JP2000180360A - Gas analyser - Google Patents

Gas analyser

Info

Publication number
JP2000180360A
JP2000180360A JP10359583A JP35958398A JP2000180360A JP 2000180360 A JP2000180360 A JP 2000180360A JP 10359583 A JP10359583 A JP 10359583A JP 35958398 A JP35958398 A JP 35958398A JP 2000180360 A JP2000180360 A JP 2000180360A
Authority
JP
Japan
Prior art keywords
time
span
gas
detection signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10359583A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsuhisa
浩明 松久
Katsuhiko Araya
克彦 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10359583A priority Critical patent/JP2000180360A/en
Publication of JP2000180360A publication Critical patent/JP2000180360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply perform extinction necessary for the span calibration of a analyser. SOLUTION: The rotary speed of a motor 7 is controlled through a motor control part 13 by the indicating signal from a CPU control circuit 11 and the rotary speed of the rotary sector 8 having an optical chopper function driven by the motor 7 is made variable to provide extinction function with respect to the dose of infrared rays emitted from a light source 1. A detection signal at the time of the introduction of zero gas is stored in a memory part 12 in this extinction state. The intermittent time of an optical chopper is changed for a predetermined time and the detection signal at thigh time is set to a value at the time of extinction and a span calibration value is calculated from the ratio of the value of the detection signal at the time of span calibration using the stored span gas and the value of the detection signal at the time of extinction and accurate span calibration is performed without using the span gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料ガス中の目的
成分(NOx、SO、CO、CO等)の濃度を測定
するガス分析計に関する。
The present invention relates to the target component in the sample gas (NOx, SO 2, CO, CO 2 , etc.) to a gas analyzer for measuring the concentration of.

【0002】[0002]

【従来の技術】一般に異なった原子から成る分子は、た
とえば固有の波長の赤外線を吸収する性質を持ってい
る。この特性を利用して気体(ガス)の濃度を選択的に
測定する方法が非分散型赤外線吸収法であるが、このよ
うなガス分析計がプロセス用連続濃度分析計あるいは可
搬型濃度分析計として多く用いられている。
2. Description of the Related Art Generally, molecules composed of different atoms have a property of absorbing infrared rays having a specific wavelength, for example. A non-dispersive infrared absorption method is a method for selectively measuring the concentration of gas (gas) using this characteristic. Such a gas analyzer is used as a continuous concentration analyzer for processes or a portable concentration analyzer. Many are used.

【0003】このようなガス分析計を用いて精度良く測
定するためには、通常ゼロ点調整用ガス(以後、ゼロガ
スと言う)によるゼロ点校正と、スパン調整用ガス(以
後、スパンガスと言う)によるスパン校正を定期的ある
いは測定前に行う必要がある。特に測定前にこのような
校正を必要とする可搬型分析計の場合、測定成分や、測
定レンジが複数ある場合、その数だけスパンガスを必要
とし、多数のガスボンベを持ち運ぶことは面倒である。
このため、測定現場に測定器を持って行く前にゼロ点並
びにスパンの校正を行い、それらの検出信号を記憶さ
せ、更にゼロガスを導入し、試料セルの透過光を減光す
る機構を作動させて検出器に導入する光量を一定量変化
させたときの検出器信号を記憶させておく。そして、測
定現場ではスパンガスを用いず、減光機構を作動させ、
その時の検出信号と前記の記憶された検出信号とから比
率計算によりスパン校正を行っている。
In order to perform accurate measurement using such a gas analyzer, a zero point calibration using a zero point adjusting gas (hereinafter, referred to as a zero gas) and a span adjusting gas (hereinafter, referred to as a span gas) are usually performed. Span calibration must be performed periodically or before measurement. In particular, in the case of a portable analyzer that requires such calibration before measurement, if there are a plurality of measurement components and measurement ranges, the number of span gases is required, and it is troublesome to carry a large number of gas cylinders.
For this reason, before bringing the measuring instrument to the measurement site, the zero point and span are calibrated, their detection signals are stored, zero gas is introduced, and the mechanism for reducing the transmitted light of the sample cell is activated. The detector signal when the amount of light introduced into the detector is changed by a predetermined amount is stored. Then, at the measurement site, without using span gas, the dimming mechanism was activated,
Span calibration is performed by ratio calculation from the detection signal at that time and the stored detection signal.

