JPS60198413A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPS60198413A
JPS60198413A JP59055483A JP5548384A JPS60198413A JP S60198413 A JPS60198413 A JP S60198413A JP 59055483 A JP59055483 A JP 59055483A JP 5548384 A JP5548384 A JP 5548384A JP S60198413 A JPS60198413 A JP S60198413A
Authority
JP
Japan
Prior art keywords
vortex
fluid
generation body
pipe
vortex generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59055483A
Other languages
Japanese (ja)
Other versions
JPH0458564B2 (en
Inventor
Shigenori Hokari
穂刈 茂徳
Takeo Yokota
横田 建男
Shigeo Nakazawa
中沢 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Seisakusho KK
Original Assignee
Nagano Keiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Seisakusho KK filed Critical Nagano Keiki Seisakusho KK
Priority to JP59055483A priority Critical patent/JPS60198413A/en
Publication of JPS60198413A publication Critical patent/JPS60198413A/en
Publication of JPH0458564B2 publication Critical patent/JPH0458564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To make external oscillation and flow disturbance hard to exert influence by specifying the shapes and sizes of a vortex generation body and a detection pipe. CONSTITUTION:The detection pipe 28 of the vortex generation body 16 increases in sensitivity with its external diameter, but such a gap that the tube 28 does not contact the internal wall of a cavity part 24 is required to detect the strain of the pipe 28. The gap 26 needs to be determined so that there is no influence of foreign matter in fluid. For the purpose, the shapes and sizes of the generation body 16 and pipe 28 are specified to accelerate the flow at the periphery of the generation body 16 and the generate Karman's vortex streets behind the generation body 16. Then, pressure difference of the fluid generated between both flanks 42R and 42L of the generation body 16 operates on the pipe 28 as differential pressure to generate flexural stress, whose variation is detected by a magnetostrictive element. In this case, slits 44R and 44L are made long to improve linearity and then the Karman's vortex streets are generated stably even if the fluid to be measured is disordered owing to a drift current and a swivel current. Further, one end of the pipe 28 is formed cylindrically to increase the natural frequency, thereby reducing the influence of external oscillation.

Description

【発明の詳細な説明】 本発明は渦流量計に関し、一層詳細には、導管中に柱状
の渦発生体を配設し、流体の流れと並行する渦発生体の
両側面の圧力差を検出し、流量を測定する渦流量計に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flowmeter, and more particularly, a columnar vortex generator is disposed in a conduit, and a pressure difference on both sides of the vortex generator in parallel with the flow of fluid is detected. and relates to a vortex flowmeter for measuring flow rate.

渦流量計は原理上極めて優れた特長を有しているが同時
にいくつかの欠点も持ち合わせている。
Although vortex flowmeters have very good features in principle, they also have some drawbacks.

第1は、渦の検出が難しいことである。現在までに熱セ
ンサ方式、超音波方式、応力検出方式等各種の方式が使
用されてきているが、それぞれ一長一短があり、未だ決
定的と思われる方式は存在しない。しかし、プロセス用
に限れば、セン号が接液しない、堅牢である、構造が簡
単なためメインテナンスフリーである等の理由により応
力検出方式が主流になりつつある。しかしながら従来の
応力検出方式には外部振動の影響を受けやすいという欠
点があった。
First, eddies are difficult to detect. Various methods have been used up to now, such as a thermal sensor method, an ultrasonic method, and a stress detection method, but each has advantages and disadvantages, and no method is considered definitive yet. However, for process applications, the stress detection method is becoming mainstream because it does not come into contact with liquid, is robust, and has a simple structure that requires no maintenance. However, the conventional stress detection method has the drawback of being susceptible to external vibrations.

渦流量計の欠点の第2は導管内の流速分布に敏感なこと
である。導管内の流速分布が偏流、旋回流等によって乱
れていると、渦発生体部長手方向の流速が均一にならず
安定した渦列が発生しない。
A second disadvantage of vortex flowmeters is their sensitivity to flow velocity distribution within the conduit. If the flow velocity distribution in the conduit is disturbed by drift, swirling flow, etc., the flow velocity in the longitudinal direction of the vortex generating body will not be uniform, and a stable vortex train will not be generated.

このため渦流量計の前後には比較的長い直管部が必要と
されており、口径の50倍程度の前方直管部を要求する
機種もある。
For this reason, a relatively long straight pipe section is required before and after the vortex flowmeter, and some models require a front straight pipe section about 50 times the diameter.

