JPS60197521A - Device of generating stable spiral air flow in line - Google Patents

Device of generating stable spiral air flow in line

Info

Publication number
JPS60197521A
JPS60197521A JP5223884A JP5223884A JPS60197521A JP S60197521 A JPS60197521 A JP S60197521A JP 5223884 A JP5223884 A JP 5223884A JP 5223884 A JP5223884 A JP 5223884A JP S60197521 A JPS60197521 A JP S60197521A
Authority
JP
Japan
Prior art keywords
cone body
gas
pipe
air flow
annular space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5223884A
Other languages
Japanese (ja)
Other versions
JPH057287B2 (en
Inventor
Tomotaka Marui
智敬 丸井
Masaaki Takarada
正昭 宝田
Yoshiaki Shimura
志村 吉明
Junichi Morioka
盛岡 純一
Minoru Mita
稔 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd, Kawasaki Steel Corp filed Critical Kawatetsu Mining Co Ltd
Priority to JP5223884A priority Critical patent/JPS60197521A/en
Publication of JPS60197521A publication Critical patent/JPS60197521A/en
Publication of JPH057287B2 publication Critical patent/JPH057287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/58Devices for accelerating or decelerating flow of the materials; Use of pressure generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To provide a device which introduces gas into an annular space between an inner and an outer cone body, and generates a stable spiral air flow, which is utilized for conveyance of solid particle and dehydration. CONSTITUTION:When gas is fed in through a gas introduction port 5, the gas flows through an annular space 4 between an outer cone body 1 and an inner cone body 2 from the large size side toward the small size side. The gas is caused to flow in a line 3 with a specified size in a position in the vicinity of the apex of the inner cone body 2 to generate a stable spiral air flow. Solid particle, fed in the line 3 with the aid of a feeder 6 located to the central part of the inner cone body 2, is smoothly conveyed by means of the spiral air flow.

Description

【発明の詳細な説明】 (目的及び背景) 本発明は管路に安定な螺旋気流、すなわちガスが渦を巻
きつつ長袖方向に進行する気流を生成させる装置に関す
るものであり、本発明装置により生成されたIII旋気
流を用いて固体粒子の輸送や粉砕、含水固体粒子の脱水
、熱の分離等を行うことができる。
DETAILED DESCRIPTION OF THE INVENTION (Purpose and Background) The present invention relates to a device for generating a stable spiral airflow in a pipe, that is, an airflow in which gas swirls and travels in a long sleeve direction. Using the generated III swirl current, solid particles can be transported and pulverized, water-containing solid particles can be dehydrated, heat can be separated, etc.

螺旋気流による固体粒子の輸送は、これまで工業的に取
り上げられたことのない未開拓の分野であるので、まず
螺旋気流による輸送とは如何なるものであるかを説明す
る。
Since transport of solid particles by a spiral air flow is an unexplored field that has not been taken up industrially so far, we will first explain what transport by a spiral air flow is.

従来一般に工業的に行われている固体粒子の空気輸送は
、直線的な高速ガス流で固体粒子を吹き飛ばすという考
え方が基本になっており、このような方法では管壁に固
体粒子が激しく衝突するために管路の摩耗が激しく、装
置の補修に多くの時間と経費を要するという欠点がある
The conventional pneumatic transportation of solid particles, which is generally carried out industrially, is based on the idea of blowing away solid particles with a linear high-speed gas flow, and this method causes solid particles to violently collide with the pipe wall. Therefore, there is a disadvantage that the conduit is subject to severe wear and that repairing the device requires a lot of time and expense.

本発明はこのような従来の空気輸送とは全く発想を異に
するものである。
The present invention has a completely different concept from such conventional pneumatic transportation.

ガスや液体が渦を巻く現象は、例えば竜巻、台風、渦潮
など広く自然界に存在する。
Phenomena in which gas or liquid swirls occur widely in nature, such as tornadoes, typhoons, and whirlpools.

北米大陸中央部に発生するトルネート、即ち大竜巻は牛
馬、自動車、家屋でさえも空中へ吸い上げて異なる地点
へ落下させ、大きな被害をもたらすことはよく知られて
いる。日本においても、それほど強力かつ大規模ではな
いが、1穀、魚、蛙などを吸い上げて遠方に降らせる、
いわゆる怪雨現象が報告されている。
It is well known that tornadoes, or large tornadoes, that occur in the central part of the North American continent cause great damage by sucking up cattle, horses, cars, and even houses into the air and causing them to fall to different locations. Even in Japan, although it is not so powerful and large-scale, it sucks up grains, fish, frogs, etc. and rains it down far away.
A so-called mysterious rain phenomenon has been reported.

