JPS6236221A - Device for conveying powder and grain body by gas stream - Google Patents

Device for conveying powder and grain body by gas stream

Info

Publication number
JPS6236221A
JPS6236221A JP17250085A JP17250085A JPS6236221A JP S6236221 A JPS6236221 A JP S6236221A JP 17250085 A JP17250085 A JP 17250085A JP 17250085 A JP17250085 A JP 17250085A JP S6236221 A JPS6236221 A JP S6236221A
Authority
JP
Japan
Prior art keywords
pipe
wall surface
gas
gas suction
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17250085A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Horii
清之 堀井
Toshiaki Murata
逞詮 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17250085A priority Critical patent/JPS6236221A/en
Publication of JPS6236221A publication Critical patent/JPS6236221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To reduced energy consumption and lessen the wear of pipe line by providing a means of feeding a gas under pressure on the outside of an annular narrow gap and a means of feeding a powder and grin body from the outside of a gas intake pipe. CONSTITUTION:A gas intake pipe 2 is connected to the right end of a cylindrical pipe 1 via an annular narrow gap 3, and the wall surface 31 on the cylindrical pipe side of the annular narrow gap 3 is curvedly smoothly varied being shifted to the inner wall 11 of the cylindrical pipe 1. The wall surface 32 on the gas intake pipe side of the narrow gap is acutely varied at or before a position in which the wall surface 31 on the cylindrical pipe side of the narrow gap starts to vary, being shifted to the inner wall 21 of the gas intake pipe 2. When the wall surface 32 on the gas intake pipe side of the narrow gap varies acutely, the gas intake pipe 2 takes the form of an outwardly opening cone body while. When the wall surface 32 on the gas intake pipe side of the narrow gap varies at a right angle, the gas intake pipe 2 takes the form of a cylindrical shape.

Description

【発明の詳細な説明】 この発明は、ガス流により粉粒体を輸送するための新規
な装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel device for transporting granular materials by means of a gas stream.

えX立丑遣 高速空気流を用いて管路により粉粒体を輸送する方法、
即ち空気輸送法は既に知られている。
A method of transporting powder and granular materials through pipes using high-speed air flow,
That is, the pneumatic transportation method is already known.

この方法は細いノズルから圧縮空気を管内に吹き込み粉
粒体を圧送するものであるが、管路内の空気は乱流とな
り、粉粒体も乱流状態で管路の内壁に衝突を繰り返しな
がら輸送されるので、エネルギー損失が大きいばかりで
なく、粉粒体の硬度が高い場合には管路内壁が速やかに
摩耗するという欠点がある。また大量の圧縮空気を使用
するのでエネルギー消費も大きい。
In this method, compressed air is blown into the pipe through a thin nozzle to forcefully transport the powder and granules, but the air inside the pipe becomes a turbulent flow, and the powder and granules repeatedly collide with the inner wall of the pipe in a turbulent state. Since the powder is transported, there is a drawback that not only is there a large energy loss, but also that the inner wall of the pipe is rapidly worn if the powder or granular material has high hardness. Furthermore, since a large amount of compressed air is used, energy consumption is also large.

発明が解決しようとする問題点 本発明は従来の空気輸送法の欠点を解消し、低エネルギ
ー消費で管路の摩耗が少ない粉粒体の輸送をすることが
できる装置を提供することを目的とする。
Problems to be Solved by the Invention It is an object of the present invention to provide an apparatus capable of eliminating the drawbacks of the conventional pneumatic transportation method and transporting powder and granular materials with low energy consumption and less wear on pipes. do.

発明の構成 問題点を解決するための手段 本発明の装置は1円管の一端に環状の細隙を介してガス
吸入管が接続され、その環状の細隙の円管側の壁面は曲
線的に滑らかに変化して円管の内壁に移行し、細隙のガ
ス吸入管側の壁面は円管側の壁面が曲線的に変化し始め
る位置又はそれより手前で直角又は鋭角的に変化してガ
ス吸入管の壁面に移行するように形成されていると共に
、前記環状の細隙の外側に加圧ガスを供給する手段と。
Structure of the Invention Means for Solving the Problems In the apparatus of the present invention, a gas suction pipe is connected to one end of a circular tube through an annular slit, and the wall surface on the circular tube side of the annular slit is curved. The gas suction pipe side wall of the slit changes at a right angle or an acute angle at or before the point where the circular pipe side wall starts to curve. means for supplying pressurized gas to the outside of the annular slit, the means being configured to transition to the wall surface of the gas suction pipe;

ガス吸入管の外側から粉粒体を供給する手段とを備え、
円管の他端は管路に接続された構造を有することを特徴
とする。
and a means for supplying powder and granules from outside the gas suction pipe,
The other end of the circular tube is characterized in that it has a structure connected to a conduit.