さらに第3の欠点として、渦流量計の検出信号に多くの
雑音成分が含まれているため信号処理が難しいことが挙
げられる。雑音の成分は渦検出方式によって異なるが、
一般に渦周波数より高い高周波成分と低い低周波成分が
各流速域で特徴的に現れ、さらに狭帯域不規則信号とも
呼ばれるフェージング現象が頻繁に発生し、これらが複
雑に合成されるため電気的な信号処理は容易でない。
A third drawback is that the detection signal of the vortex flowmeter contains many noise components, making signal processing difficult. The noise components differ depending on the vortex detection method, but
In general, high-frequency components higher than the vortex frequency and low-frequency components lower than the vortex frequency characteristically appear in each flow velocity region, and a fading phenomenon, also known as a narrow band irregular signal, frequently occurs, and these are complexly synthesized, resulting in electrical signals. Processing is not easy.

この様子を第9図(al、(b)に示す。This situation is shown in FIGS. 9(al) and (b).

−第9図(a)はフェージングが発生したもので検出不
可能な状態までレベルが低下した個所がある。
- FIG. 9(a) shows a case where fading has occurred, and there are places where the level has dropped to an undetectable state.

第9図fblは低周波成分の雑音が渦波形に重畳された
場合でパルス欠損が起こりやすく信号処理が困難な状態
を示している。このように従来の渦流量計には多くの難
点があった。
FIG. 9 fbl shows a state in which pulse loss is likely to occur and signal processing is difficult when low frequency component noise is superimposed on the vortex waveform. As described above, conventional vortex flowmeters have many drawbacks.

本発明はこれらの点に鑑みなされたもので、その目的と
するところは、外部振動の影響を受けにくいとともに、
流れの乱れの影響を受けにくい応力検出方式の渦流量計
を提供し、さらに、本質的に良好な渦波形を得ることに
よって電子装置の簡略化を図ることにある。その特徴は
、カルマン渦を利用した渦流量針において、流体の流れ
る導管中に配設する渦発生体の流体の流れ方向の断面形
状を矩形状とし、前記渦発生体の流体の流れと直交する
方向に感圧部材を挿入するための空洞部を穿設するとと
もに、この空洞部を貫通し前記渦発生体の流体の流れと
並行する両側面を連通ずるスリットを設は導圧孔を構成
し、この導圧孔の空洞部の内径をdO1前記渦発生体の
流体の流れと並行する辺の長さを11として、0.71
1<do<tlの範囲にし、前記感圧部材の外径をdl
とし、0.7dO<di<dOの範囲内にし、前記導圧
孔のスリットの幅をhとして、0.311<h <0.
611の範囲にし、前記スリットの端部のうち少なくと
も一方が前記導管内周面より外側に位置するようにスリ
ットを延在したところにある。
The present invention was made in view of these points, and its purpose is to reduce the influence of external vibrations, and to
It is an object of the present invention to provide a stress detection type vortex flowmeter that is less susceptible to flow disturbances, and to simplify electronic equipment by obtaining an essentially good vortex waveform. The feature is that in a vortex flow needle that utilizes Karman vortices, a vortex generator disposed in a fluid flow conduit has a rectangular cross-sectional shape in the fluid flow direction, and the vortex generator is orthogonal to the fluid flow of the vortex generator. A cavity for inserting a pressure-sensitive member in the direction is bored, and a slit is provided that passes through this cavity and communicates with both sides parallel to the fluid flow of the vortex generator, thereby forming a pressure guiding hole. , the inner diameter of the cavity of this pressure guiding hole is dO1, and the length of the side parallel to the fluid flow of the vortex generator is 11, and 0.71
1<do<tl, and the outer diameter of the pressure sensitive member is dl.
0.7dO<di<dO, and the width of the slit of the pressure guiding hole is h, 0.311<h<0.
611, and the slit is extended such that at least one of the ends of the slit is located outside the inner peripheral surface of the conduit.

以下、本発明の好適な実施例を添付図面に基づき詳細に
説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第F図は本発明の一実施例を示す横断面図である。10
は被測定流体が流れる導管であり、この導管10の所定
位置に開口部12が設けられ、該開口部12は導管10
の外周方向に延出する筒状の開口壁14により形成され
ている。16は渦発生体であり、開口部12から挿入す
るようにして導管10内に配置され、開口壁14端部か
ら延出するフランジ部18にボルト20で固定されると
ともに、開口壁14との間に若干の間隔22が設けられ
ている。
FIG. F is a cross-sectional view showing one embodiment of the present invention. 10
is a conduit through which the fluid to be measured flows; an opening 12 is provided at a predetermined position of this conduit 10;
It is formed by a cylindrical opening wall 14 extending in the outer circumferential direction. Reference numeral 16 denotes a vortex generator, which is inserted into the conduit 10 through the opening 12, is fixed to the flange 18 extending from the end of the opening wall 14 with bolts 20, and is connected to the opening wall 14. A slight spacing 22 is provided between them.