かかる自然現象は不特定地点で不時に発生するので栄に
災害を与えるに過ぎないが、類似の現象をあらかじめ設
定した特定の場所の間における安定な「場」として存在
させることができれば、それを利用して物体を輸送する
ことが可能になる。
Such natural phenomena only cause disasters to Sakae because they occur unexpectedly at unspecified locations, but if similar phenomena can be made to exist as stable "fields" between specific locations set in advance, they can be It can be used to transport objects.

人工的に旋回流を発生させるための方法として一般的に
考えられるのは、管内にその内周の切線方向から高速で
気流を送入する方法で、サイクロンその他に応用されて
いる。
A commonly thought method for artificially generating a swirling flow is to introduce airflow into a pipe at high speed from the tangential direction of the inner circumference, and this method is applied to cyclones and other devices.

だがそのようにして生成させた旋回流による固体粒子の
輸送では、供給された固体粒子は管路入口付近の管壁に
檄しく冶突して管壁な摩耗させるので装置が長期間の使
用に耐えないことは従来の直線的な高速ガス流による固
体粒子の輸送と同様であり、またそのようにしてエネル
ギーを失うために、気流の送入口付近では旋回流が形成
されても管路が長い場合には次第に消滅して安定に維持
することが難しいことが判明した。
However, when solid particles are transported by the swirling flow generated in this way, the supplied solid particles hit the pipe wall near the pipe entrance, causing wear on the pipe wall, making it difficult for the device to be used for a long time. This is similar to the transport of solid particles by a conventional linear high-speed gas flow, and because energy is lost in this way, even if a swirling flow is formed near the airflow inlet, the pipe is long. In some cases, it has been found that it gradually disappears and it is difficult to maintain it stably.

そこで竜巻などの発生状況を更に観察し、竜巻やトルネ
ートは漏斗状に構成されていることに着目して研究を重
ねた結果、本発明を完成するに至った@ (発明の構成) 即ち本発明は管路に安定な螺旋気流を生成させる装置に
関するものであり、管路より大きい径の基部から管路と
等しい径の先端部まで徐々に径が小さくなっている外部
コーン体の内部に、外部コーン体の基部よりも小さな径
の基部を有する内部コーン体を挿入設置して外部コーン
体の内壁と内部コーン体の外壁との間に環状空間を形成
させ、この環状空間の基部側に外部からの気体導入口を
設け、且つ外部コーン体の先端部を管路に接続したこと
よりなる。
Therefore, as a result of further observation of the occurrence of tornadoes and repeated research focusing on the fact that tornadoes and tornadoes are funnel-shaped, the present invention was completed. relates to a device that generates a stable spiral airflow in a conduit, in which an external An internal cone body having a base with a smaller diameter than the base of the cone body is inserted and installed to form an annular space between the inner wall of the outer cone body and the outer wall of the inner cone body. A gas inlet is provided, and the tip of the external cone body is connected to a conduit.

添付第1図は本発明装置の基本的構成を有する一例を示
すものであり、外部コーン体1は管路3より大きい径の
基部11から管路と等しい径の先端部12まで徐々に径
が小さくなっている形状をなしており、その内部に外部
コーン体の基部よりも小さな径の基部21を有する内部
コーン体2を挿入設置して外部コーン体の内壁と内部コ
ーン体の外壁との間に環状空間4を形成させており、こ
の環状空間の基部側に外部からの気体導入口5を設け、
外部コーン体の先端部12は管路3に接続している。
The attached FIG. 1 shows an example of the basic configuration of the device of the present invention, in which the external cone body 1 gradually decreases in diameter from a base 11 having a larger diameter than the conduit 3 to a tip 12 having the same diameter as the conduit. The inner cone body 2 is inserted into the inner cone body 2 and has a smaller diameter base 21 than the base of the outer cone body, and is installed between the inner wall of the outer cone body and the outer wall of the inner cone body. An annular space 4 is formed in the annular space, and a gas inlet 5 from the outside is provided on the base side of this annular space.
The tip 12 of the outer cone body is connected to the conduit 3.

