cell 2 or cell 3 is made incident on a detector 22 via a condenser 21. The detector 22 has two chambers 22-1, 22-2 disposed before and behind the incidence of the light. Measuring component gases are filled in the chambers 22-1, 22-2 and the chambers are sealed hermetically. The incident light enters first the front chamber 22-1 and the light transmitted therethrough enters the rear chamber 22-2. The pressure difference corresponding to the difference in light absorption in both chambers 22-1, 22-2 is detected by a pressure difference detecting element 23 provided between both chambers. The need for a temp. control mechanism is thus eliminated and the reduction in the size and cost is realized.

Description

【発明の詳細な説明】 (産業−にの利用分野) 本発明は各種工業プロセスのガス濃度の監視や制御、公
害監視のための排ガス濃度測定などに使用される分析計
であって、ガス分子の赤外線吸収効果を利用してガス分
子の赤外線吸収の強さにより試料ガス中の特定成分の濃
度を測定する非分散形赤外線ガス分析計に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an analyzer used for monitoring and controlling gas concentrations in various industrial processes, measuring exhaust gas concentrations for pollution monitoring, etc. This invention relates to a non-dispersive infrared gas analyzer that measures the concentration of a specific component in a sample gas based on the strength of infrared absorption of gas molecules using the infrared absorption effect of gas molecules.

(従来技術) 第1図には単光源を用いた従来の赤外線ガス分析計を示
す。1は光源で、その光源1に対し試料セル2と比較セ
ル3が同量の光が入射されるように互し−1に平行に配
置されている。試料セル2には測定成分を含んだ試料ガ
スが流され、比較セル3には赤外線を吸収しない窒素や
空気などの不活性ガスが充填されている。4は光源1か
ら試料セル2と比較セル3に入射される光を同時断続す
る光チョッパ、5,6は各セル2,3を透過して検出器
7に入射する光の量を調整する光量調整器である。検出
器7は金属薄膜8により2個の室9゜10に仕切られ、
両室9,10には測定成分ガスが充填されて密閉された
コンデンサマイクロホン方式の検出器であって、金属薄
膜8とそれに対向して設けられた電極11とでコンデン
サを形成している。】2はその検出器7の信号検出回路
である。
(Prior Art) FIG. 1 shows a conventional infrared gas analyzer using a single light source. 1 is a light source, and a sample cell 2 and a comparison cell 3 are arranged parallel to each other at -1 so that the same amount of light is incident on the light source 1. A sample gas containing a component to be measured is passed through the sample cell 2, and a comparison cell 3 is filled with an inert gas such as nitrogen or air that does not absorb infrared rays. 4 is a light chopper that simultaneously interrupts the light incident on the sample cell 2 and comparison cell 3 from the light source 1; 5 and 6 are light quantities that adjust the amount of light that passes through each cell 2 and 3 and enters the detector 7; It is a regulator. The detector 7 is partitioned into two chambers 9°10 by a metal thin film 8.
It is a condenser microphone type detector in which both chambers 9 and 10 are filled with a gas to be measured and are sealed, and a capacitor is formed by a metal thin film 8 and an electrode 11 provided opposite thereto. ]2 is a signal detection circuit of the detector 7.

この従来の赤外線ガス分析計では光景調整器5゜6によ
り検出器7の両室9,10に入射する光量が等しくなら
ないように調整される。まず、赤外線吸収をもたないN
2のような不活性なガス(ゼロガス)を試料セル2に流
したとき、検出器7へ入射される光量は比較セル3側の
方が多くなるように光量調整器5,6が調整されている
とする。。
In this conventional infrared gas analyzer, the amount of light incident on the two chambers 9, 10 of the detector 7 is adjusted by the sight adjuster 5.6 so that it is not equal. First, N has no infrared absorption.
When an inert gas (zero gas) such as 2 is flowed into the sample cell 2, the light amount adjusters 5 and 6 are adjusted so that the amount of light incident on the detector 7 is greater on the comparison cell 3 side. Suppose there is. .

検出器7では室10の方が室9より多くの光量が入射さ
れるので金属薄膜8け左方向へふ<l)む。
In the detector 7, since a larger amount of light enters the chamber 10 than the chamber 9, the metal thin film 8 moves toward the left.