【0004】図3はこの従来の分析計の光学系概略図を
示しているが、光源21から放射される赤外線は、モー
タ27で駆動される回転セクタ28により試料セル22
と比較セル23にパルス状に交互に導入される。各セル
22、23を透過した赤外線は集光器24を介して交互
に検出器25に達する。比較セル23には窒素又は空気が
封入されており赤外線の吸収はないが、試料セル22で
は試料ガス中に被測定成分が含まれている場合、その濃
度に応じた赤外線の吸収が生じる。検出器25は前室と
後室の2室に分離されており、この間のガス濃度に比例
する圧力差をコンデンサー膜26で検知する。
FIG. 3 is a schematic diagram showing the optical system of this conventional analyzer. Infrared rays emitted from a light source 21 are supplied to a sample cell 22 by a rotating sector 28 driven by a motor 27.
Are alternately introduced into the comparison cell 23 in a pulsed manner. The infrared light transmitted through the cells 22 and 23 alternately reaches the detector 25 via the light collector 24. The comparison cell 23 is filled with nitrogen or air and does not absorb infrared light. However, when the sample gas contains the component to be measured, the sample cell 22 absorbs infrared light according to the concentration. The detector 25 is separated into two chambers, a front chamber and a rear chamber. A pressure difference proportional to the gas concentration between the two chambers is detected by the condenser membrane 26.

【0005】比較セル23を透過した赤外線は、セル中
での赤外線の吸収はなく、一定の出力信号であるのに対
し、試料セル22を透過した赤外線は、試料ガス中の被
測定成分による赤外線の吸収により、その濃度に応じた
出力信号を検出することができる。ゼロガス導入時の信
号とスパンガス導入時の検出信号から、あらかじめゼロ
点及びスパン幅が設定され、このスパンの範囲内で試料
ガスの濃度を算出し分析計の出力信号としている。ま
た、光源の輝度などが温度の影響などで変化した場合、
この影響は比較信号及び測定信号双方に生じるため、比
較信号の変化から測定信号の変化を補正することによ
り、感度変化が生じないようになっている。
The infrared light transmitted through the comparison cell 23 does not absorb the infrared light in the cell and is a constant output signal, whereas the infrared light transmitted through the sample cell 22 is the infrared light generated by the component to be measured in the sample gas. , An output signal corresponding to the concentration can be detected. A zero point and a span width are set in advance from a signal at the time of introduction of the zero gas and a detection signal at the time of introduction of the span gas, and the concentration of the sample gas is calculated within the range of the span and used as an output signal of the analyzer. Also, if the brightness of the light source changes due to the temperature, etc.,
Since this effect occurs in both the comparison signal and the measurement signal, the change in the measurement signal is corrected from the change in the comparison signal so that the sensitivity does not change.

【0006】なお、スパンガスを導入せずに感度を補正
するための従来の減光機構は、遮光膜を測定光光路に出
入りさせる機構になっている。集光器24と検出器25
の間に、セルからの光量を一定量減光できる出入り自在
の遮光膜32を備え、減光はプレート状の遮光膜32を
ソレノイド31により測定光光路に挿入して行なってい
る。感度の補正は、上記減光機構を作動させ、あらかじ
め記憶されたスパンガス導入時及びゼロガスを導入し減
光した状態時の検出信号と、測定前にゼロガスを導入し
て減光した時の検出信号との比率により補正値を算出
し、スパン校正を行っている。
A conventional dimming mechanism for correcting the sensitivity without introducing a span gas is a mechanism for moving a light-shielding film into and out of a measurement optical path. Concentrator 24 and detector 25
In between, a light-shielding film 32 is provided which can diminish a certain amount of light from the cell and which can enter and exit freely. The light is reduced by inserting the plate-shaped light-shielding film 32 into the measurement optical path by the solenoid 31. Sensitivity correction is performed by operating the dimming mechanism and detecting a signal stored in advance when the span gas is introduced and a state where the zero gas is introduced and dimmed, and a detection signal when the zero gas is introduced and dimmed before the measurement. The span is calibrated by calculating the correction value based on the ratio.