第1図に示したものは、外部及び内部のコーン体の基部
にそれぞれ円筒状のガイド筒14及び24を設け、その
部分に気体導入口5を設けであるが、これは1箇所の気
体導入口から導入した気体がコーン部分の環状空間に入
る前に反対側まで均一に分散するための予備的空間を与
えることを目的とするものであり、コーン体基部周辺の
全域から気体を導入する構造、例えば第2図に示した内
部コーン体のように基部の全周に環状空間への気体導入
口を設けた構造にすれば、このようなガイド筒は必ずし
も必要としない。この場合内部コーン体の内側空間が気
体のチャージタンクの働きをしており、ここへ気体が外
部から送入管51を経て供給される。
In the one shown in Fig. 1, cylindrical guide tubes 14 and 24 are provided at the bases of the outer and inner cone bodies, respectively, and a gas inlet 5 is provided in these portions, but this is because there is only one place for gas inlet. The purpose of this structure is to provide a preliminary space for the gas introduced from the mouth to uniformly disperse to the opposite side before entering the annular space of the cone, and is a structure that allows gas to be introduced from the entire area around the base of the cone. For example, if the internal cone body shown in FIG. 2 has a structure in which a gas inlet to the annular space is provided around the entire circumference of the base, such a guide cylinder is not necessarily required. In this case, the inner space of the inner cone body functions as a gas charge tank, to which gas is supplied from the outside via the inlet pipe 51.

外部コーン体の内壁と内部コーン体外壁との間に形成さ
れる環状空間の断面積は、なるべくゆるやかに減少して
管路3の断面積に等しぐなるようにするのが望ましい。
It is desirable that the cross-sectional area of the annular space formed between the inner wall of the outer cone body and the outer wall of the inner cone body decreases as gradually as possible to become equal to the cross-sectional area of the conduit 3.

無負荷の場合、理想的にはどの部分でも一定、即ち管路
3の断面積と等しくなるようにするのが望ましい。その
ためには径の大きい基部側では外部コーン体と内部コー
ン体との間隔はせまく、径の小さい先端部側ではその間
隔が広くなるように設計する。両コーン体の斜面が共に
直線的である場合にはすべての断面において環状空間の
断面積を完全に等しくすることはできないが、近似的に
一定であればよい。もちろんどちらか一方又は両方の斜
面を曲線的に形成して完全に等面積にすることは最も望
ましい。このように環状空間の断面積をすべての断面で
一定にすれば、環状空間を基部から先端部へ流れる気体
は途中で圧縮や膨張を受けることなく、一定速度で圧力
変化のない滑らかな流れとして環状空間から管路へ流入
する。
In the case of no load, it is ideal that the cross-sectional area of the pipe line 3 should be constant at any part, that is, be equal to the cross-sectional area of the pipe line 3. To achieve this, the design is such that the distance between the outer cone body and the inner cone body is narrow on the base side, where the diameter is large, and the distance is wide on the tip side, where the diameter is small. If the slopes of both cone bodies are straight, the cross-sectional area of the annular space cannot be made completely equal in all cross-sections, but may be approximately constant. Of course, it is most desirable to form one or both of the slopes in a curved manner so that the area is completely equal. If the cross-sectional area of the annular space is made constant across all sections, the gas flowing through the annular space from the base to the tip will not be compressed or expanded on the way, and will flow smoothly at a constant speed with no pressure change. It flows into the duct from the annular space.

以上説明した装置の気体導入口から気体を送入すれば、
その気体は外部コーン体と内部コーン体との間の卯状空
間を内径の大きい側から小さい側へ通過し、内部コーン
体の頂点付近で一定管径の管路に送入され、管路内の気
流平均速度が20m/秒以上となる条件下では管路入口
から数十0m以内、あるいはコーン体部分において既に
管路断面に対しては旋回流をなしつつ管路長軸方向に進
行する螺旋気流が生成される。
If gas is introduced from the gas inlet of the device explained above,
The gas passes through the circular space between the outer cone body and the inner cone body from the side with the larger inner diameter to the side with the smaller inner diameter, and near the top of the inner cone body, it is fed into the pipe line with a constant diameter, and inside the pipe line. Under conditions where the average velocity of the airflow is 20 m/s or more, within several tens of meters from the pipe entrance, or at the cone body part, a spiral flow progresses in the long axis direction of the pipe while forming a swirling flow with respect to the pipe cross section. Airflow is generated.