前記渦発生体16は、第2図に示す第1図のA−A断面
図のごとく断面形状が矩形状に形成され、その内部には
渦発生体16の流れと直交する方向に空洞部24が穿設
されるとともに、感圧部材たる検知管28が空洞部24
内壁面と若干の間隙26が存在するように挿入されてい
る。この検知管28の一端は管状に形成され、開口して
いる。また、検知管28の他端部には2つの穴30が穿
設され、この穴30に磁歪素子32を挿入し、接着材3
4を充填し固着することにより歪の検出部を構成してい
る。また、検知管28の一端部にはフランジ部36が延
設され、押えフランジ38を介してポルト40で渦発生
体16の一端部に固定されている。
The vortex generator 16 has a rectangular cross-sectional shape as shown in the A-A sectional view of FIG. 1 shown in FIG. is bored in the cavity 24, and the detection tube 28, which is a pressure-sensitive member, is inserted into the cavity 24.
It is inserted so that there is a slight gap 26 with the inner wall surface. One end of this detection tube 28 is formed into a tubular shape and is open. Further, two holes 30 are bored at the other end of the detection tube 28, and a magnetostrictive element 32 is inserted into these holes 30, and an adhesive material 32 is inserted into the holes 30.
4 is filled and fixed to form a strain detection section. Further, a flange portion 36 extends from one end of the detection tube 28, and is fixed to one end of the vortex generator 16 with a port 40 via a presser flange 38.

また、前記渦発生体16の流れと並行する両側面42R
と42Lと前記空洞部24が連通ずるようにスリット4
4R,44Lを設け、導圧孔46を構成している。
Also, both side surfaces 42R parallel to the flow of the vortex generator 16
42L and the cavity 24 are connected to each other.
4R and 44L are provided to constitute a pressure guiding hole 46.

このように構成した渦流量針において、導管10内を流
体が流れると、渦発生体16の後方に規則的なカルマン
渦列が発生し、この渦列の発生と同時に渦発生体16の
両側面42R,42Lの圧力が変化する。この圧力変化
は差圧として検知管28に作用し曲げ応力を発生させ、
この応力変化を磁歪素子32が検出し電気信号に変換す
るものである。
In the vortex flow needle configured in this manner, when fluid flows through the conduit 10, a regular Karman vortex street is generated behind the vortex generator 16, and at the same time as this vortex street is generated, both sides of the vortex generator 16 are generated. The pressures of 42R and 42L change. This pressure change acts on the detection tube 28 as a differential pressure and generates bending stress.
The magnetostrictive element 32 detects this stress change and converts it into an electrical signal.

次に渦発生体および検知管の形状・寸法などについて説
明する。
Next, the shapes and dimensions of the vortex generator and the detection tube will be explained.

渦発生体16の流れと並行な側面42R,42Lの幅を
11、導圧孔46のスリット44.R,4,4Lの幅を
h、その長さをl、空洞部24の内径をdO1検知管2
8の外径を61、導管10の内径をDとする。
The width of the side surfaces 42R and 42L parallel to the flow of the vortex generator 16 is 11, and the slit 44 of the pressure guiding hole 46 is 11. The width of R, 4, 4L is h, the length is l, the inner diameter of the cavity 24 is dO1, the detection tube 2
The outer diameter of the tube 8 is 61, and the inner diameter of the conduit 10 is D.

渦発生体16の空洞部24に挿入される検知管28は外
径が大きいほど感度は良いが、空洞部24内での検知管
28の歪を電気信号として検出するため、空洞部24内
壁に検知管28が接触しない程度の間隙26を形成する
必要がある。また、この間隙26は、測定流体中のゴミ
等の異物の影響を受けないように考慮して設定する必要
もある。
The larger the outer diameter of the detection tube 28 inserted into the cavity 24 of the vortex generator 16, the better the sensitivity. It is necessary to form a gap 26 such that the detection tube 28 does not come into contact with it. Further, it is necessary to set the gap 26 in consideration so as not to be affected by foreign matter such as dust in the fluid to be measured.

したがって、空洞部と検知管の関係において上部2つの
相反する条件を満足しなければならない。
Therefore, two contradictory conditions must be satisfied in the relationship between the cavity and the detection tube.

そこで、本願発明者らは上記条件を考慮に入れて各種の
実験を行った。第6図はその1つの結果を示す線図であ
り、空洞部24の内径dOと渦発生体の側面42R,4
,2Lの幅Hとの比do/Hと、検知管28の外径d1
と空洞部240内径dOとの比di/doの関係におい
て、渦検出の測定可能範囲を示すものである。これによ
るとdo/11の値に対し測定可能な最低検知管径d1
が存在するとともに、do/Hの値が1.0に近づくに
つれて測定可能検知管径d1の範囲は拡大する。逆にd
o/nの値が縮小するとdlの範囲が縮小するとともに
、測定可能な最低検知管径d1の値が上昇する。
Therefore, the inventors of the present application conducted various experiments taking the above conditions into consideration. FIG. 6 is a diagram showing one of the results, and shows the inner diameter dO of the cavity 24 and the side surfaces 42R, 4 of the vortex generator.
, 2L to the width H, and the outer diameter d1 of the detection tube 28.
This shows the measurable range of vortex detection in the relationship of the ratio di/do between dO and the inner diameter dO of the cavity 240. According to this, the minimum measurable detection tube diameter d1 for the value of do/11
exists, and as the value of do/H approaches 1.0, the range of measurable detection tube diameter d1 expands. On the contrary, d
When the value of o/n decreases, the range of dl decreases, and the value of the minimum measurable detection tube diameter d1 increases.