【0007】[0007]

【発明が解決しようとする課題】前述したように測定現
場でのスパン調整には、あらかじめ記憶されているスパ
ンガス導入時及び減光状態時の検出信号と、測定現場で
減光した時の検出信号の値との比率により校正を行って
いるが、スパン調整のため遮光膜を出入りさせる減光機
構を持つ必要があり、また、従来の減光機構の再現性確
保のためには、その組立、装置への取付及び調整にそれ
ぞれ高い精度が要求されるため多大の労力を必要とす
る。本発明は、このような課題を解決するガス分析計を
提供することを目的とするものである。
As described above, in the span adjustment at the measurement site, a detection signal when the span gas is introduced and a dimming state stored in advance and a detection signal when the light is dimmed at the measurement site are stored. Calibration is performed according to the ratio with the value of, but it is necessary to have a dimming mechanism that moves the light-shielding film in and out for span adjustment, and in order to ensure the reproducibility of the conventional dimming mechanism, its assembly, Since high precision is required for mounting and adjustment to the device, a great deal of labor is required. An object of the present invention is to provide a gas analyzer that solves such a problem.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、光チョッパーの断続時間を任意に可変で
きる制御機構と、スパンガスによるスパン校正時の検出
信号及びスパン校正後ゼロガスを導入し光チョッパーに
よる光の断続時間を所定時間変化させたときの検出信号
を記憶する記憶部とを設け、以後のスパン校正時にはゼ
ロガスを導入すると共に光チョッパーの断続時間を所定
時間変化させ、その時の検出信号の値と、前述の記憶さ
れた値との比率からスパン校正値を算出し、スパンガス
を用いることなく精度のよいスパン校正ができるように
したものである。
In order to achieve the above object, the present invention introduces a control mechanism capable of arbitrarily varying the intermittent time of an optical chopper, a detection signal at the time of span calibration using span gas, and introduction of zero gas after span calibration. And a storage unit for storing a detection signal when the intermittent time of light by the optical chopper is changed for a predetermined time.In the subsequent span calibration, zero gas is introduced and the intermittent time of the optical chopper is changed for a predetermined time. The span calibration value is calculated from the ratio of the value of the detection signal to the stored value, so that accurate span calibration can be performed without using span gas.

【0009】[0009]

【発明の実施の形態】図1は赤外線式ガス分析計の光学
系を概略的に示している。すなわち、光源1から放射さ
れる赤外線は、モータ7で駆動され光チョッパー機能を
有する回転セクタ8により試料セル2と比較セル3にパ
ルス状に交互に導入される。各セル2、3を透過した赤
外線は集光器4を介して交互に検出器5に達する。比較
セル3には窒素又は空気が封入されており赤外線の吸収
はないが、試料セル2では試料ガス中に被測定成分が含
まれている場合、その濃度に応じた赤外線の吸収があ
る。検出器5はコンデンサ膜6により前室と後室の2室
に分離されており、この間の圧力差をコンデンサ膜6で
電気信号として濃度値を検知する。発振器を含む増幅器
9でガス濃度に比例した電気信号に変換され、アナログ
/デジタル変換器10でデジタル信号に変換された後、
CPU制御回路11に入力される。
FIG. 1 schematically shows an optical system of an infrared gas analyzer. That is, infrared rays emitted from the light source 1 are alternately introduced into the sample cell 2 and the comparison cell 3 in a pulsed manner by the rotating sector 8 driven by the motor 7 and having an optical chopper function. The infrared rays transmitted through the cells 2 and 3 alternately reach the detector 5 via the condenser 4. The comparison cell 3 is filled with nitrogen or air and does not absorb infrared light, but the sample cell 2 absorbs infrared light according to the concentration of the component to be measured when the sample gas contains the component to be measured. The detector 5 is separated into two chambers, a front chamber and a rear chamber, by a capacitor film 6, and the pressure difference between the two chambers is detected by the capacitor film 6 as an electric signal to detect a concentration value. After being converted into an electric signal proportional to the gas concentration by an amplifier 9 including an oscillator and converted into a digital signal by an analog / digital converter 10,
It is input to the CPU control circuit 11.