このようにして生成した安定な螺旋気流は、トルネート
や竜巻と同じように物体の輸送能力を有している。そこ
でこの螺旋気流域に固体粒子を供給すれば、その固体粒
子も螺旋を描きつつ管路出口まで輸送されるつまた丁度
螺旋気流の中心に供給された物体は殆ど直線状に非常な
速度で管路の出口に向う。
The stable spiral airflow generated in this way has the same ability to transport objects as a tornado or tornado. Therefore, if solid particles are supplied to this spiral airflow region, the solid particles will also be transported to the outlet of the pipe while drawing a spiral, and the objects that were just supplied to the center of the spiral airflow will be transported almost straight through the pipe at a very high speed. Head towards the exit of the road.

螺旋気流域に固体粒子を供給するためには、第3図に示
すざうに内部コーン体の中心線を通って管路入口付近に
達するフィーダー6を設田すればよい。フィーダーとし
ては量的コントロールが容易な点でスクリューフィーダ
ーなどが好ましい。
In order to supply solid particles to the spiral air region, it is sufficient to install a feeder 6 that passes through the center line of the inner cone body and reaches the vicinity of the pipe entrance as shown in FIG. As the feeder, a screw feeder or the like is preferable because quantitative control is easy.

また輸送する固体粒子の密度、粒径、供給量に応じて螺
旋気流生成の最適条件が変化することがあるので、第4
図に示すように外部コーン体への内部コーン体の挿入度
を変化させることのできる構造にして、環状空間の断面
積をコントロールすることができるようにすれば便利で
ある。
In addition, the optimal conditions for the generation of spiral airflow may change depending on the density, particle size, and supply amount of solid particles to be transported.
As shown in the figure, it would be convenient to have a structure in which the degree of insertion of the inner cone body into the outer cone body can be changed so that the cross-sectional area of the annular space can be controlled.

本発明装置を用いることにより管路に安定な螺旋気流が
生成していることは、次の実施例1により確認できる。
It can be confirmed from the following Example 1 that a stable spiral airflow is generated in the pipe by using the device of the present invention.

実施例1 第5図に示すように、内径1.5インチの透明プラスチ
ックチューブを用いた管路3に垂直部分を設け、第3図
に示した装置を用いて送入した気流が下部から上部へと
流れるようにする。そこで第3図の装置のフィーダー6
から合成樹脂ペレット−(径5mm、長さ5mmの円柱
状)7を送入すると、気流速度が十分に速い場合にはベ
レー/ )はこの垂直管路を下部から上部へ瞬間的に通
過するが、気流速度を調節してペレットに働く重力によ
る下向きのベクトルと気流による上向きのへクトルが釣
合うようにすると、ペレット7は垂直管中の一定位置、
例えば第5図のA−A ’の位置に留り、その運動が肉
眼で観察できるようになる。第6図は第5図のA−A 
’線における断面図であるが、ペレット7は矢印で示す
ような旋回運動をしていることがわかる。A−A ’部
分を手で押えてせばめてやると、この部分の流速が増加
するのでペレット7は上方へ飛び出し、やや上部の釣合
点B−B ’へ移動してこの断面での旋回運動を続行す
る。この場合ベレ・ント7は管内壁31に直接接触して
はいない。即ち管内壁31に近い部分には旋回波に基く
遠心力により圧縮された気層8が環状に形成されている
(図では環状気層の厚みを誇張して描いているが、実際
は1mm以下、ミクロンオーダーの厚みである)。従っ
てペレットは環状気層との境界部分で螺旋気流の上向き
ベクトルと重力の下向きベクトルの釣合のもとに一定平
面で螺旋気流の回転ベクトルにより旋回している。
Example 1 As shown in Fig. 5, a vertical section is provided in a conduit 3 made of a transparent plastic tube with an inner diameter of 1.5 inches, and the airflow introduced using the device shown in Fig. 3 is directed from the bottom to the top. Let it flow. Therefore, the feeder 6 of the device shown in Fig.
When a synthetic resin pellet (cylindrical shape with a diameter of 5 mm and a length of 5 mm) 7 is fed from the pipe, the beret / ) will momentarily pass through this vertical pipe from the bottom to the top if the airflow velocity is fast enough. , by adjusting the airflow velocity so that the downward vector due to gravity acting on the pellet and the upward hector due to the airflow are balanced, the pellet 7 will be at a certain position in the vertical tube,
For example, it remains at the position A-A' in FIG. 5, and its movement can be observed with the naked eye. Figure 6 is A-A of Figure 5.
Although this is a cross-sectional view taken along the line ', it can be seen that the pellet 7 is making a rotating movement as shown by the arrow. When the A-A' part is held down by hand to tighten it, the flow velocity in this part increases, so the pellet 7 flies upward, moves to the equilibrium point B-B' slightly above, and performs a swirling motion in this cross section. continue. In this case, the bellet 7 is not in direct contact with the pipe inner wall 31. That is, in a portion close to the inner wall 31 of the tube, an annular air layer 8 is formed that is compressed by centrifugal force based on swirling waves (the thickness of the annular air layer is exaggerated in the drawing, but it is actually less than 1 mm). The thickness is on the order of microns). Therefore, the pellets are rotated by the rotating vector of the spiral air flow in a constant plane under the balance between the upward vector of the spiral air flow and the downward vector of gravity at the boundary with the annular air layer.

この釣合状態から気流の流速を増せば、ペレット自身も
螺旋流を描きつつ出口方向に進むことは容易に理解でき
るであろう。
It is easy to understand that if the flow velocity of the airflow is increased from this equilibrium state, the pellets themselves will also move toward the exit while drawing a spiral flow.

この状態から徐々に垂直管を斜めに傾けてゆくと、一定
平面で旋回していたペレットは旋回を続けながら上昇を
開始しく即ちピッチの短い螺旋流を描くことになる)、
管の傾きが有る限度に達すると、急激に吸い込まれるよ
うに出口方向(この場合上方)へ飛んで行き見えなくな
る。
When the vertical tube is gradually tilted diagonally from this state, the pellets that had been swirling in a fixed plane will start to rise while continuing to swirl, that is, they will draw a spiral flow with a short pitch).
When the inclination of the tube reaches a certain limit, it suddenly flies toward the exit (in this case, upward) as if being sucked in, and is no longer visible.

この実施例1かもわかるように、螺旋気流を用いる固体
粒子の輸送の特色の一つは、!II!旋気流内気流内回
運動に基く遠心力により気体分子の大部分は管路内壁に
近い部分に圧縮された気層を形成する為に、輸送される
固体粒子はこの気層に遮られて直接管壁に接触せず管路
の摩耗を生じないことである。
As can be seen from this Example 1, one of the characteristics of transporting solid particles using spiral airflow is! II! Most of the gas molecules form a compressed air layer near the inner wall of the pipe due to the centrifugal force based on the internal rotation of the airflow within the whirlpool, so the solid particles being transported are blocked by this air layer and are directly It should not come into contact with the pipe wall and cause wear of the pipe line.

他の特色は、螺旋気流の中心部では竜巻の中心と同じく
気圧が非常に低下していて空気抵抗が非常に少ない状態
になっているため固体粒子の輸送エネルギーが小さいこ
とである。
Another feature is that at the center of a spiral airflow, the air pressure is extremely low, similar to the center of a tornado, and air resistance is extremely low, so the transport energy of solid particles is small.

このようにして、本発明装置を用いることにより、従来
の空気輸送とは異なる、管路の摩耗の恐れがなく、且つ
エネルギー効率のよい固体粒子の輸送を行うことができ
る。
In this way, by using the device of the present invention, solid particles can be transported in an energy-efficient manner without fear of pipe abrasion, which is different from conventional pneumatic transport.

この装置で使用するガスは通常空気でよいが、粉塵爆発
の危険が予想される場合など特殊の場合には窒素その他
のガスを使用することは自由である。
The gas used in this device is usually air, but nitrogen or other gases may be used in special cases, such as when there is a risk of dust explosion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示す説明図、第2図は他の
一例を示す説明図、第3図は固体粒子の送入管を設けた
一例を示す説明図、第4図はその応用例を示す説明図、
第5図及び第6図は本発明装置により螺旋気流が生成し
ていることを示す実施例の説明図である。 出願人 川崎製鉄株式会社 同 川鉄鉱業株式会社 代理人 弁理士 青麻昌二 ↑ 第 5図 第6図
Fig. 1 is an explanatory diagram showing one example of the device of the present invention, Fig. 2 is an explanatory diagram showing another example, Fig. 3 is an explanatory diagram showing an example in which a solid particle feed pipe is provided, and Fig. 4 is an explanatory diagram showing an example of the device. An explanatory diagram showing an application example,
FIGS. 5 and 6 are explanatory diagrams of an embodiment showing that a spiral airflow is generated by the apparatus of the present invention. Applicant Kawasaki Steel Co., Ltd. Kawatetsu Mining Co., Ltd. Agent Patent attorney Shoji Aoma ↑ Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 管路より大きい径め基部から管路と等しい径の先端部ま
で徐々に径が小さくなっている外部コーン体の内部に、
外部コーン体の基部よりも小さな径の基部を有する内部
コーン体を挿入設置して外部コーン体の内壁と内部コー
ン体の外壁との間に環状空間を形成させ、この環状空間
の基部側に外部からの気体導入口を設け、且つ外部コー
ン体の先端部を管路に接続したことよりなる管路に安定
な螺旋気流を生成させる装置。
Inside the external cone body, the diameter of which gradually decreases from the base, which is larger than the pipe, to the tip, which has the same diameter as the pipe,
An annular space is formed between the inner wall of the outer cone body and the outer wall of the inner cone body by inserting and installing an inner cone body having a base having a diameter smaller than that of the base of the outer cone body, and an annular space is formed between the inner wall of the outer cone body and the outer wall of the inner cone body. A device that generates a stable spiral airflow in a conduit by providing a gas inlet from the cone and connecting the tip of an external cone body to the conduit.
JP5223884A 1984-03-21 1984-03-21 Device of generating stable spiral air flow in line Granted JPS60197521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5223884A JPS60197521A (en) 1984-03-21 1984-03-21 Device of generating stable spiral air flow in line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5223884A JPS60197521A (en) 1984-03-21 1984-03-21 Device of generating stable spiral air flow in line

Publications (2)

Publication Number Publication Date
JPS60197521A true JPS60197521A (en) 1985-10-07
JPH057287B2 JPH057287B2 (en) 1993-01-28

Family

ID=12909138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5223884A Granted JPS60197521A (en) 1984-03-21 1984-03-21 Device of generating stable spiral air flow in line

Country Status (1)

Country Link
JP (1) JPS60197521A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019068U (en) * 1995-06-07 1995-12-05 聖治 伊原 Pachinko ball container

Also Published As

Publication number Publication date
JPH057287B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
US4248387A (en) Method and apparatus for comminuting material in a re-entrant circulating stream mill
US6749374B1 (en) Flow development chamber for creating a vortex flow and a laminar flow
JPS6258100A (en) Device for producing spiral flow in conduit
US3099965A (en) Jet conveyors
CN109225860A (en) A kind of 3D printing metal powder production level Four screening blanking system
KR850002438A (en) Method and apparatus for generating and using spiral lift in conduits
JPS60197521A (en) Device of generating stable spiral air flow in line
JPS60197522A (en) Device of generating stable spiral air current in line
JPS62264120A (en) Transportation of solid particle
CN107555178A (en) A kind of powder conveying apparatus and its application
JPS6364510A (en) Method of penetration of wire and cable
JPS6326046B2 (en)
US3325222A (en) Method and apparatus for pumping mixtures of liquids and large solid bodies
JPH0512247B2 (en)
US3425749A (en) Conveyor pipe re-entrainment apparatus
JPS60122629A (en) Transport device for solid particles using spiral air stream
SE9804552D0 (en) Method and apparatus for mixing a flowing gas and a powdered material
JPS6056723A (en) Device for blowing stable spiral air-stream in pipe line
GB1521800A (en) Powder feeder pick-up tube
JPS6093033A (en) Solid particles supply device to spiral air stream zone
JPS60143841A (en) Method of crushing solid grain
CN209093892U (en) A kind of 3D printing metal powder production level Four screening blanking system
JPS6236221A (en) Device for conveying powder and grain body by gas stream
SU1642213A2 (en) Pneumatic gas-fired peat drier
JPS61119513A (en) Solid particle transporter through spiral gas flow