JPS60197639A - Preparation of dimethyl carbonate - Google Patents

Preparation of dimethyl carbonate

Info

Publication number
JPS60197639A
JPS60197639A JP5273684A JP5273684A JPS60197639A JP S60197639 A JPS60197639 A JP S60197639A JP 5273684 A JP5273684 A JP 5273684A JP 5273684 A JP5273684 A JP 5273684A JP S60197639 A JPS60197639 A JP S60197639A
Authority
JP
Japan
Prior art keywords
dimethyl carbonate
methanol
phosgene
column
methyl chloroformate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5273684A
Other languages
Japanese (ja)
Inventor
Tadashi Shimomura
下村 正
Mitsuo Miura
光雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP5273684A priority Critical patent/JPS60197639A/en
Publication of JPS60197639A publication Critical patent/JPS60197639A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:In preparation of dimethyl carbonate through methyl formate by reacting phosgene with methanol, to carry out the reaction in a short time in high purity, by circulating the unreacted alcohol and methyl chloroformate by distillation operation, using them. CONSTITUTION:Excess methanol is reacted with phosgene at a temperature <= the boiling point of phosgene, to obtain a reaction product comprising methyl chloroformate as a main product. The unreacted alcohol and methyl chloroformate, distillates at the top of column at the final stage, are recycled, mixed with the reaction product, a molar ratio of methanol to methyl chloroformate is made into 1.1-1.3:1, the temperature is raised to 50-65 deg.C, and they are mixed, to obtain dimethyl carbonate. The reaction product is further distilled, high- purity dimethyl carbonate is obtained from the bottom of column, an azeotropic mixture of methanol and dimethyl carbonate and methyl chloroformate are recovered from the top of column, and they are circulated to the previous stage. EFFECT:Since the reaction time of the second process can be shortened, a small- sized reactor will suffice.

Description

【発明の詳細な説明】 本発明は、ホスゲンとメタノールを原料とする炭酸ジメ
チルの製造に関し、短時間に高純度の炭酸ジメチルを得
ることができ工業的に有利に実施できる新規なブーセス
を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of dimethyl carbonate using phosgene and methanol as raw materials, and provides a novel process that can obtain highly pure dimethyl carbonate in a short time and can be carried out industrially advantageously. It is something.

炭酸ジメチルは、農薬、医薬原料の合成及び天然樹脂用
の溶剤として利用され工業的に非常に有用な物質である
Dimethyl carbonate is an industrially very useful substance that is used as a solvent for the synthesis of agricultural chemicals and pharmaceutical raw materials, and for natural resins.

炭酸ジメチルの製造方法として、−酸化炭素、メタノー
ル、酸素によって合成する方法がいくつか提唱されてい
るが、反応圧力が高いとか、反応速度が極めておそいな
どの問題を有しており工業的に有利な製造法とは言い難
い。
Several methods have been proposed for producing dimethyl carbonate, including synthesis using carbon oxide, methanol, and oxygen, but these have problems such as high reaction pressure and extremely slow reaction rate, making them industrially unsuitable. It is difficult to say that it is a manufacturing method.

またホスゲンとアルコールとの反応によってクロルギ酸
メチルを経由して炭酸ジメチルな合成することは良く知
られている(例えば、RlQ、 Brewster、 
W、 E、 Mc、 Ewen著 中西香爾記ブルース
ター有機化学(上)P、28B東京化学同人)。
It is also well known that dimethyl carbonate is synthesized via methyl chloroformate by the reaction of phosgene and alcohol (for example, RlQ, Brewster,
Written by W, E, Mc, Ewen, Koji Nakanishi Blue Star Organic Chemistry (1st) P, 28B Tokyo Kagaku Doujin).

しかしこの方法も、次の様な問題点を持っている。つま
りホスゲンとメタノールからクールギ酸メチルを合成す
るのは比較的容易であるが、クロルギ酸メチルとメタノ
ールの反応において、反応速度が反応開始時は速いが、
反応が進むに伴ない指数関数的に減速し、クロルギ酸メ
チルの転化率を95%以上にするには、極めて長い反応
時間を必要とする。
However, this method also has the following problems. In other words, it is relatively easy to synthesize methyl chloroformate from phosgene and methanol, but in the reaction of methyl chloroformate and methanol, the reaction rate is fast at the beginning of the reaction, but
As the reaction progresses, it slows down exponentially, and an extremely long reaction time is required to achieve a conversion rate of 95% or more of methyl chloroformate.