ここで測定可能最低検知管径diが存在するのは、本発
明の渦流量計が渦発生に伴う渦発生体の両側面42R,
42Lの差圧を検知管28にて検出する構成であること
に基づく。例えば第5図(a)に示すように、空洞部2
4と検知管28との間隙26を広く設定した際に、矢印
の方向から圧力が導入されると、空洞部24の弧状壁4
8に沿って間隙26内に流体の流れが生じ、これにより
差圧の逃げが発生して感圧能力の低下を招く。また、間
隙26内の流体の流れにより検知管28の周囲に渦など
流体の乱れが生し、これがノイズとなって渦検出波形に
影響し測定を不可能とすることがある。
Here, the measurable minimum detection tube diameter di exists because the vortex flowmeter of the present invention
This is based on the fact that the detection tube 28 detects a differential pressure of 42L. For example, as shown in FIG. 5(a), the cavity 2
4 and the detection tube 28 and when pressure is introduced from the direction of the arrow, the arcuate wall 4 of the cavity 24
A fluid flow occurs in the gap 26 along the line 8, which causes a differential pressure to escape, resulting in a decrease in pressure sensing capability. Furthermore, the flow of fluid within the gap 26 may generate fluid disturbances such as vortices around the detection tube 28, which may become noise and affect the vortex detection waveform, making measurement impossible.

したがって、検知管28の周囲に生ずる流れの影響を受
けない程度の検知管28の大きさを必要とし、測定可能
な最低検知管径d1が存在する。
Therefore, the detection tube 28 needs to be large enough to be unaffected by the flow generated around the detection tube 28, and there is a minimum measurable detection tube diameter d1.

また、第6図において、上記のようにdo/Hの値が縮
小方向に変化するとdi/doの値が上昇するというの
は、次の理由による。つまり、空洞部24の内径dOが
大きな値では第5図+a)に示すように弧状壁48が長
く、空洞部24の内径dQが小さな値では第5図fbl
に示すように弧状壁48が短く形成される。ここで第5
図(alお、よび(b)に示すように矢印の方向から渦
発生に伴う圧力差が導入された際、間隙26の幅が一定
ならば壁面から受ける粘性抵抗は、弧状壁48の長いも
のが大きく、弧状壁48の短いものが小さい。したがっ
て、第5図(b)に示すように、弧状壁48が短いもの
は、間隙26内に流体の流れが発生しやすいため、その
流体の流れに伴い渦などの乱れが発生し、渦検出に悪影
響を及ぼす。そのため、空洞部24の内径dOが小さい
場合は、必然的にdi/doO値を上昇させ、間隙26
の幅を狭くして流体の流れを抑える必要性がでてくる。
Further, in FIG. 6, when the value of do/H changes in the reduction direction as described above, the value of di/do increases for the following reason. That is, when the inner diameter dO of the cavity 24 is a large value, the arcuate wall 48 is long as shown in FIG. 5+a), and when the inner diameter dQ of the cavity 24 is a small value,
The arcuate wall 48 is formed short as shown in FIG. Here the fifth
When a pressure difference due to vortex generation is introduced from the direction of the arrow as shown in FIGS. (al and b), if the width of the gap 26 is constant, the viscous resistance received from the wall surface is larger, and the shorter the arcuate wall 48 is, the smaller the arcuate wall 48 is. Therefore, as shown in FIG. As a result, disturbances such as vortices occur, which adversely affects vortex detection.Therefore, if the inner diameter dO of the cavity 24 is small, the di/doO value will inevitably increase, and the gap 26
There is a need to reduce the width of the fluid to suppress the flow of fluid.

以上の事実を本発明者らは考慮し、空洞部の内径dO1
検知管の外径d1、渦発生体の流れと並行する辺の長さ
1■として次の最適条件を設定した。
The inventors took the above facts into consideration, and the inner diameter dO1 of the cavity
The following optimal conditions were set as the outer diameter d1 of the detection tube and the length of the side parallel to the flow of the vortex generator 1.