これを第1図により説明すると、円管lの右端にガス吸
入v2が、環状の細隙(スリット)3を介して接続され
、環状の細隙の円管側の壁面31は曲線的に滑らかに変
化して円管lの内壁11に移行し、細隙のガス吸入管側
の壁面32は細隙の円管側の壁面31が変化し始める位
置又はそれより手前で鋭角的に(又は直角に)変化して
ガス吸入管2の内壁21に移行するように形成されてい
る。
To explain this with reference to Fig. 1, the gas suction v2 is connected to the right end of the circular tube l via an annular slit 3, and the wall surface 31 on the circular tube side of the annular slit is curved and smooth. The wall surface 32 on the gas suction pipe side of the slit changes at an acute angle (or right angle ) is formed so that it changes and transfers to the inner wall 21 of the gas suction pipe 2.

細隙のガス吸入管側の壁面32が鋭角的に変化する場合
はガス吸入管2は第1図に示すように外開きのコーン体
状となり、細隙のガス吸入管側の壁面31が直角に変化
する場合はガス吸入管2は円管状となる。
When the wall surface 32 on the gas suction pipe side of the slit changes at an acute angle, the gas suction pipe 2 becomes a cone shape that opens outward as shown in FIG. In this case, the gas suction pipe 2 becomes circular.

細隙のガス吸入管側の壁面32が直角に変化する場合の
細隙部分の拡大図を第2図及び第3図に示す。
FIGS. 2 and 3 show enlarged views of the slit portion when the wall surface 32 of the slit on the gas suction pipe side changes at right angles.

、第2図は細隙のガス吸入管側の壁面32が細隙の円管
側の壁面31が曲線的に変化し始める位置(A)で直角
に変化してガス吸入管の内壁21に移行するように形成
されている場合を示し、第3図は細隙のガス吸入管側の
壁面32が細隙の円管側の壁面31が曲線的に変化し始
める位iff (A)より手前(B)で直角に変化して
ガス吸入管の内壁21に移行するように形成されている
場合を示している。
, Fig. 2 shows that the wall surface 32 of the slit on the gas suction pipe side changes at a right angle to the inner wall 21 of the gas suction pipe at the position (A) where the wall surface 31 of the slit on the circular pipe side begins to change in a curved line. Figure 3 shows a case in which the wall surface 32 of the gas suction pipe side of the slit is located at a point ( B) shows a case in which it is formed so as to change at a right angle and transition to the inner wall 21 of the gas suction pipe.

また環状の細隙(スリット)3は5円管lの内壁11に
垂直であることは必要条件でなく、第4図に示すように
円管1へ向けて傾斜していてもよい。
Further, it is not a necessary condition that the annular slit 3 be perpendicular to the inner wall 11 of the five-round tube 1, but may be inclined toward the circular tube 1 as shown in FIG.

これらの図から明らかなように、いずれの場合も環状の
細隙の前後で管径が異なることになり、円管1の径より
もよりもガス吸入管2の径の方が太い。
As is clear from these figures, in either case, the pipe diameters differ before and after the annular slit, and the diameter of the gas suction pipe 2 is larger than the diameter of the circular pipe 1.

円管とガス吸入管との接続部における環状の細隙の幅は
、任意に調tできる構造とすることが好ましい、これは
細隙の幅を通過するガス賃に応じて調節して最適通過速
度を与え、粉粒体の輸送効率を高めるためである。
It is preferable to have a structure in which the width of the annular slit at the connection between the circular pipe and the gas suction pipe can be adjusted arbitrarily.The width of the slit is adjusted according to the amount of gas passing through to achieve the optimum passage. This is to provide speed and increase the transport efficiency of powder and granular materials.

具体的構造としては、第1図に示すように円管lに直結
する外筒4とガス吸入管2がねじ構造5で接続されてい
るようにすれば、ガス吸入管のねじ込み加減により環状
の細隙3の幅を任意に調節することができる。
As a concrete structure, as shown in Fig. 1, if the outer cylinder 4 directly connected to the circular pipe l and the gas suction pipe 2 are connected by a threaded structure 5, an annular shape can be formed depending on the screwing degree of the gas suction pipe. The width of the slit 3 can be adjusted as desired.

この環状の細隙の外側(円管1及びガス吸入管2の外壁
側)に加圧ガスを供給する手段としては適宜の手段を採
用できるが、第1図に示す如く円管lを囲むように(円
管lに直結する外筒4の内壁円管1の外壁との間隙を利
用して)ガス室6を設け、このガス室6が細隙3の外側
に連通口61により連通ずるようにすれば、このガス室
に外部から加圧ガス供給管7を通じてガスを送入すると
ガスは連通口61を通って細隙の外側へ供給されるよう
になる。
Any suitable means can be used to supply pressurized gas to the outside of this annular slit (the outer wall side of the circular pipe 1 and the gas suction pipe 2), but as shown in FIG. A gas chamber 6 is provided (using the gap between the inner wall of the outer tube 4 directly connected to the circular tube 1 and the outer wall of the circular tube 1), and this gas chamber 6 communicates with the outside of the narrow gap 3 through a communication port 61. If this is done, when gas is introduced into this gas chamber from the outside through the pressurized gas supply pipe 7, the gas will be supplied to the outside of the slit through the communication port 61.

さらに、ガス吸入管2の外側から、粉粒体を供給する手
段(太い矢印8で示す)が設けられている。この粉粒体
を供給する手段としては、スクリューコンベヤ、ベルト
コンベヤ、ホッパーその他の公知の手段を任意に用いる
ことができる。
Further, a means (indicated by a thick arrow 8) for supplying powder from outside the gas suction pipe 2 is provided. Any known means such as a screw conveyor, belt conveyor, hopper, etc. can be used as a means for supplying this powder or granular material.

そして円管lの他端は、管路9に接続されている。The other end of the circular tube l is connected to a conduit 9.

この装置には任意のガスを使用できるが、通常は空気が
使用される。その場合ガス吸入管2の外側は大気に開放
されていてよい。
Although any gas can be used in this device, air is usually used. In that case, the outside of the gas intake pipe 2 may be open to the atmosphere.

本発明袋Hによる輸送距離は粉粒体のサイズ及び比重に
よって異なるが、一般に330−1oo程度は容易であ
る。それ以上の長距離を輸送する必要がある場合は、第
1の管路の出口から第2の本発明装置のガス吸入管の入
口部に粉粒体を供給するようにし、以下順次同様にして
必要な距離を輸送することが可能である。即ち本発明装
置は粉粒体のガス輸送管路におけるブースターとして使
用することができる。
The transportation distance by the bag H of the present invention varies depending on the size and specific gravity of the powder or granular material, but generally it is easily about 330-100 mm. If it is necessary to transport the powder over a longer distance, the powder is supplied from the outlet of the first pipe line to the inlet of the gas suction pipe of the second apparatus of the present invention, and then the same process is carried out sequentially. It is possible to transport the required distance. That is, the device of the present invention can be used as a booster in a gas transport pipeline for powder and granular materials.

具体的構造としては、第5図に示すように第1の管路9
1の末端を若干拡大した後、第1図に示したのと同様な
構造の環状の細隙3を介して第2の管路92に接続する
As a specific structure, as shown in FIG.
After slightly enlarging the end of 1, it is connected to a second conduit 92 via an annular slot 3 of similar construction to that shown in FIG.

この場合部1の管路91がガス吸入管に相当することに
なる。
In this case, the pipe line 91 of section 1 corresponds to the gas suction pipe.

細隙3の外側から内側へ空気を高速で送入すると、細隙
の出口で空気は空力学的作用(コアンダ効果として知ら
れている)により円管側へ傾いた流線を描き、その結果
としてその流線のガス吸入管側には負圧域を生じる。そ
の負圧域へガス吸入管の外側(開放端)から外部の空気
が流れ込み、細隙からの空気流の連動ベクトルとガス吸
入管外部からの空気流の運動ベクトルとは合成されて管
路側へ進行する空気流を形成する。
When air is fed at high speed from the outside to the inside of the slit 3, the air at the exit of the slit draws a streamline inclined toward the circular pipe due to aerodynamic action (known as the Coanda effect), resulting in As a result, a negative pressure region is generated on the gas suction pipe side of the streamline. External air flows into the negative pressure region from the outside (open end) of the gas suction pipe, and the interlocking vector of the airflow from the slit and the motion vector of the airflow from outside the gas suction pipe are combined and flow toward the pipe side. Form a traveling air stream.

管路を進行する空気量は、ガス吸入管の外側から吸引さ
れる空気量が加わるため、細隙へ送入された空気量より
も数倍に増幅されている。
The amount of air traveling through the conduit is amplified several times more than the amount of air sent into the slit because of the addition of the amount of air sucked in from the outside of the gas suction tube.

ここでガス吸入管の外側から粉粒体を供給すると、粉粒
体は空気流に吸い込まれて管路を出口方向へ輸送される
。゛ 細隙へ送入する空気の圧力は通常2〜10Kg/cm2
G程度でよい。
When powder and granules are supplied from the outside of the gas suction pipe, the powder and granules are sucked into the airflow and transported through the pipe toward the outlet.゛The pressure of the air sent into the slit is usually 2 to 10 kg/cm2.
G level is sufficient.

本発明の装置は粉粒体の空気輸送管路のベンド管部分の
摩耗を減少させるために応用することもできる。即ちw
S6図に示すように、第1の直管路93に接続されたベ
ンド管94の出口で第1図に示したのと同様な構造の環
状の細隙3を介して第2の直管路95に接続する。この
場合ベンド管がガス吸入管に相当する。
The device of the present invention can also be applied to reduce the wear of the bend pipe portion of the air transport pipe for powder and granular materials. That is, lol
As shown in Fig. S6, at the outlet of the bend pipe 94 connected to the first straight pipe line 93, a second straight pipe line is connected through an annular slot 3 having a structure similar to that shown in Fig. 1. Connect to 95. In this case, the bend pipe corresponds to the gas suction pipe.

環状の細隙の前後では既に述べたように管径が異なるこ
とになるので、第1の管路と第2の管路の径を同じにす
るためには第1の直管路をベンド管の手前で径を若干拡
大してからベンド管に接続するのがよい。
As mentioned above, the diameters of the pipes are different before and after the annular slit, so in order to make the diameters of the first and second pipes the same, the first straight pipe must be bent. It is best to slightly enlarge the diameter before connecting to the bend pipe.

通常のベンド構造では、直管路93を輸送されて来た粉
粒体は直進エネルギーをもってベンド管の対向壁に激し
く衝突し、その部分の管壁を摩耗させるが、第6図のよ
うな構造にすると既に説明したような理由で細隙のベン
ド管側に負圧域を生ずるので、ベンド管の壁に衝突しよ
うとしていた粉粒体はその負圧域に吸い寄せられ、衝突
を回避するか、衝突した場合でもその衝突エネルギーを
弱めることになるので、ベンド管の壁の摩耗は減少する
In a normal bent structure, the powder and granules transported through the straight pipe 93 violently collide with the opposite wall of the bent pipe with straight energy, causing wear on the pipe wall in that part, but in the structure shown in Fig. 6, When this is done, a negative pressure area is created on the bend pipe side of the slit for the reasons already explained, so the powder and granules that were about to collide with the wall of the bend pipe are attracted to the negative pressure area and either avoid the collision or Even in the event of a collision, the collision energy is weakened, reducing wear on the walls of the bend pipe.

ベンド管において摩耗が最も甚だしい部分は、手前の管
路を輸送されて来た粒子が直進すると衝突する位置、即
ち約45変圧曲したあたりの管壁であるから、45度以
上のベンド管の場合は第7図に示すようにベンド管の途
中の45度屈曲した部分あたりから出口までの間に本発
明装置を設置すれば、最も効果−にベンド管の摩耗を抑
制できる。
The most severely worn part of a bent pipe is the position where particles transported through the previous pipe line collide when they go straight, that is, the pipe wall around the approximately 45 degree transformation bend, so in the case of a bent pipe of 45 degrees or more. As shown in FIG. 7, the wear of the bend pipe can be most effectively suppressed by installing the device of the present invention between the 45-degree bend in the middle of the bend pipe and the outlet.

実施例1 第1図に示した構造で円管部の長さ30cm。Example 1 The structure shown in Figure 1 has a circular tube section length of 30 cm.

内径5c、m、ガス吸入管部の長さ30cm、外側の内
径10cm、−隙の幅1mmの装置の円管部の他端に、
内径5cm、長さ30mの透明プラスチックチューブを
接続し、加圧ガス供給管から5Kg/cm2cの空気を
送入して、ガス吸入管入口へ米粒を供給したところ、米
粒は管路出口へ輸送された。また管路の途中にストロボ
ライトをあてて観察したところ、米粒は出口方向へ進行
しながら旋回していることが認められた。
At the other end of the circular pipe part of the device, the inner diameter is 5 c, m, the length of the gas suction pipe part is 30 cm, the outer inner diameter is 10 cm, and the width of the gap is 1 mm.
A transparent plastic tube with an inner diameter of 5 cm and a length of 30 m was connected, and 5 kg/cm2c of air was supplied from the pressurized gas supply pipe to supply rice grains to the inlet of the gas suction pipe, and the rice grains were transported to the outlet of the pipe. Ta. In addition, when we observed the rice grains by shining a strobe light in the middle of the pipe, it was observed that the rice grains were rotating while moving toward the outlet.

□さらに、輸送子る粉粒体の種類を代えつつ長時間の実
験を繰り返したにも拘わらず、プラスチックチューブの
内壁には目立った傷がつかず、従来の空気輸送法と比較
して摩耗が少なかった。
□Furthermore, despite repeated long-term experiments with different types of transport particles, there were no noticeable scratches on the inner wall of the plastic tube, and compared to the conventional pneumatic transport method, wear was reduced. There weren't many.

これは空気も旋回する結果遠心力が働いて、管路の内壁
に沿って圧縮された空気層が形成され、粉粒体がチュー
ブ内壁に衝突するのを防止乃至緩和しているのではない
かと推定される。
This may be due to centrifugal force acting as a result of air swirling, forming a compressed air layer along the inner wall of the tube, which prevents or alleviates the collision of the powder and granules with the inner wall of the tube. Presumed.

発明の効果 低エネルギー消費で管路の摩耗が少ない粉粒体の輸送を
行うことができる。
Effects of the Invention Powder and granular materials can be transported with low energy consumption and little wear on pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置を説明するための断面図、第2図、
第3図及び第4図は、その細隙付近の構造を示す部分拡
大断面図、第5図は粉粒体のガス輸送管路におけるブー
スターとして本発明装置を使用する場合の説明図、第6
図及び第7図は管路のベンド部分の摩耗を減少するため
に本発明装置を使用する場合の説明図である。
FIG. 1 is a sectional view for explaining the device of the present invention, FIG.
3 and 4 are partially enlarged cross-sectional views showing the structure near the slits, FIG. 5 is an explanatory diagram when the device of the present invention is used as a booster in a gas transport pipeline for powder and granules, and FIG.
7 and 7 are explanatory diagrams of the use of the device of the present invention to reduce wear on the bend portion of a pipe line.

Claims (1)

【特許請求の範囲】 1 円管の一端に環状の細隙を介してガス吸入管が接続
され、その環状の細隙の円管側の壁面は曲線的に滑らか
に変化して円管の内壁に移行し、細隙のガス吸入管側の
壁面は円管側の壁面が曲線的に変化し始める位置又はそ
れより手前で直角又は鋭角的に変化してガス吸入管の壁
面に移行するように形成されていると共に、前記環状の
細隙の外側に加圧ガスを供給する手段と、ガス吸入管の
外側から粉粒体を供給する手段とを備え、円管の他端は
管路に接続された構造を有することを特徴とするガス流
により粉粒体を輸送する装置。 2 円管とガス吸入管との接続部における環状の細隙の
幅が任意に調節できる構造となっていることを特徴とす
る特許請求の範囲第1項記載のガス流により粉粒体を輸
送する装置。 3 ベンド管の出口又は途中に設けられていることを特
徴とする特許請求の範囲第1項記載のガス流により粉粒
体を輸送する装置。
[Scope of Claims] 1. A gas suction pipe is connected to one end of the circular tube through an annular slit, and the wall surface of the annular slit on the circular tube side changes smoothly into a curve to form an inner wall of the circular tube. The wall surface on the gas suction pipe side of the slit changes at a right or acute angle at or before the position where the wall surface on the circular pipe side begins to change into a curve, and transitions to the wall surface of the gas suction pipe. and a means for supplying pressurized gas to the outside of the annular slit, and a means for supplying powder from the outside of the gas suction pipe, and the other end of the circular pipe is connected to the pipe line. 1. A device for transporting powder and granular materials by means of a gas flow, characterized by having a structure in which: 2. Transporting powder and granular material by the gas flow according to claim 1, characterized in that the width of the annular slit at the connecting portion between the circular pipe and the gas suction pipe can be arbitrarily adjusted. device to do. 3. An apparatus for transporting powder or granular material by means of a gas flow according to claim 1, which is provided at the outlet or in the middle of a bend pipe.
JP17250085A 1985-08-07 1985-08-07 Device for conveying powder and grain body by gas stream Pending JPS6236221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17250085A JPS6236221A (en) 1985-08-07 1985-08-07 Device for conveying powder and grain body by gas stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17250085A JPS6236221A (en) 1985-08-07 1985-08-07 Device for conveying powder and grain body by gas stream

Publications (1)

Publication Number Publication Date
JPS6236221A true JPS6236221A (en) 1987-02-17

Family

ID=15943123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17250085A Pending JPS6236221A (en) 1985-08-07 1985-08-07 Device for conveying powder and grain body by gas stream

Country Status (1)

Country Link
JP (1) JPS6236221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064618A1 (en) * 2017-09-29 2019-04-04 三菱ケミカルエンジニアリング株式会社 Pipe for transport of granular matter and granular matter transport method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064618A1 (en) * 2017-09-29 2019-04-04 三菱ケミカルエンジニアリング株式会社 Pipe for transport of granular matter and granular matter transport method
US10947064B2 (en) 2017-09-29 2021-03-16 Mitsubishi Chemical Engineering Corporation Pipe for transporting powder and method for transporting powder

Similar Documents

Publication Publication Date Title
US6749374B1 (en) Flow development chamber for creating a vortex flow and a laminar flow
US4711607A (en) High speed auger venturi system and method for conveying bulk materials
JPS6258100A (en) Device for producing spiral flow in conduit
US4411388A (en) Apparatus for conveying lightweight particulate matter
US5681132A (en) Laminar flow pneumatic conveying device
US5718539A (en) Boundary air/laminar flow conveying system with air reduction cone
JPH09509620A (en) Apparatus and method for accelerating fluidized particulate material
EP0080508A1 (en) Short radius, low wear elbow.
KR940002046B1 (en) Pipe elbow
JP2506080B2 (en) Transport method of solid particles
JPS6236221A (en) Device for conveying powder and grain body by gas stream
KR0165672B1 (en) Method for passing cable or a wire through a passage
JPS63150500A (en) Double cylindrical coanda spiral flow device
JPH10175735A (en) Powder transporting device
US3425749A (en) Conveyor pipe re-entrainment apparatus
JPS6326046B2 (en)
JPH11292283A (en) Transport pipe for granular and powdery material
GB2266874A (en) Fluid conveying device.
JPH0573650B2 (en)
JPH0331116A (en) Subsidiary air feed method for pneumatic granule transport pipe
JPS60242128A (en) Swirling gas flow generating apparatus for transporting powdery and granular material
JP2599133B2 (en) Coanda spiral flow generator
JP5148848B2 (en) Powder air transportation device by spiral airflow
JPS63144961A (en) Tube inside face blasting device
JPS63310420A (en) Transporting device for air