この難点に対し1特開昭第50−85528号公報は、
反応がある程度進んだ段階においてメタノールを追加す
るという方策を提唱している。しかしこの方法では反応
時間の面でわずかに改善されるものの、クールギ酸メチ
ルの転化率を95%以上にするには、まだ長い反応時間
が必要である。またクールギ酸メチルの未反応量が少な
くなったものの未反応メタノールが、炭酸ジメチル中に
多量に共存し1そのままでは、高純度の炭酸ジメチルを
得たとは言えない。
To address this difficulty, 1 Japanese Patent Application Laid-Open No. 50-85528
He proposes a strategy of adding methanol once the reaction has progressed to a certain extent. However, although this method slightly improves the reaction time, it still requires a long reaction time to achieve a conversion rate of 95% or more of methyl coolformate. Furthermore, although the unreacted amount of methyl coolformate was reduced, a large amount of unreacted methanol coexisted in dimethyl carbonate, and if 1 was used as it was, it could not be said that highly pure dimethyl carbonate was obtained.

この様な従来の難点を克服し、短時間に高純度の炭酸ジ
メチルを工業的に有利に製造する方法を確立すべく、鋭
意検討を進めた結果、この発明に到達した。
In order to overcome these conventional difficulties and establish a method for industrially advantageous production of highly pure dimethyl carbonate in a short period of time, the present invention was achieved as a result of intensive studies.

本発明の詳細な説明すると、原料であるメタノールとし
ては、通常工業用のものが使用されるが、ホスゲンの利
用率を考慮して、含水率の小さいものが好ましい。また
ホスゲンとしては、−酸化炭素と塩素を活性炭触媒存在
下で反応させて得られる通常のホスゲンが使用される。
To explain the present invention in detail, as the raw material methanol, industrial methanol is usually used, but in consideration of the utilization rate of phosgene, methanol with a low water content is preferable. As the phosgene, ordinary phosgene obtained by reacting -carbon oxide and chlorine in the presence of an activated carbon catalyst is used.

本発明は、ホスゲンとメタノールとの反応によって、ギ
酸メチルを経由して炭酸ジメチルを製造し、蒸留によっ
て高純度の炭酸ジメチルを得るものであり、この発明の
各工程を、詳細に説明する。
In the present invention, dimethyl carbonate is produced via methyl formate through the reaction of phosgene and methanol, and highly purified dimethyl carbonate is obtained by distillation. Each step of the present invention will be explained in detail.

第1工程 反応器中に存在するメタノールへホスゲンを導入する。1st step Phosgene is introduced into the methanol present in the reactor.

この時、ホスゲンの反応への利用率を高める上で、ホス
ゲンは液状で導入し、メタノールは、ホスゲンに対し絶
えず過剰モルであること、さらに反応温度もホスゲンの
沸点以下が好ましい。
At this time, in order to increase the utilization rate of phosgene for the reaction, it is preferable that phosgene be introduced in liquid form, that methanol be constantly in molar excess relative to phosgene, and that the reaction temperature be below the boiling point of phosgene.

第2工程 第1工程における生成物と第6エ程における塔頂流出物
を混合する。この時、クロルギ酸メチルとメタノールの
モル比は、クロルギ酸メチルの転化率が85〜9596
となる反応時間をできるだけ短くすることと過剰のメタ
ノール量をできるだけ少なくするということの兼合いか
ら1:1.1〜1.6とするのが良い。
Second Step The product from the first step and the overhead effluent from the sixth step are mixed. At this time, the molar ratio of methyl chloroformate and methanol is such that the conversion rate of methyl chloroformate is 85 to 9596.
It is preferable to set the ratio to be 1:1.1 to 1.6 in view of the need to shorten the reaction time as much as possible and to minimize the amount of excess methanol.