0.711<dO<H O,7dO<di<dO さらに、本発明者らは、スリットの最適条件を1≦g/
D O,3H<h <0.6H の範囲に決めた。その理由を以下に述べる。
0.711<dO<H O, 7dO<di<dO Furthermore, the present inventors set the optimum condition for the slit as 1≦g/
The range was determined to be D O,3H<h<0.6H. The reason for this is explained below.

一般に断面矩形状の渦発生体は直線性が良くない。この
ため特公昭55−20171号または特公昭55−28
485号のように渦発生体両側面に連通ずる連通孔を設
は吸い込み、吹き出しを行わせ直線性の向上を図る方法
が知られている。しかしながら本実施例においては、渦
発生体の空洞部24内に、検知管28を挿入しであるの
で流体の吸い込み、吹き出しは事実上行われない。つま
り渦発生体両側面に開口部はあるものの実質的に、柱状
の渦発生体と変わりがないのである。
Generally, a vortex generator having a rectangular cross section has poor linearity. For this reason, Special Publication No. 55-20171 or Special Publication No. 55-28
There is a known method, as in No. 485, in which communicating holes are provided on both sides of the vortex generating body to cause suction and blow out, thereby improving linearity. However, in this embodiment, since the detection tube 28 is inserted into the cavity 24 of the vortex generator, fluid is not actually sucked in or blown out. In other words, although there are openings on both sides of the vortex generator, it is essentially the same as a columnar vortex generator.

そこで、本願発明者らは、各種実験の結果、スリット4
4R,44Lの端部の少なくとも一方を0 導管内周面より外側に位置させることにより、著しく直
線性を改善できることを見い出した。
Therefore, as a result of various experiments, the inventors of the present application found that the slit 4
It has been found that linearity can be significantly improved by positioning at least one of the ends of 4R and 44L outside the inner circumferential surface of the 0 conduit.

すなわち、流体の流れにより発生した渦発生体I6の両
側面42R,42Lの圧力差により変位する流体は、例
えば、第1図および第4図に示すように、吸い込み側の
側面42Lのスリット44Lを上昇し、このスリット4
4L上部から間隔22へ逃げ、開口壁14に沿ってもう
一方の側面42R方向まで達し、この側面42Rのスリ
ンI−44Rの上部で吸い込まれ、続いてスリット44
Rに沿って降下し吹き出される。これら一連の動作は、
導圧孔46のスリット44R,44L、空洞部24と検
知管28の間隙26および開口壁14と渦発生体16の
間隔22を通して行われ、結局スリット44R,44L
の吸い込み、吹き出しをスムーズに行い渦の剥離の助長
および抑制の効果を生じ、直線性の向上が図られる。
That is, the fluid displaced by the pressure difference between both side surfaces 42R and 42L of the vortex generating body I6 generated by the flow of fluid moves through the slit 44L of the side surface 42L on the suction side, as shown in FIGS. 1 and 4, for example. Rise and this slit 4
It escapes from the upper part of 4L to the interval 22, reaches the other side 42R along the opening wall 14, is sucked in at the upper part of the sulin I-44R of this side 42R, and is then drawn into the slit 44.
It descends along R and is blown out. These series of operations are
This is done through the slits 44R, 44L of the pressure guiding hole 46, the gap 26 between the cavity 24 and the detection tube 28, and the gap 22 between the opening wall 14 and the vortex generator 16, and eventually the slits 44R, 44L
The suction and blow-out of the air flow smoothly, which promotes and suppresses the separation of vortices, and improves linearity.

したがって、前記スリット44R,44Lの端部の少な
くとも一方を導管内周面より外側に位置させればよい。
Therefore, at least one of the ends of the slits 44R, 44L may be positioned outside the inner circumferential surface of the conduit.

さらに、一層好適にはスリット44R,44Lの長さβ
を導管10の内径りよりも長く形成することが望ましい
Furthermore, more preferably, the length β of the slits 44R and 44L is
It is desirable to form the inner diameter of the conduit 10 to be longer than the inner diameter of the conduit 10.

また、スリット44上部の圧力の逃げを効率良くするた
め、スリットの幅りを広げることも考えられる。このこ
とは併せて導圧孔46への圧力の導入の効率も良いとい
う結果となる。しかしながら、第5図(C1に示すよう
に弧状壁48が短くなり、間隙26内を流体が流れ易く
なり差圧の逃げが生じ感圧能力を低下させる。一方、ス
リットの幅りを狭めた場合は、検知管28周囲への差圧
の逃げは発生しなくなるが、直線性が低下し、差圧の効
率良い検出が困難となる。
Furthermore, in order to efficiently release the pressure above the slit 44, it is conceivable to widen the width of the slit. This also results in good efficiency in introducing pressure into the pressure guiding hole 46. However, as shown in FIG. 5 (C1), the arcuate wall 48 becomes shorter, and fluid flows more easily in the gap 26, causing differential pressure to escape and reducing the pressure-sensing ability.On the other hand, when the width of the slit is narrowed, In this case, the differential pressure will not escape to the surroundings of the detection tube 28, but the linearity will deteriorate, making it difficult to efficiently detect the differential pressure.