【0010】CPU制御回路11は、ゼロガス及びスパ
ンガスを導入して得られたデータを記憶部12に記憶
し、モータ制御部13を介してモータ7の回転スピード
を制御し、このモータ7で駆動され光チョッパー機能を
有する回転セクタ8の回転スピードを可変することで光
源1から放射される赤外線の減光機能をもたせ、スパン
校正後ゼロガスを導入し光チョッパーによる光の断続時
間を所定時間変化させた時の検出信号のデータを記憶部
12に記憶し、更に測定時、被測定ガス濃度のデータを
取り込み、あらかじめ記憶部12に記憶されたデータを
使って補正計算を行い、補正された濃度値を出力する機
能を有する。
A CPU control circuit 11 stores data obtained by introducing zero gas and span gas in a storage unit 12, controls the rotation speed of the motor 7 via a motor control unit 13, and is driven by the motor 7. By varying the rotation speed of the rotating sector 8 having the optical chopper function, a function of reducing infrared rays emitted from the light source 1 was provided, zero gas was introduced after span calibration, and the intermittent time of light by the optical chopper was changed for a predetermined time. The data of the detection signal at the time is stored in the storage unit 12, and further, at the time of measurement, the data of the concentration of the gas to be measured is fetched, and a correction calculation is performed using the data stored in the storage unit 12 in advance. It has a function to output.

【0011】図2は減光システムによるスパン校正をグ
ラフに示している。すなわち、スパンガスを導入して行
ったスパン校正時の信号をA0、その直後にゼロガスを
導入し減光した状態で得られた信号をB0とする。これ
らの値を記憶部12に記憶しておく。次にスパンガスを
使用しない状態でスパン校正を行う場合、再度ゼロガス
を導入して減光させた状態にする。この時、光源1の輝
度の変化、あるいはセルの汚れ等によるドリフトがない
場合は、先に減光した状態で得られた信号と同一の信号
B0が得られるが、ドリフトが生じている場合、その時
の出力信号はB1となる。スパンガスを流した場合も、
同様に信号が変化するものとして、次式によりAXを求
め、AXの信号値でスパン校正を行う。 AX=(A0/B0)*B1 B0及びB1を得るための減光法は、図1に示すように
CPU制御回路11からの信号がモータ制御部13に伝
達されモータ7の回転数を制御する機構を有し、モータ
7の回転スピードを速くして測定セルへの赤外線光の入
射時間を短くすることで減光し、B0及びB1を得るこ
とができる。
FIG. 2 graphically illustrates span calibration with a dimming system. That is, a signal at the time of span calibration performed by introducing a span gas is denoted by A0, and immediately after that, a signal obtained by introducing a zero gas and dimming is denoted by B0. These values are stored in the storage unit 12. Next, when the span calibration is performed without using the span gas, the zero gas is introduced again to reduce the light intensity. At this time, if there is no drift due to a change in the brightness of the light source 1 or contamination of the cell, the same signal B0 as the signal obtained in the previously dimmed state is obtained. The output signal at that time is B1. Even when span gas flows,
Similarly, assuming that the signal changes, AX is obtained by the following equation, and span calibration is performed using the AX signal value. AX = (A0 / B0) * B1 In the dimming method for obtaining B0 and B1, as shown in FIG. 1, a signal from the CPU control circuit 11 is transmitted to the motor control unit 13 to control the rotation speed of the motor 7. By having a mechanism, the rotational speed of the motor 7 is increased to shorten the incident time of the infrared light to the measurement cell, thereby dimming the light, thereby obtaining B0 and B1.

【0012】本発明は以上説明したとおりであるが、上
記ならびに図示例に限定されるものではなく、種々の変
形例を包含する。例えば、セルの汚れなどで検出器に達
する赤外線光量が減った場合に光チョッパーの断続時間
を、セルへの光の入射時間を長くし光量を増加させるよ
うに変化させ、従来セルの洗浄や交換が必要だった感度
低下を改善できる。更に、上記説明では赤外線式ガス分
析計について述べたが、赤外線式ガス分析計以外でも、
光を断続的に試料に透過させる機構を持つ光吸収の原理
を用いた分析計、例えば紫外線式ガス分析計においても
本発明は適用可能である。
Although the present invention has been described above, the present invention is not limited to the above and illustrated examples, but includes various modifications. For example, if the amount of infrared light reaching the detector decreases due to contamination of the cell, etc., the intermittent time of the optical chopper is changed so as to increase the light incident time on the cell and increase the amount of light. Can reduce the sensitivity reduction that was required. Furthermore, in the above description, the infrared gas analyzer was described, but other than the infrared gas analyzer,
The present invention is also applicable to an analyzer using a principle of light absorption having a mechanism of intermittently transmitting light to a sample, for example, an ultraviolet gas analyzer.

【0013】[0013]

【発明の効果】本発明は以上の説明のように構成されて
いるので、減光によってスパン校正を簡便に行う場合に
も再現性良く高精度のスパン校正が実現でき、また、部
品点数が減り、これにより組立、取付、調整の工数を大
幅に軽減することが可能となり、コストダウンもでき
る。
Since the present invention is configured as described above, even when performing span calibration simply by dimming, high-accuracy span calibration can be realized with good reproducibility, and the number of parts can be reduced. Thus, the number of steps for assembling, mounting and adjusting can be greatly reduced, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分析計の光学系概略図を示す。FIG. 1 shows a schematic diagram of an optical system of an analyzer according to the present invention.

【図2】減光システムによるスパン校正をグラフに示
す。
FIG. 2 graphically illustrates span calibration with a dimming system.

【図3】従来の分析計の光学系概略図を示す。FIG. 3 shows a schematic diagram of an optical system of a conventional analyzer.

【符号の説明】[Explanation of symbols]

1---光源 21---光源 2---試料セル 22---試料
セル 3---比較セル 23---比較
セル 4---集光器 24---集光
器 5---検出器 25---検出
器 6---コンデンサ膜 26---コン
デンサ膜 7---モータ 27---モー
タ 8---回転セクタ 28---回転
セクタ 9---増幅器 29---増幅
器 10---アナログ/デジタル変換器 30---計測
制御回路 11---CPU制御回路 31---ソレ
ノイド 12---記憶部 32---遮光
膜 13---モータ制御部
1 --- light source 21 --- light source 2 --- sample cell 22 --- sample cell 3 --- comparison cell 23 --- comparison cell 4 --- concentrator 24 --- concentrator 5- --Detector 25 --- Detector 6 --- Capacitor film 26 --- Capacitor film 7 --- Motor 27 --- Motor 8 --- Rotating sector 28 --- Rotating sector 9 --- Amplifier 29 --- Amplifier 10 --- Analog / Digital converter 30 --- Measurement control circuit 11 --- CPU control circuit 31 --- Solenoid 12 --- Storage unit 32 --- Shading film 13 --- Motor control Department

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料セルと比較セルに分割された測定セル
と、測定セルに測定光を照射する光源と、試料セルの透
過光と比較セルの透過光を交互に検出器に導入するため
の光チョッパーと、測定セルを透過した測定光を受光す
る検出器を備えたガス分析計において、光チョッパーに
よる光の断続時間を任意に可変できる機構と、スパンガ
スによるスパン校正時の検出信号及びスパン校正後ゼロ
ガスを導入し、光チョッパーによる光の断続時間を所定
時間変化させたときの検出信号を記憶する記憶部とを設
け、以後スパン校正時にはゼロガスを導入すると共に光
チョッパーによる光の断続時間を前記所定時間変化さ
せ、そのときの検出信号と前記記憶部に記憶したスパン
校正時の検出信号及び光の断続時間変化時の検出信号に
基づいてスパン校正するようにしたことを特徴とするガ
ス分析計。
1. A measurement cell divided into a sample cell and a comparison cell, a light source for irradiating the measurement cell with the measurement light, and a detector for alternately introducing the transmission light of the sample cell and the transmission light of the comparison cell to the detector. In a gas analyzer equipped with an optical chopper and a detector that receives the measurement light transmitted through the measurement cell, a mechanism that can arbitrarily change the light intermittent time by the optical chopper, and the detection signal and span calibration during span calibration using span gas After that, a zero gas is introduced, and a storage unit for storing a detection signal when the intermittent time of light by the optical chopper is changed for a predetermined time is provided. A predetermined time is changed, and the span calibration is performed based on the detection signal at that time, the detection signal at the time of span calibration stored in the storage unit, and the detection signal at the time of a change in the light intermittent time. Gas analyzer, characterized in that the so that.
JP10359583A 1998-12-17 1998-12-17 Gas analyser Pending JP2000180360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10359583A JP2000180360A (en) 1998-12-17 1998-12-17 Gas analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10359583A JP2000180360A (en) 1998-12-17 1998-12-17 Gas analyser

Publications (1)

Publication Number Publication Date
JP2000180360A true JP2000180360A (en) 2000-06-30

Family

ID=18465243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10359583A Pending JP2000180360A (en) 1998-12-17 1998-12-17 Gas analyser

Country Status (1)

Country Link
JP (1) JP2000180360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798230B1 (en) * 2014-11-25 2015-10-21 滝本技研工業株式会社 Chlorine dioxide gas concentration measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798230B1 (en) * 2014-11-25 2015-10-21 滝本技研工業株式会社 Chlorine dioxide gas concentration measuring device
US9551652B2 (en) 2014-11-25 2017-01-24 Takimotogiken Kogyo Co., Ltd. Chlorine dioxide gas concentration measuring apparatus

Similar Documents

Publication Publication Date Title
EP3674689B1 (en) Gas analyzer and gas analyzing method
JP2000283841A (en) Method and device for wavelength calibration of light spectrum analyzer
US20050247878A1 (en) Infrared gas sensor
JPH08304282A (en) Gas analyzer
CN112763443B (en) Carbon dioxide sensor, calibration method and online detector
US4794255A (en) Absorption analyzer
US4596931A (en) Method of eliminating measuring errors in photometric analysis
JPH02306140A (en) Infrared-ray spectrometer
JPH1082740A (en) Infrared gas analyzer
US5155545A (en) Method and apparatus for the spectroscopic concentration measurement of components in a gas mixture
JPH06249779A (en) Gas analyzer
US6710347B1 (en) Device for measuring gas concentration
JP2000180360A (en) Gas analyser
JP2001324446A (en) Apparatus for measuring isotope gas
JP2001516016A (en) NDIR photometer for measuring multiple components
JP2004085252A (en) Gas analyzer
JPH0222687Y2 (en)
JPH11304706A (en) Infrared gas analyser
US4948250A (en) Atomic absorption spectrophotometer
JP2001330562A (en) Infrared gas analyzer
JP2003185498A (en) Spectrophotometer
JP4176535B2 (en) Infrared analyzer
JPH05203573A (en) Infrared ray gas analyzer
CN117330533B (en) Automatic-calibration intelligent carbon dioxide infrared gas analyzer and use method thereof
JPH08285773A (en) Infrared gas analyzer