なお炭酸ジメチルとメタノールは、共沸する為、未反応
アルコール量が多いと、蒸留に際し、余分の炭酸ジメチ
ルをメタノール及びクロルギ酸メチルと共に塔頂より流
出させることとなり、単位時間当りの炭酸ジメチルの生
産量が減ると同時に余分のエネルギーを必要とし、経済
的に不利であり、メタノールとクロルギ酸メチルの一合
は、極めて重要な意味を有する。次に混合液を昇温混合
する。この時満足できる反応速度を得るには、反応温度
を50’〜70’Cとするのが良い。
Note that dimethyl carbonate and methanol are azeotropic, so if there is a large amount of unreacted alcohol, excess dimethyl carbonate will flow out from the top of the column together with methanol and methyl chloroformate during distillation, reducing the production of dimethyl carbonate per unit time. The combination of methanol and methyl chloroformate is of great importance, since it requires additional energy and is economically disadvantageous as the amount decreases. Next, the mixed solution is heated and mixed. In order to obtain a satisfactory reaction rate at this time, the reaction temperature is preferably 50' to 70'C.

第3工程 第2工程で得られた炭酸ジメチルを主成分とする反応液
を蒸留塔へ導く。蒸留塔としては、充填塔、棚段塔など
通常の蒸留装置が用いられる。そして蒸留によって未反
応のメタノール及びり―ルギ酸メチルと炭酸ジメチルを
分離する。
Third step: The reaction solution containing dimethyl carbonate as a main component obtained in the second step is led to a distillation column. As the distillation column, a normal distillation apparatus such as a packed column or a tray column is used. Then, unreacted methanol, methyl sulfurate, and dimethyl carbonate are separated by distillation.

なおメタノールと炭酸ジメチルは、共沸組成物を形成す
る。従って蒸留に際し、塔頂よりメタノールと炭酸ジメ
チルの共沸組成物及びりpルギ酸メチルを、凝縮回収し
、塔底から炭酸ジメチルを得る。塔頂より得られた回収
物は、第2工程へ循環供給する。
Note that methanol and dimethyl carbonate form an azeotropic composition. Therefore, during distillation, an azeotropic composition of methanol and dimethyl carbonate and methyl pyroformate are condensed and recovered from the top of the column, and dimethyl carbonate is obtained from the bottom of the column. The recovered material obtained from the top of the column is recycled and supplied to the second step.

この様に未反応アルコール及びクールギ酸メチルを蒸留
操作によって循環使用することにより、第2工程の反応
時間を従来の時間より短縮化が行なえると同時に、メタ
ノール及びクロルギ酸メチルの含有量の少ない高純度の
炭酸ジメチルを、短時間に得ることが場末る。従って、
第2工程の反応時間の短縮化に伴い反応釜の容量も、従
来の方式のものに比べ非常にコンパクトとなり、工業的
に極めて有利な方法であると言える。・ 以下本発明を実施例によって更に詳細に説明する。なお
実施例中の%は重量%を示す。
By recycling unreacted alcohol and methyl chloroformate in this way, the reaction time in the second step can be shortened compared to the conventional time, and at the same time, the reaction time of the second step can be shortened compared to the conventional time. It is difficult to obtain pure dimethyl carbonate in a short time. Therefore,
As the reaction time of the second step is shortened, the capacity of the reaction vessel is also much smaller than that of the conventional method, and it can be said that this method is extremely advantageous industrially. - The present invention will be explained in more detail below with reference to Examples. Note that % in the examples indicates weight %.

実施例 ジムロート、滴下ロート、温度計及び攪拌機を付した3
00dの4ツロフラスコに、メタノール 59.35J
I(1,855モル)を仕込み、攪拌しながらホスゲン
 102.82Fを11/minの速度で添加した。こ
の時反応液が0℃以下となるように冷却を続け、添加後
0゜3時間攪拌を継続した。
Example 3 with Dimroth, dropping funnel, thermometer and stirrer
Add methanol 59.35J to the 00d 4 flask.
I (1,855 mol) was charged, and phosgene 102.82F was added at a rate of 11/min while stirring. At this time, the reaction solution was continued to be cooled to below 0°C, and stirring was continued for 3 hours at 0°C after the addition.