以上実験結果からスリットの最適条件を決定した。The optimum conditions for the slit were determined from the above experimental results.

次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be explained.

渦発生体を前記最適条件の範囲内に設定した上記構成の
渦流量計を導管10内へ配設することにより、渦発生体
16の周囲を回る流れが強く加速され、渦発生体16の
後方に交互に規則的なカルマン渦が発生する。このカル
マン渦の発生に伴っ1 て渦発生体16の流体と並行する両側面42R142L
間に圧力差が生しる。この圧力差により、スリット44
R,44Lおよび渦発生体16と開口壁14の間隔22
を介して吸い込み、吹き出しが効率良く行われるととも
に、この圧力差がスリンl□44R,44Lを通して検
知管28に差圧として作用し曲げ応力を発生させる。こ
の応力変化を磁歪素子32が検出し電気信号に変換する
By disposing the vortex flowmeter having the above configuration in which the vortex generator is set within the range of the optimum conditions in the conduit 10, the flow around the vortex generator 16 is strongly accelerated, and the flow behind the vortex generator 16 is strongly accelerated. Regular Karman vortices occur alternately. With the generation of this Karman vortex, both sides 42R142L of the vortex generator 16 parallel to the fluid
A pressure difference occurs between them. This pressure difference causes the slit 44
R, 44L and the distance 22 between the vortex generator 16 and the opening wall 14
Inhalation and blowout are efficiently performed through the sulin l□ 44R and 44L, and this pressure difference acts as a pressure difference on the detection tube 28 through the sulin l□ 44R and 44L to generate bending stress. The magnetostrictive element 32 detects this stress change and converts it into an electrical signal.

したがって、渦発生体16の間隙を通して吸い込み、吹
き出しは行われないが、スリットの長さを長くすること
により実質的に同様の作用を成し、直線性が向上すると
ともに、被測定流体が偏流や旋回流などによって乱れて
いてもカルマン渦が安定して発生する。
Therefore, although suction and blowout are not performed through the gap of the vortex generator 16, substantially the same effect is achieved by increasing the length of the slit, improving linearity and preventing the fluid to be measured from drifting. Karman vortices are generated stably even if they are disturbed by swirling flow.

すなわち各種の実験によって吸い込み、吹き出しはカル
マン渦を安定に発生させる効果のあることは公知の事実
となっているが、本発明のように擬似的な吸い込み、吹
き出しであっても同様の効果が得られるのである。
In other words, it is a well-known fact through various experiments that suction and blow-out have the effect of stably generating Karman vortices, but even with pseudo suction and blow-out as in the present invention, the same effect can be obtained. It will be done.

また、検知管28が渦発生体16に内設してい 9 2 るため、流れの抗力の影響を受けることがないとともに
、渦発生体16の両側面42R,42Lの差圧が検知管
28に効率良く作用するため、安定で良好な渦検出波形
(第7図参照)を得ることができる。さらに、検知管2
8の一端が筒状に形成しているため固有振動数が高くな
り高速領域まで計測できる一方、検知管28の一端の質
量も小さくすることができるので外部振動の影響も受け
にくい等の作用効果がある。
Furthermore, since the detection tube 28 is installed inside the vortex generator 16, it is not affected by the drag force of the flow, and the differential pressure between the both sides 42R and 42L of the vortex generator 16 is applied to the detection tube 28. Since it works efficiently, a stable and good eddy detection waveform (see FIG. 7) can be obtained. Furthermore, the detection tube 2
Since one end of the detection tube 28 is formed into a cylindrical shape, the natural frequency is high and measurements can be made in the high-speed range, while the mass of one end of the detection tube 28 can also be reduced, making it less susceptible to external vibrations. There is.

また、検知管28は渦発生体内部に位置するため摩耗の
おそれがないのでアルミニウムなど軽量の材料を用いて
も良く、また筒状の一端のみを薄肉のパイプを溶着する
など種々の軽量化が図れるため、耐振動特性を更に向上
させることができる。
In addition, since the detection tube 28 is located inside the vortex generator, there is no risk of wear, so lightweight materials such as aluminum may be used, and various weight reduction methods such as welding a thin-walled pipe to only one end of the cylindrical shape can be used. Therefore, the vibration resistance characteristics can be further improved.

この点において従来の渦発生体の応力を直接検出する方
式ではこのような対策がとれないため本発明とは性能上
極めて大きな差が生じるのである。
In this respect, the conventional method of directly detecting the stress of the vortex generator cannot take such measures, resulting in an extremely large difference in performance from the present invention.