検出器7の両室9,10へ入射する光は光チョッパ4に
より同時断続されているので、金属薄膜8も一定周波数
で振動し、その検出信号は第2図の記号15で示される
ように得られ、この信号の振幅がゼロ点となる。
Since the light incident on both chambers 9 and 10 of the detector 7 is simultaneously interrupted by the optical chopper 4, the metal thin film 8 also vibrates at a constant frequency, and the detection signal is as shown by symbol 15 in FIG. The amplitude of this signal is the zero point.

次に試料セル2に一定濃度の測定成分を含むガス(スパ
ンガス)を流して同様の測定をすれば、試料セル2で赤
外線の吸収が起って試料セル2を透過する光量が減少す
るので、検出信号は第2図の記号J6で示されるように
その振幅が大きくなる。この検出信号16の振幅がスパ
ン点となる。
Next, if a similar measurement is made by flowing a gas (span gas) containing a certain concentration of the component to be measured through the sample cell 2, the sample cell 2 will absorb infrared rays and the amount of light transmitted through the sample cell 2 will decrease. The amplitude of the detection signal increases as indicated by symbol J6 in FIG. The amplitude of this detection signal 16 becomes the span point.

そして、試料セル2に測定ガスを流して同様の測定を行
なうと、第2図の記号17で示されるように成分ガスの
濃度に応じた振幅の検出信号が得られるので、これをゼ
ロ点とスパン点の間で比例配分して試料ガス濃度をめる
ことができる。
Then, when a similar measurement is performed by flowing the measurement gas into the sample cell 2, a detection signal with an amplitude corresponding to the concentration of the component gas is obtained as shown by symbol 17 in Fig. 2, so this is taken as the zero point. The sample gas concentration can be proportionally distributed between the span points.

この従来の赤外線ガス分析計では」−述の如く試料セル
2と比較セル3の透過光をそれぞれ検出器7の別々の室
9と10に入射させ、再透過光量の差により試料セル2
中の成分ガスの濃度を測定するものであり、かつ試料セ
ル2と比較セル3の透過光量が等しくなっては検出器7
の金属薄膜8が停止して検出ができなくなるため、光量
調整器5゜6により試料セル2と比較セル3の透過光量
が異3− なるように調整していた。
In this conventional infrared gas analyzer, as described above, the transmitted light from the sample cell 2 and the comparison cell 3 are respectively incident on the separate chambers 9 and 10 of the detector 7, and the difference in the amount of re-transmitted light is reflected in the sample cell 2.
The detector 7 measures the concentration of the component gas in the sample cell 2 and the comparison cell 3 when the amount of transmitted light becomes equal.
Since the metal thin film 8 stops and detection becomes impossible, the amount of light transmitted through the sample cell 2 and the comparison cell 3 was adjusted using a light amount adjuster 5.6 so that the amounts of transmitted light were different from each other.

そのため、従来のこの赤外線ガス分析H1を長時間連続
して使用する場合、単光源を使用したとしても周囲の温
度変化や光源の劣化、検出器の感度変化などにより、ゼ
ロ点およびスパン点が変化する。このため従来の赤外線
ガス分析H1では分析部(光学系)を一定温度に温度調
節することが必要であり、その結果コストの高いものと
なっている。
Therefore, when using this conventional infrared gas analyzer H1 continuously for a long time, even if a single light source is used, the zero point and span point will change due to changes in ambient temperature, deterioration of the light source, changes in detector sensitivity, etc. do. For this reason, in the conventional infrared gas analysis H1, it is necessary to adjust the temperature of the analysis section (optical system) to a constant temperature, resulting in high cost.

また、温度調節が完全なものでない場合には誤差の原因
となっていた。従来ではこれらのtlft差を小さくす
るため、一定周期でゼロガス及びスパンガスを定期的に
(高感度分析計ではより頻度が高く)流してゼロ点とス
パン点を校正する必要があった。
Furthermore, if the temperature control is not perfect, it may cause errors. Conventionally, in order to reduce these tlft differences, it was necessary to calibrate the zero point and span point by periodically flowing zero gas and span gas (more frequently in high-sensitivity analyzers) at a constant cycle.

また、ゼロ点測定時に試料セル側の透過光量と比較セル
側の透過光量をある一定の差にするために光学系の光量
バランスを調整する必要があり、この調整のための光量
調整器の機構が必要であり、これを調整するための工数
も必要であった。
Also, during zero point measurement, it is necessary to adjust the light balance of the optical system in order to maintain a certain difference between the amount of transmitted light on the sample cell side and the amount of transmitted light on the comparison cell side, and a light amount adjuster mechanism is required for this adjustment. was required, and man-hours were also required to adjust it.