その後この液に蒸留の際、塔頂より回収された液 26
.941C組成 MeOH40,996、クロルギ酸メ
チル 28.0%、炭酸ジメチル17.596、HCJ
 1 M、 5%)を加えた。混合後、液の全重量は1
81.25#となり、組成は、MeOH21,196、
りClルギ酸fi9−に52.135%、炭酸ジメチル
 4.5696であり、メタノールとクロルギ酸メチル
のモル比は1.21である。
After that, this liquid was collected from the top of the column during distillation.26
.. 941C composition MeOH40,996, methyl chloroformate 28.0%, dimethyl carbonate 17.596, HCJ
1 M, 5%) was added. After mixing, the total weight of the liquid is 1
81.25#, and the composition is MeOH21,196,
The molar ratio of methanol to methyl chloroformate is 1.21.

次に攪拌しながら、反応液が沸騰状態となるまで徐々に
昇温し2時間攪拌した。そして炭酸ジメチルを主成分と
する生成物が109.4#得られこの液の組成はメタノ
ール 10,096、クロルギ酸メチル 6.91%、
炭酸ジメチル78.26’;l;、HCJ 4.759
6であり、ホスゲン基準による炭酸ジメチルの選択率は
88゜596であった。さらに、この液を蒸留塔(直径
50 d、蒸留段高さ 50儂、回収段高さ 45儂、
回収段には磁性のラシヒリング 5〆×5、蒸留段には
磁性ラシヒリング 3111X5を充填した釜容量20
0dのガラス製蒸留塔)にて精留を行った。そして釜か
ら99.596以上の純度の炭酸ジメチル 89.51
1が得られ、塔頂よりメタノール及びクロルギ酸メチル
、炭酸ジメチルの混合物 26.94#を回収した。
Next, while stirring, the temperature of the reaction solution was gradually raised until it reached a boiling state, and the mixture was stirred for 2 hours. 109.4 # of products containing dimethyl carbonate as the main component were obtained, and the composition of this liquid was 10,096% methanol, 6.91% methyl chloroformate,
Dimethyl carbonate 78.26';l;, HCJ 4.759
6, and the selectivity of dimethyl carbonate based on phosgene was 88°596. Furthermore, this liquid was poured into a distillation column (diameter 50 d, distillation stage height 50 degrees, recovery stage height 45 degrees,
A pot capacity of 20 filled with magnetic Raschig rings 5 x 5 in the recovery stage and magnetic Raschig rings 3111 x 5 in the distillation stage.
Rectification was performed in a glass distillation column (0d glass distillation column). And from the pot, dimethyl carbonate with a purity of 99.596 or higher 89.51
1 was obtained, and 26.94# of a mixture of methanol, methyl chloroformate, and dimethyl carbonate was recovered from the top of the column.

特許出願人 三菱瓦斯化学株一式会社 代表者長野和吉Patent applicant Mitsubishi Gas Chemical Co., Ltd. Representative Kazuyoshi Nagano

Claims (1)

【特許請求の範囲】 メタノールとホスゲンを反応させて炭酸ジメチルを製造
するにあたり (1) ホスゲンに対し、メタノールをホスゲンの沸点
以下にて過剰モル共存させ、反応せしめ主にクールギ酸
メチルを含む生成物を得る第1工程 (2)第1工程から得られた生成物及び第3工程から得
られる塔頂流出物を混合し、メタノールとクロルギ酸メ
チルのモル比を、1.1〜1.5:1とし50〜65℃
に昇温混合し、炭酸ジメチルを生成せしめる第2工程 (3)$2工程で得られた炭酸ジメチルの主成分液を蒸
留し、塔頂よりメタノールと炭酸ジメチルの共沸物及び
クールギ酸メチルを回収し、塔底より炭酸ジメチルを得
る第6エ程 (4) 塔頂より回収されたメタノールと炭酸ジメチル
の共沸物及びクールギ酸メチルを、第2工程へ循環供給
する工程 の各工程を含む炭酸ジメチルの製造法。
[Claims] In producing dimethyl carbonate by reacting methanol and phosgene, (1) An excess molar amount of methanol is allowed to coexist with phosgene at a temperature below the boiling point of phosgene, and the reaction is performed to produce a product mainly containing methyl coolformate. (2) The product obtained from the first step and the overhead effluent obtained from the third step are mixed, and the molar ratio of methanol and methyl chloroformate is adjusted to 1.1 to 1.5: 1 and 50-65℃
The main component liquid of dimethyl carbonate obtained in the second step (3) $2 is distilled, and an azeotrope of methanol and dimethyl carbonate and methyl coolformate are distilled from the top of the column. 6th step (4) of collecting and obtaining dimethyl carbonate from the bottom of the column; Includes each step of circulating and supplying the azeotrope of methanol and dimethyl carbonate and methyl cool formate recovered from the top of the column to the second step. Method for producing dimethyl carbonate.
JP5273684A 1984-03-19 1984-03-19 Preparation of dimethyl carbonate Pending JPS60197639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5273684A JPS60197639A (en) 1984-03-19 1984-03-19 Preparation of dimethyl carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5273684A JPS60197639A (en) 1984-03-19 1984-03-19 Preparation of dimethyl carbonate