上記実施例では、渦発生体16の断面形状を矩形状に形
成したが、これは加工が容易であるとともに、前後どち
らの方向からの流れであっても測4 定することができ、また直線性、渦検出波形も良好であ
る等優れた特徴を有している。また、渦発生体16のス
リット44R,44tの面積が大きく形成されているた
め被測定流体に含まれている異物により詰まることもな
い。
In the above embodiment, the cross-sectional shape of the vortex generating body 16 was formed into a rectangular shape, but this is easy to process, and it is possible to measure the flow from either the front or back direction. It has excellent characteristics such as good performance and eddy detection waveform. Further, since the slits 44R and 44t of the vortex generator 16 have a large area, they are not clogged by foreign matter contained in the fluid to be measured.

なお、上記実施例において、検知管の検出部を構成する
磁歪素子に替えて、圧電素子やストレートゲージ等の歪
検出センサを用いるようにしても良い。
In addition, in the above embodiment, a strain detection sensor such as a piezoelectric element or a straight gauge may be used instead of the magnetostrictive element constituting the detection section of the detection tube.

第8図+a)、 (b)は本発明の渦流量計の優れた特
性を示す一例で配管条件を変えた場合の実験データであ
る。
Figures 8+a) and 8(b) are experimental data showing an example of the excellent characteristics of the vortex flowmeter of the present invention when the piping conditions were changed.

第8図(blは第8図611に示すように、本発明の渦
流量計50をエルボ52の直後に取り付けた場合の器差
変化を示したものであり、このような悪条件下において
も器差変化は微少で使用可能であることを示している。
FIG. 8 (bl shows the instrumental error change when the vortex flow meter 50 of the present invention is installed immediately after the elbow 52 as shown in FIG. 8 611, and even under such adverse conditions) This shows that the instrumental difference change is small and can be used.

このようにして本発明によれば導管内に配置された渦発
生体の流体と並行する両側面の差圧を極めて安定した良
好な渦検出波形として検出することができ、また被測定
流体の乱れの影響を受けることもない。さらに、渦流量
計の前後の直管部を短くすることも可能であるなどの著
効を奏する。
In this way, according to the present invention, it is possible to detect the differential pressure between the two sides parallel to the fluid of the vortex generator disposed in the conduit as an extremely stable and good vortex detection waveform, and also detect the turbulence of the fluid to be measured. It is not affected by. Furthermore, it is possible to shorten the straight pipe portions before and after the vortex flowmeter, which is a significant effect.

以上本発明の好適な実施例を挙げて種々説明してきたが
、本発明が上述した実施例に限定されることなく、例え
ば、渦発生体の断面形状が必ずしも矩形状でなく六角形
などの多角形でもよ(、発明の精神を逸脱しない範囲内
で多くの改変を施しうろことはもちろんである。
Various preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-mentioned embodiments. It can also be square (and of course, many modifications can be made within the scope of the spirit of the invention).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す横断面図、第2図は第
1図のA−AlJi面図、第3図は渦発生体の一部を示
す側面図、第4図は第1図のB−B断面図、第5図(a
l、 (blはそれぞれ空洞部の内径を大きく設定した
場合と小さく設定した場合の、第5図(C1はhを大き
く設定した場合の渦発生体と検知管の状態を示す断面説
明図、第6図は空洞部の内径と検知管の外径の比の測定
可能範囲を示す線図、第7図は本発明の渦流量針による
検出波形を示す。 第8図(alはエルボ直前に本発明の渦流量計を設け5 た説明図、第8図(blはその結果を示す線図である。 第9図(al、 (b)は渦流量計における検出困難な
検出波形を示す。 10・・・導管、12・・・開口部、14・・・開口壁
、16・・・渦発生体、18・・・フランジ部、20・
・・ボルト、22・・・間隔、24・・・空洞部、26
・・・間隙、28・・・検知管、30・・・穴。 32・・・磁歪素子、34・・・接着剤。 36・・・フランジ部、38・・・押えフランジ、40
・・・ボルト、 42R,42L・・・側面、 44R
,44L・・・スリット。 46・・・導圧孔、48・・・弧状壁、50・・・渦流
量計、52・・・エルボ。 特許出願人 株式会社 長野計器製作所 代表者 溝 呂 木 雅 之 7 6 K 棚 塾
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a cross-sectional view of A-AlJi in FIG. 1, FIG. 3 is a side view showing a part of the vortex generator, and FIG. BB sectional view in Figure 1, Figure 5 (a
l, (bl is a cross-sectional explanatory diagram showing the state of the vortex generator and the detection tube when h is set large; Figure 6 is a diagram showing the measurable range of the ratio of the inner diameter of the cavity to the outer diameter of the detection tube, and Figure 7 shows the waveform detected by the vortex flow needle of the present invention. FIG. 8 is an explanatory diagram in which the vortex flowmeter of the invention is installed (Bl is a line diagram showing the results. FIGS. 9A and 9B show detection waveforms that are difficult to detect in the vortex flowmeter. 10 ... Conduit, 12... Opening, 14... Opening wall, 16... Vortex generator, 18... Flange portion, 20...
... Bolt, 22 ... Spacing, 24 ... Hollow part, 26
...Gap, 28...Detection tube, 30...Hole. 32... Magnetostrictive element, 34... Adhesive. 36...flange part, 38...presser flange, 40
...Bolt, 42R, 42L...Side, 44R
,44L...slit. 46... Pressure hole, 48... Arc-shaped wall, 50... Vortex flow meter, 52... Elbow. Patent Applicant Nagano Keiki Seisakusho Co., Ltd. Representative Masayuki Mizo 7 6 K Tana Juku