(目的) 4一 本発明は、周囲温度の変化、光源の光量変化、検出器の
感度変化などを検出信号の処理により自動的、かつ連続
的に補正することができ、恒温槽や光量調整器を不要に
して、安定性がよく低コストの赤外線ガス分析計を提供
することを目的とするものである。
(Purpose) 4. The present invention is capable of automatically and continuously correcting changes in ambient temperature, changes in light intensity of a light source, changes in sensitivity of a detector, etc. by processing detection signals, and is capable of automatically and continuously correcting changes in ambient temperature, changes in light intensity of a light source, changes in sensitivity of a detector, etc. The purpose of this invention is to provide a stable and low-cost infrared gas analyzer that eliminates the need for

(構成) 本発明の赤外線ガス分析計では、1個の光源を用い、こ
の光源からの光が試料セルと比較セルをそれぞれ透過し
た透過光を1個の検出器に交互に導入し、両透過光の検
出信号を別々に取り出す。
(Structure) In the infrared gas analyzer of the present invention, one light source is used, and the transmitted light from this light source is transmitted through a sample cell and a comparison cell, respectively, and is alternately introduced into one detector. Extract the light detection signals separately.

検出器としてはコンデンサマイクロホン方式又はマイク
ロフローセンサ方式のものが用いられ、その検出器への
透過光の導入は試料セルと比較セルの入射側又は透過側
に設けられた光チヨツパ手段により制御されるが、試料
セル透過晃の検出信号(以下測定信号という)と比較セ
ル透過光の検出信号(以下比較信号という)が相互に干
渉しない程度の時間間隔(僅かに干渉があっても実質的
に影響のない程度)をもって両透過光が検出器に導入さ
れる。
A condenser microphone type or micro flow sensor type detector is used as the detector, and the introduction of transmitted light to the detector is controlled by optical chopper means provided on the incident side or transmission side of the sample cell and comparison cell. However, the time interval is such that the detection signal of the light transmitted through the sample cell (hereinafter referred to as the measurement signal) and the detection signal of the light transmitted through the comparison cell (hereinafter referred to as the comparison signal) do not interfere with each other (even if there is slight interference, there is no substantial effect). Both transmitted lights are introduced into the detector with a degree of

そして、測定信号と比較信号の差が出力信号どして用い
られ、また、比較信号が光学系全体の感度を検出するた
めにも用いられ、この感度が一定になるように出力信号
が補正されるのである。また、温度変化による試料ガス
の密度変化に起因する測定信号の変化は、測定セルの洞
度を検出することにより補正することができる。
Then, the difference between the measurement signal and the comparison signal is used as an output signal, and the comparison signal is also used to detect the sensitivity of the entire optical system, and the output signal is corrected so that this sensitivity is constant. It is. Furthermore, changes in the measurement signal due to changes in the density of the sample gas due to temperature changes can be corrected by detecting the degree of sinusoidality of the measurement cell.

(実施例) 第3図は本発明の一実施例の光学系を表わす。(Example) FIG. 3 shows an optical system according to an embodiment of the present invention.

光源1から放射された赤外線は光チョッパ20により一
定の時間間隔で断続されて、試料セル2と比較セル3に
交互に導入される。21は試料セル2又は比較セル3を
透過した光をJll−の検出器22に入射させる集光型
である。検出器22は光の入射に対して前後に配置され
た2個の室22−1.22−2を有し、各室22−1.
22−2には測定成分ガスが充填されて密閉されており
、入射光はまず前室22−1に入り、その透過光が後室
22−2に入る。画室22−]、22−2における光吸
収の差に応じた圧力差は画室間に設けられた圧力差検出
素子23により検出される。圧力差検出素子23として
は、コンデンサマイクロホン又はマイクロフローセンサ
が使用される。
The infrared rays emitted from the light source 1 are cut off at regular time intervals by a light chopper 20 and introduced into the sample cell 2 and comparison cell 3 alternately. Reference numeral 21 is a condensing type that makes the light transmitted through the sample cell 2 or comparison cell 3 enter the detector 22 of Jll-. The detector 22 has two chambers 22-1.22-2 arranged in front and behind the incident light, each chamber 22-1.
22-2 is filled with measurement component gas and sealed, and the incident light first enters the front chamber 22-1, and the transmitted light enters the rear chamber 22-2. A pressure difference corresponding to the difference in light absorption between the compartments 22-] and 22-2 is detected by a pressure difference detection element 23 provided between the compartments. As the pressure difference detection element 23, a condenser microphone or a microflow sensor is used.

光チョッパ20は光源1からの光を試料セル2と比較セ
ル3に交互に入射させるように光束を断続する。そのよ
うな光チョッパ20は例えば第4図に示されるようなも
のであり、試料セル2用の開口24と比較セル3用の開
口25が互いに離れた位置に設けられている。26.2
7はこの光チョッパ20が光束を断続するタイミングを
検出する光検出器で、そのための開口28.29からの
光を受光して第5図に示されるパルス信号30゜31を
発生する。
The light chopper 20 interrupts the light beam from the light source 1 so that the light is made to enter the sample cell 2 and the comparison cell 3 alternately. Such an optical chopper 20 is, for example, as shown in FIG. 4, and an opening 24 for the sample cell 2 and an opening 25 for the comparison cell 3 are provided at positions separated from each other. 26.2
A photodetector 7 detects the timing at which the optical chopper 20 interrupts the light beam, and receives light from the apertures 28 and 29 to generate pulse signals 30 and 31 shown in FIG.

この光チョッパ20が試料セル2と比較セル3に交互に
光を入射させる回転速度は検出器22の応答時間より遅
くなるように設定されている。その結果、検出器22の
検出信号は、第5図に示されるように比較信号32と測
定信号33とが相互に干渉しない孤立波となる。
The rotational speed at which the optical chopper 20 makes light alternately enter the sample cell 2 and the comparison cell 3 is set to be slower than the response time of the detector 22. As a result, the detection signal of the detector 22 becomes a solitary wave in which the comparison signal 32 and the measurement signal 33 do not interfere with each other, as shown in FIG.

7− 次に第5図のように得られる本実施例の検出信号の処理
系統を第6図により説明する。
7- Next, the processing system of the detection signal of this embodiment obtained as shown in FIG. 5 will be explained with reference to FIG.

検出器22で検出された比較信号32及び測定信号33
は増幅器40で増幅された後、光チョッパ20のタイミ
ングで比較信号Rと測定信号Mに分離される。両信号は
引き算器41に入力されて差がめられるとともに、比較
信号Rはまた比較器42へも入力されて基準設定電圧v
rと比較され、■rからのずれがあれば増幅器40にフ
ィードバックがかけられてその比較信号Rが一定になる
ように増幅器40の利得が制御される。すなわち、光学
系の光量や検出器の感度が変化した場合、信号処理系の
方で感度が一定になるように制御しているのである。
Comparison signal 32 and measurement signal 33 detected by detector 22
is amplified by the amplifier 40 and then separated into a comparison signal R and a measurement signal M at the timing of the optical chopper 20. Both signals are input to a subtracter 41 to be differentiated, and the comparison signal R is also input to a comparator 42 to obtain a reference setting voltage v.
r, and if there is a deviation from r, feedback is applied to the amplifier 40 and the gain of the amplifier 40 is controlled so that the comparison signal R becomes constant. In other words, when the amount of light in the optical system or the sensitivity of the detector changes, the signal processing system controls the sensitivity so that it remains constant.

このように感度補正された比較信号Rと測定信号Mを入
力した引き算器41の出力は試料セル中の成分ガスの濃
度に対応した出力信号となる。
The output of the subtracter 41 inputting the comparison signal R and the measurement signal M subjected to sensitivity correction in this manner becomes an output signal corresponding to the concentration of the component gas in the sample cell.

43は試料セル温度Tの変化により測定ガスの密度が変
化することに伴う濃度補正を行なうための比較器である
Reference numeral 43 denotes a comparator for performing concentration correction due to changes in the density of the measurement gas due to changes in the sample cell temperature T.

8一 本実施例において、試料セル2にまず測定成分を含まな
いゼロガスを流し、そのときの出力信号をゼロ点とする
。この場合、試料セル2と比較セル3のそれぞれの透過
光量が等しくなるようにしておけばゼロ点の出力レベル
が0レベルになり、仮に光源の光量が変化したり検出器
の感度が変化したりしたとしても測定信号と比較信号に
全く同じ割合で影響が表われるので、両信号の差として
出力されるゼロ点のレベルは変化しない。
81 In this embodiment, a zero gas containing no measurement component is first flowed into the sample cell 2, and the output signal at that time is set as the zero point. In this case, if the amount of transmitted light in sample cell 2 and comparison cell 3 is made equal, the output level at the zero point will be 0 level, and even if the amount of light from the light source changes or the sensitivity of the detector changes. Even if this happens, the effect will appear on the measurement signal and the comparison signal at exactly the same rate, so the level of the zero point output as the difference between the two signals will not change.

次に、試料セル2に測定成分を一定濃度含有するスパン
ガスを流し、そのときの出力信号をスパン点とする。
Next, a span gas containing a certain concentration of the component to be measured is passed through the sample cell 2, and the output signal at that time is taken as the span point.

次に、試料セル2に測定しようとする試料ガスを流して
得られる出力信号を、既に測定したスパン点とゼロ点の
間で比例配分してその試料ガスの濃度がめられる。
Next, the concentration of the sample gas is determined by proportionally distributing the output signal obtained by flowing the sample gas to be measured through the sample cell 2 between the previously measured span point and zero point.

長時間の測定により試料セル2が汚れ、測定信号が変化
することがある。この変化は比較信号とは独立に起るも
のであるので、前述の増幅器40の利得制御では補正す
ることはできない。そのため、一定時間測定した後は、
再びゼロガスとスパンガスを流して、ゼロ点とスパン点
を測定し直すことにより、このようなal11定セル汚
染による誤差を補正することができる。
The sample cell 2 may become dirty due to long-term measurement, and the measurement signal may change. Since this change occurs independently of the comparison signal, it cannot be corrected by the gain control of the amplifier 40 described above. Therefore, after measuring for a certain period of time,
By flowing the zero gas and span gas again and remeasuring the zero point and span point, it is possible to correct errors caused by such Al11 constant cell contamination.

以上の実施例は本発明の一例であり、本発明の範囲内で
種々の変更が可能である。例えば光チョッパ20は測定
セル2と比較セル3とに交互に、望ましくは測定信号と
比較信号とが相互に干渉しない程度の低速で光源1の光
を導入できるものであればよく、開口の位置や形状は種
々変形することができる。
The above embodiment is an example of the present invention, and various changes can be made within the scope of the present invention. For example, the optical chopper 20 may be of any type as long as it can introduce the light from the light source 1 alternately into the measurement cell 2 and the comparison cell 3, preferably at a slow enough speed that the measurement signal and the comparison signal do not interfere with each other, and the aperture position The shape can be modified in various ways.

検出器22は光の入射に対し前後2室に分離されたコン
デンサマイクロホン方式のものを使用したが、測定成分
ガスが充填されたガス室が単一のコンデンサマイクロホ
ン方式のものでもよい。また、マイクロフローセンサ方
式の検出器を使用してもよい。
The detector 22 used is of a condenser microphone type which is separated into two chambers, front and rear, relative to the incidence of light, but it may be of a condenser microphone type with a single gas chamber filled with the gas to be measured. Alternatively, a micro flow sensor type detector may be used.

また、検出信号の処理方式も一例を示したにすぎず、要
は測定信号と比較信号を別個に検出してその差から成分
ガス濃度をめ1、かつ比較信号により検出系の感度を一
定に保つように制御する方式であればよい。したがって
、実施例のように比較信号により増幅器の利得にフィー
ドバックをかける方式だけでなく、比較信号を用いてデ
ジタル的に演算することにより検出信号の変化を補正す
るようにしてもよい。
In addition, the detection signal processing method is just an example; the point is that the measurement signal and the comparison signal are detected separately, the component gas concentration is determined from the difference, and the sensitivity of the detection system is kept constant using the comparison signal. Any method that controls to maintain the temperature may be used. Therefore, in addition to applying feedback to the gain of the amplifier using the comparison signal as in the embodiment, it is also possible to correct changes in the detection signal by performing digital calculations using the comparison signal.

(効果) 本発明の効果を列挙すれば以下の如くである。(effect) The effects of the present invention are listed below.

(1)従来の赤外線ガス分析計では温度変化による測定
値の変動が大きいため、完全な温度調節機構が必要であ
ったが、本発明では温度が変化しても比較セルからの比
較信号によりゼロ点、スパン点及び測定信号が絶えず補
正がなされているため、温度調節機構が不要になり、ケ
ースの構造が簡単になって小型、低コスト化が実現でき
る。
(1) With conventional infrared gas analyzers, measurement values fluctuate greatly due to temperature changes, so a complete temperature control mechanism was required. However, with the present invention, even if the temperature changes, the comparison signal from the comparison cell ensures zero Since the points, span points, and measurement signals are constantly corrected, a temperature adjustment mechanism is not required, and the structure of the case is simplified, making it possible to achieve smaller size and lower cost.

(2)光源の劣化や検出器の感度低下によるドリフトも
自動的に補正されていることになるので、従来のものに
比べて安定性がよくなっている。
(2) Since drift due to deterioration of the light source or decrease in sensitivity of the detector is automatically corrected, stability is improved compared to conventional ones.

特に本発明では試料セルの透過光量と比較セルの透過光
量とを等しくしてゼロ点を0レベルにする11− こともでき、その場合には温度変化、光源劣化、検出器
の感度低下によってもゼロ点は不変であり、一層安定性
がよくなる。
In particular, in the present invention, it is also possible to set the zero point to the 0 level by making the amount of transmitted light of the sample cell equal to the amount of transmitted light of the comparison cell. The zero point remains unchanged, resulting in better stability.

(3)温度調節機構が不要であるので暖機が短かく、す
ぐに測定を開始することができる。
(3) Since no temperature control mechanism is required, warm-up is short and measurements can be started immediately.

(4)測定信号と比較信号を電気的に合わせれば、測定
セルと比較セルの、光量調整を行なう必要がなく、した
がって従来のような複雑な調整工程が不要になる。
(4) If the measurement signal and the comparison signal are electrically matched, there is no need to adjust the light intensity of the measurement cell and the comparison cell, thus eliminating the need for the conventional complicated adjustment process.

(5)マイクロコンピュータを用いて処理することもで
き、その場合には種々の校正を自動的に行なうことがで
きる。
(5) Processing can also be performed using a microcomputer, in which case various calibrations can be performed automatically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の赤外線式ガス分析計を一部断面で示す概
略図、第2図は同分析計の検出信号を示す波形図、第3
図は本発明の一実施例を一部断面で示す概略図、第4図
は同実施例で使用されている光チョッパを示す平面図、
第5図は同実施例の検出信号を示す波形図、第6図は同
実施例の検出信号処理系統を示すブロック図である。 =12− 1・・・・・・光源、 2・・・・・・測定セル、 3
・・・・・・比較セル、 20・・・・・・光チ巨ツバ
、 22・・・・・・検出器、23・・・・・・圧力差
検出素子。 代理人 弁理士 野口繁雄 し G 纒 ヤ田
Figure 1 is a schematic partial cross-sectional view of a conventional infrared gas analyzer, Figure 2 is a waveform diagram showing the detection signal of the same analyzer, and Figure 3 is a waveform diagram showing the detection signal of the analyzer.
The figure is a schematic diagram partially showing an embodiment of the present invention in cross section, and FIG. 4 is a plan view showing an optical chopper used in the embodiment.
FIG. 5 is a waveform diagram showing a detection signal of the same embodiment, and FIG. 6 is a block diagram showing a detection signal processing system of the same embodiment. =12- 1...Light source, 2...Measurement cell, 3
... Comparison cell, 20 ... Optical chip large brim, 22 ... Detector, 23 ... Pressure difference detection element. Agent: Patent Attorney Shigeo Noguchi

Claims (1)

【特許請求の範囲】[Claims] (1)単一光源からの赤外線光をそれぞれ測定セルと比
較セルに導入し、両セルの透過光をセルの入射側又は透
過側に設けられた光チヨツパ手段により断続して検出器
に導入するガス分析計において、 前記検出器はコンデンサマイクロホン方式又はマイクロ
フローセンサ方式でQl−の受光部をもつ検出器であり
、前記光チ9ツバ手段は測定セル透過光と比較セル透過
光をそれらの検出信号が相互に干渉しない程度の時間間
隔で交互に検出器に導入させる構造を有し、かつ測定セ
ルの温度を検出する手段が備えられ、 比較セル透過光の検出信号により感度変化を検出しつつ
、測定セル透過光の検出信号と比較セル透過光の検出信
号との差から測定セルのガス濃度を測定し、かつ、温度
による補正を行なうことを特徴とする赤外線ガス分析計
(1) Infrared light from a single light source is introduced into a measurement cell and a comparison cell, and the transmitted light from both cells is intermittently introduced into a detector by a light chopper provided on the incident side or transmission side of the cell. In the gas analyzer, the detector is a condenser microphone type detector or a micro flow sensor type detector having a light receiving part of Ql-, and the optical chip means detects the light transmitted through the measurement cell and the light transmitted through the comparison cell. It has a structure in which the signals are introduced into the detector alternately at time intervals such that they do not interfere with each other, and is equipped with means for detecting the temperature of the measurement cell, while detecting changes in sensitivity using the detection signal of the light transmitted through the comparison cell. An infrared gas analyzer, characterized in that a gas concentration in a measurement cell is measured from a difference between a detection signal of light transmitted through a measurement cell and a detection signal of light transmitted through a comparison cell, and correction is performed based on temperature.
JP5586184A 1984-03-22 1984-03-22 Ir gas analyzer Pending JPS60198435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5586184A JPS60198435A (en) 1984-03-22 1984-03-22 Ir gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5586184A JPS60198435A (en) 1984-03-22 1984-03-22 Ir gas analyzer

Publications (1)

Publication Number Publication Date
JPS60198435A true JPS60198435A (en) 1985-10-07

Family

ID=13010838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5586184A Pending JPS60198435A (en) 1984-03-22 1984-03-22 Ir gas analyzer

Country Status (1)

Country Link
JP (1) JPS60198435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104552U (en) * 1987-12-29 1989-07-14
JPH01142848U (en) * 1988-03-26 1989-09-29

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548576A (en) * 1977-06-22 1979-01-22 Fuji Electric Co Ltd Infrated ray gas analyzer
JPS5779438A (en) * 1980-09-19 1982-05-18 Mine Safety Appliances Co Infrared ray analyzer
JPS582640A (en) * 1981-06-29 1983-01-08 Shimadzu Corp Non-dispersive infrared analyzer
JPS5876742A (en) * 1981-10-31 1983-05-09 Shimadzu Corp 2-flux non-dispersion type infrared sulfurous acid gas analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548576A (en) * 1977-06-22 1979-01-22 Fuji Electric Co Ltd Infrated ray gas analyzer
JPS5779438A (en) * 1980-09-19 1982-05-18 Mine Safety Appliances Co Infrared ray analyzer
JPS582640A (en) * 1981-06-29 1983-01-08 Shimadzu Corp Non-dispersive infrared analyzer
JPS5876742A (en) * 1981-10-31 1983-05-09 Shimadzu Corp 2-flux non-dispersion type infrared sulfurous acid gas analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104552U (en) * 1987-12-29 1989-07-14
JPH01142848U (en) * 1988-03-26 1989-09-29

Similar Documents

Publication Publication Date Title
EP0386125B1 (en) Dual sample cell gas analyzer
US4101221A (en) Process for the photo-optical measurement of the absorption behavior of solid, liquid and gaseous media
US5060505A (en) Non-dispersive infrared gas analyzer system
US5184017A (en) Method and apparatus for detecting a component gas in a sample
US4673812A (en) Calibrating mechanism of an infrared analyzer
US7323687B2 (en) infrared gas analyzer and infrared gas analysis method
US4537510A (en) Output control device for light detectors for photometers
EP0400342B1 (en) Method of infra red analysis
US20050247878A1 (en) Infrared gas sensor
US4794255A (en) Absorption analyzer
US5894128A (en) Infrared type gas analyzer
EP0022789B1 (en) Gas analyzer and gaz analyzing method
JPS60198435A (en) Ir gas analyzer
JPH06249779A (en) Gas analyzer
JP3024904B2 (en) Optical gas analyzer
US4501968A (en) Infrared radiation gas analyzer
EP0296354B1 (en) Gas analyzer
JPS60247139A (en) Infrared-ray gas analyzer
JPH0519651B2 (en)
JP3172649B2 (en) Interference correction method for infrared gas analyzer
SU536420A1 (en) Method for changing measurement ranges of two-beam compensation analyzers
JP3179858B2 (en) Single beam gas analyzer
JP2000180360A (en) Gas analyser
JPH0875650A (en) Infrared gas analyzer
JPS6244217B2 (en)