Publications (1)

Publication Number Publication Date
JPS60197639A true JPS60197639A (en) 1985-10-07

Family

ID=12923212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5273684A Pending JPS60197639A (en) 1984-03-19 1984-03-19 Preparation of dimethyl carbonate

Country Status (1)

Country Link
JP (1) JPS60197639A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744824B1 (en) 2006-06-29 2007-08-01 한국과학기술연구원 Synthetic method of dialkylcarbonates
WO2009072501A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2009072502A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2014024891A1 (en) 2012-08-10 2014-02-13 旭硝子株式会社 Method for producing carbonate compound and method for producing aromatic polycarbonate
WO2014088029A1 (en) 2012-12-06 2014-06-12 旭硝子株式会社 Method for producing carbonate compound
CN107382733A (en) * 2017-08-01 2017-11-24 安徽东至广信农化有限公司 A kind of synthetic method of dimethyl carbonate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744824B1 (en) 2006-06-29 2007-08-01 한국과학기술연구원 Synthetic method of dialkylcarbonates
WO2009072501A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2009072502A1 (en) 2007-12-03 2009-06-11 Asahi Glass Co., Ltd. Method for producing carbonate compound
WO2014024891A1 (en) 2012-08-10 2014-02-13 旭硝子株式会社 Method for producing carbonate compound and method for producing aromatic polycarbonate
US9221740B2 (en) 2012-08-10 2015-12-29 Asahi Glass Company, Limited Method for producing carbonate compound and method for producing aromatic polycarbonate
WO2014088029A1 (en) 2012-12-06 2014-06-12 旭硝子株式会社 Method for producing carbonate compound
US9796655B2 (en) 2012-12-06 2017-10-24 Asahi Glass Company, Limited Method for producing carbonate compound
CN107382733A (en) * 2017-08-01 2017-11-24 安徽东至广信农化有限公司 A kind of synthetic method of dimethyl carbonate

Similar Documents

Publication Publication Date Title
JPS5988492A (en) Continuous manufacture of monomer or oligomer alkoxysilane
KR860001853B1 (en) Process for continuously preparing ethylene glycol
JP3962872B2 (en) Method for synthesizing ketazine
JPS61172852A (en) Production of diphenyl carbonate
CN1130335C (en) Process for producing diaryl carbonate
JPS60197639A (en) Preparation of dimethyl carbonate
JP3755834B2 (en) Method for producing aryl carbonate
JPH1017529A (en) Continuous production of aryl carbonate
JP2557099B2 (en) Method for separating dimethyl carbonate
JP2554965B2 (en) Method for purifying dialkyl carbonate
JPS61238745A (en) Production of allyl alcohol
JPH08239348A (en) Production of aryl carbonate
JP2003342236A (en) Method for producing dimethyl carbonate
JPS6114144B2 (en)
JPH07304713A (en) Production of aromatic carbonic acid ester
JP3143598B2 (en) Method for producing high-purity phthalic anhydride
JPH0368853B2 (en)
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
JP2004018500A (en) Method for producing chlorosulfonyl isocyanate
JP2662965B2 (en) Preparation of allyl acetate and allyl alcohol
JP2633111B2 (en) Apparatus for producing diethyl carbonate and production method using the apparatus
JPS58146562A (en) Preparation of indoline
JPS5845409B2 (en) Diol manufacturing method
JPH10251276A (en) Production of demethoxymethylsilane
JP3956444B2 (en) Method for producing butanediol