Claims (1)

【特許請求の範囲】[Claims] ■、カルマン渦を利用した渦流量計において、流体の流
れる導管中に配設する渦発生体の流体の流れ方向の断面
形状を矩形状とし、前記渦発生体の流体の流れと直交す
る方向に感圧部材を挿入するための空洞部を穿設すると
ともに、この空洞部を貫通し前記渦発生体の流体の流れ
と並行する両側面を連通ずるスリットを設は導圧孔を構
成し、この導圧孔の空洞部の内径をdo、前記渦発生体
の流体の流れと並行する辺の長さをHとして、0.7H
<do<11の範囲にし、前記感圧部材の外径をdlと
し、0.7dO<di<doの範囲内にし、前記導圧孔
のスリットの幅をhとして、0.311<h <0.6
Hの範囲にし、前記スリットの端部のうち少なくとも一
方が前記導管内1周面より外側に位置するようにスリッ
トを延在したことを特徴とする渦流量針。
■ In a vortex flowmeter using Karman vortices, a vortex generator disposed in a conduit through which fluid flows has a rectangular cross-sectional shape in the fluid flow direction, and A cavity for inserting the pressure-sensitive member is bored, and a slit is provided that passes through this cavity and communicates with both sides of the vortex generator parallel to the fluid flow, thereby forming a pressure guiding hole. The inner diameter of the cavity of the pressure guiding hole is do, and the length of the side of the vortex generator parallel to the fluid flow is H, 0.7H.
<do<11, the outer diameter of the pressure-sensitive member is dl, 0.7dO<di<do, and the width of the slit of the pressure-conducting hole is h, 0.311<h<0 .6
H, and the slit extends so that at least one of the ends of the slit is located outside one peripheral surface within the conduit.
JP59055483A 1984-03-22 1984-03-22 Vortex flowmeter Granted JPS60198413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055483A JPS60198413A (en) 1984-03-22 1984-03-22 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055483A JPS60198413A (en) 1984-03-22 1984-03-22 Vortex flowmeter

Publications (2)

Publication Number Publication Date
JPS60198413A true JPS60198413A (en) 1985-10-07
JPH0458564B2 JPH0458564B2 (en) 1992-09-17

Family

ID=12999865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055483A Granted JPS60198413A (en) 1984-03-22 1984-03-22 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS60198413A (en)

Also Published As

Publication number Publication date
JPH0458564B2 (en) 1992-09-17

Similar Documents

Publication Publication Date Title
US4186599A (en) Vortex shedding flowmeter assembly
US4181020A (en) Vortex-shedding flowmeter having a sensing vane
US3732731A (en) Bluff body flowmeter with internal sensor
CA1324507C (en) Self-averaging pitot tube probe and method for measuring fluid flow
JPH0554045B2 (en)
US4003253A (en) Multi-range vortex-shedding flowmeter
US4074571A (en) Obstacle assembly for vortex type flowmeter
US5913247A (en) Transducer for a vortex flowmeter
CA2020530A1 (en) Vortex flowmeters
US3759096A (en) Measuring the velocity of a flowing fluid
CA1099952A (en) Vortex shedding flowmeter assembly
JPS60198413A (en) Vortex flowmeter
JP2869054B1 (en) Insertion type vortex flowmeter and method for determining its probe line length
US10605635B2 (en) Insertion vortex flowmeter element
US20040107778A1 (en) Vortex-frequency flowmeter
KR100201077B1 (en) Average pitot tube type flow measuring apparatus
JPH037780Y2 (en)
US3664190A (en) Flow meter device
RU2162206C2 (en) Vortex register of fluid medium
JPH0456246B2 (en)
JPS59132313A (en) Krmn vortex flow speed meter
KR0133625Y1 (en) Vibration type flow meter
GB2031150A (en) Flowmeter
JPS63269018A (en) Vortex flowmeter
JP2927295B2 (en) Vortex flow meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees