JPS6019732A - Distillation of 1,2-dichloroethane - Google Patents

Distillation of 1,2-dichloroethane

Info

Publication number
JPS6019732A
JPS6019732A JP58127828A JP12782883A JPS6019732A JP S6019732 A JPS6019732 A JP S6019732A JP 58127828 A JP58127828 A JP 58127828A JP 12782883 A JP12782883 A JP 12782883A JP S6019732 A JPS6019732 A JP S6019732A
Authority
JP
Japan
Prior art keywords
column
boiling point
edc
gas
boiling substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58127828A
Other languages
Japanese (ja)
Other versions
JPH0332531B2 (en
Inventor
Hiroshi Yamato
大和 浩
Koichi Kawasaki
川崎 孝一
Isao Takahashi
功 高橋
Haruyuki Harada
原田 治幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP58127828A priority Critical patent/JPS6019732A/en
Priority to EP84108243A priority patent/EP0131932B1/en
Priority to DE8484108243T priority patent/DE3461028D1/en
Publication of JPS6019732A publication Critical patent/JPS6019732A/en
Publication of JPH0332531B2 publication Critical patent/JPH0332531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To distill the titled compound containing high-boiling substances in good heat efficiency, by recovering heat energy having a gas of the titled compound recovered from the top of a column for high-boiling substances by a compressor under specific conditions, using it as heat source for specific reboilers. CONSTITUTION:In distilling 1,2-dichloroethane (EDC) containing high-boiling substances by distillation process for low-boiling substances, distillation process for high-boiling substances, and heat recovery process for a gas recovered from the top of the column for high-boiling substances, the pressure of the top of the column 305 for high-boiling substances is kept at >=0.5kg/cm<2>G, a EDC gas recovered from the top of the column is pressurized from suction pressure to >=0.5kg/cm<2> by the compressor 307 and heated from suction temperature to a temperature >=10 deg.C higher than it, and it is used as a heat source for the reboilers 314, 309, etc. of at least two columns selected from the column 305 for high-boiling substances, the column 303 for low-boiling substances, a dehydration column, EDC recovery column, and a column for vinyl chloride, etc. so that heat efficiency of EDC distillation process is extremely improved.

Description

【発明の詳細な説明】 本発明は1.2ジクロルエタン(以下EDCという)の
蒸留法に関するものである。更に詳しくは、高沸点物質
ケ含むE l) C’に高沸点物基で蒸留する際に塔頂
より回収されるEDCガスの有する熱エネルギー全有効
に活用し、EDC蒸留工程の熱効率全署しく改善したE
DCの蒸留法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for distilling 1.2 dichloroethane (hereinafter referred to as EDC). In more detail, the thermal energy of the EDC gas recovered from the top of the column during distillation with high boiling point groups (including high boiling point substances) is fully utilized, and the overall thermal efficiency of the EDC distillation process is maintained. Improved E
This relates to a DC distillation method.

従来、KDCの蒸留方法は第1図に示す態様にて行われ
ていた。すなわち第1図において、低沸点物質及び高沸
点物質を含有する粗EDCか、脱水塔及び塩化ビニル塔
より導管101及び102を介して、低沸点物基103
へ供給され、低沸点物質力5蒸留分離される。更に高沸
点物質を含有する塔103の缶出液が導管105ケ介し
て、高沸点物基106へ供給され蒸留される。塔103
で必要とされる熱エネルギーは11ボイラー104より
供給さ712る。′f1!出液は導管107ケ介して採
取されE 1) C分解炉へ供給される。塔底液H:導
管108’に循環中に11ボイラー109にて再加熱さ
れ、塔内全上昇し、再び蒸留処理される。
Conventionally, the method for distilling KDC has been carried out in the manner shown in FIG. That is, in FIG. 1, crude EDC containing low boiling point substances and high boiling point substances is passed through conduits 101 and 102 from a dehydration tower and a vinyl chloride tower to a low boiling point group 103.
The low boiling point material is then separated by distillation. In addition, the bottoms of column 103 containing high-boilers are fed via conduit 105 to high-boilers group 106 for distillation. tower 103
The thermal energy required for this is supplied 712 from the 11 boiler 104. 'f1! The effluent is collected through conduit 107 and fed to the E1)C cracking furnace. Bottom liquid H: While being circulated through conduit 108', it is reheated in boiler 109, rises completely within the column, and is distilled again.

1、l、2 ) 11グロルエタンや1,1,2.2テ
トラクロルエタン等の高沸点物質’(i−5〜20モル
チ含有するED C;n1缶出液として、導管110’
に介してEDC回収塔へ供Nされる。また、塔106の
塔頂から排出される、圧力が0−5Kg/cIIG未満
の範囲であるE I) Cガスの大分部は、コンデンサ
ーIllにて冷却凝縮された後、気液分離槽112にて
凝縮液♂非凝縮ガスに分離され、#ll液液ポンプ11
3にて抜き出され書び塔IC)6の塔頂へ還流される。
1, l, 2) High boiling point substances such as 11 glolethane and 1,1,2.2 tetrachloroethane' (i-EDC containing 5 to 20 moles; n1 bottoms, conduit 110'
N is supplied to the EDC recovery tower via the . In addition, most of the E I) C gas discharged from the top of the column 106 and having a pressure in the range of less than 0-5 Kg/cIIG is cooled and condensed in the condenser Ill, and then transferred to the gas-liquid separation tank 112. The condensed liquid ♂ is separated into non-condensed gas, and the #ll liquid-liquid pump 11
3 and refluxed to the top of the column IC) 6.

コンデンサー111で凝縮されない塩化水素や水ケ微普
含有する+> I) Cガスは、ベントコンデンサー1
14で酊却され、凝縮欣は導管115から、非凝縮ガス
は導管116より抜き出される。
I) C gas containing hydrogen chloride and water that is not condensed in condenser 111 is sent to vent condenser 1.
The condensed gas is extracted from the conduit 115 and the non-condensed gas is extracted from the conduit 116.

ところで、この従来法においては、コンデンサー111
に、ぢける熱エネルギー損失か有効に利用されていない
という欠点があった。
By the way, in this conventional method, the capacitor 111
However, the disadvantage was that thermal energy was lost or not utilized effectively.

本発明者らは、先に高沸点物塔の塔頂コンデンサーでの
熱エネルギー損失を回収利用するため第2図に示すフロ
ーシートの熱回収方法ケ含むE l)Cの蒸留法ケ発明
し特許出願したが、なおこの方法においては、塔頂より
排出するEDCガスの圧縮機及び該蒸留塔のりボイラー
コンデンサーにおいて、多大な設備費ケ必妾とし、更に
、圧縮機の消費エネルギーが増大するはかりでなく、圧
縮E1) Cガスの有する熱エネルギーがリボイラコン
デンサーでの必要熱エネルギーより大きくなる為、熱回
収率が満足するものではない。また、リボイラコンデン
サーでの圧縮EDCカスの凝縮温度が低くなる為、該凝
縮EDCのもつ顕熱エネルギー(凝縮温度より高沸点物
塔塔頂温度に至るまでの熱エネルギー)も回収利用が困
難であるという欠点が有り、更に改良する必要があった
The present inventors previously invented and patented a distillation method for El C, including a heat recovery method using the flow sheet shown in FIG. However, this method requires large equipment costs for the compressor for the EDC gas discharged from the top of the column and the boiler condenser for the distillation column, and furthermore, the energy consumption of the compressor increases. The heat recovery rate is not satisfactory because the thermal energy of the C gas is greater than the required thermal energy in the reboiler condenser. In addition, since the condensation temperature of the compressed EDC sludge in the reboiler condenser becomes low, it is difficult to recover and utilize the sensible heat energy (thermal energy from the condensation temperature to the top temperature of the high boiling point column) of the condensed EDC. This had some drawbacks, and it was necessary to improve it further.

本発明者らは、上記欠点全解消した熱効率の良いEDC
の蒸留法會求めて鋭意研究した結果本発明に到達したも
のである。
The present inventors have developed an EDC with high thermal efficiency that eliminates all of the above drawbacks.
The present invention was arrived at as a result of intensive research in search of a distillation method.

すなオつち、本発明は、低沸点物蒸留工程、高沸点物蒸
留工程及び高沸点物塔の塔頂から回収されるガスの熱回
収工程からなる高沸点物を含むE I)Cの蒸留法にお
いて、高沸点物塔の塔頂圧力會0−5 Kg/ crl
l G以上の加圧下で蒸留し、かつ塔頂から回収される
E f) Cガス?圧縮機により、更に吸入圧力及び温
度より0.5Kf/cII以上、lO°C以上昇圧昇温
し、これを高帥点物塔、低沸点物塔、脱水塔、EDC回
収塔及び地代ビニル塔からなる群から選ばれる少なくさ
も2個の塔のりボイラーの熱源として使用するこ(!:
ケ特徴とするEDCの蒸留法を提供するものである。
In other words, the present invention provides a high boiling point distillation process, a high boiling point distillation process, and a heat recovery process for gas recovered from the top of a high boiling point column. In the distillation method, the top pressure of the high boiler column is 0-5 Kg/crl.
E f) C gas that is distilled under pressure greater than l G and recovered from the top of the column? The compressor further increases the pressure and temperature by 0.5 Kf/cII or more and 10°C or more from the suction pressure and temperature, and passes this through the high-boiling point column, low-boiling point column, dehydration column, EDC recovery column and ground vinyl column. At least two towers selected from the group consisting of:
(1) A method for distilling EDC with the following features is provided.

本発明において高沸点物塔の塔頂圧力は0.5に9/c
r/lG以上であれは良いが、通常は181)C或いは
E T) C中に含有される高沸点物質の熱分解を抑制
するため0,5〜1.5 KI?/ crl Gが採用
される。
In the present invention, the top pressure of the high boiler column is 0.59/c
It is good if it is higher than r/lG, but usually 0.5 to 1.5 KI? / crl G will be adopted.

また、E 13 Cガスの圧縮機による圧縮はQ、5K
q/crl以−ヒであれば良いが、通常は昇圧に袂する
エネルギーおよび圧縮機の設置に要する設備費の増大全
抑制するためC〕、5〜2.OKf/c/lが採用され
る。
Also, the compression of E 13 C gas by a compressor is Q, 5K
q/crl or higher, but usually in order to completely suppress the increase in the energy required for boosting the pressure and the equipment cost required for installing the compressor C], 5 to 2. OKf/c/l is adopted.

本発明によれは、高沸点物塔の塔頂コンデンサーにおけ
る熱エネルギー損失の約8係のエネルギーでその全熱量
を高沸点物塔ケ含む塩化ビニルモノマープラントの蒸留
塔+1ボイラーの熱源として回収できる。但し蒸留塔塔
内の圧力損失を小さくするか、あるいはりボイラーコン
デンサーの伝熱面積を大きくすれは、圧縮エネルギー1
1以下にすることも出来る。
According to the present invention, the total amount of heat can be recovered as a heat source for a distillation column plus one boiler of a vinyl chloride monomer plant including a high boiler column, with an energy of about 8 times the thermal energy loss in the overhead condenser of a high boiler column. However, if you reduce the pressure loss in the distillation column or increase the heat transfer area of the boiler condenser, the compression energy 1
It can also be set to 1 or less.

また、第2図で示すフローシートの熱回収法を、該高沸
点物塔に適用した場合に比較しても、圧縮機に要するエ
ネルギー全豹1/2に減少させることができ、しかも設
備費の著しい削減が可能となる。
Furthermore, even when compared to the case where the heat recovery method of the flow sheet shown in Fig. 2 is applied to the high boiling point column, the total energy required for the compressor can be reduced to 1/2, and the equipment cost can be reduced. Significant reductions are possible.

更に、高沸点物塔の操作圧力?上昇させる為、留出物す
なわち精製EDC温度及び缶出EDC温度か上昇するが
、この増加した熱エネルギーは、それぞれの供給先であ
るE I) C分解炉及びEDC回収塔で有効に回収さ
れる。
Furthermore, the operating pressure of the high boiler column? In order to raise the temperature of the distillate, that is, the temperature of the purified EDC and the bottom EDC, the increased thermal energy is effectively recovered in the EDC cracking furnace and the EDC recovery tower, which are the respective supply destinations. .

また、リボイラーの管外側における、El)Cの凝縮温
度が高い為、凝縮温度より高沸点物塔の塔型温度に至る
までの熱エネルギーを、回収することにより、更に有利
tfプロセスとすることも可能である。例えば、脱水塔
缶出液及び低沸点物塔缶出液と熱交換させることで、高
沸点物塔のスチームの必要量を減少させることも可能で
ある。更にもう一つの例は、オキシ塩素化反応帯域の反
応熱除去用の蒸気発生器に供給する熱給水と熱交換させ
ることにより、発生蒸気を増駄させることもできる。
In addition, since the condensation temperature of El)C on the outside of the reboiler tube is high, the tf process can be made even more advantageous by recovering the thermal energy from the condensation temperature to the column temperature of the high boiler column. It is possible. For example, it is also possible to reduce the steam requirements of the high boiler column by exchanging heat with the dehydration column bottoms and low boiler bottoms. Yet another example is that the generated steam can be increased by heat exchange with heated water supplied to a steam generator for removing reaction heat in the oxychlorination reaction zone.

以上に述べた通り、本発明は塩化ビニルモノマープラン
トのエネルギー消費量の大幅低減、著しい設備費の削減
及び運転操作の容易性全可能とする、工業的にも極めて
有利な方法である。
As described above, the present invention is an industrially extremely advantageous method that enables a significant reduction in the energy consumption of a vinyl chloride monomer plant, a significant reduction in equipment costs, and ease of operation.

次に、実施例及び比較例ケあげて本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

比較例1 第1図のフローシートに従って操作される。Comparative example 1 It is operated according to the flow sheet shown in FIG.

低沸点物質0.7モルチ及び高沸点物質0.5モル%を
含有する粗El)C45’、2 トン/時を伝熱面積3
00ゴのサーモサイフオン式リボイラー104全備えた
、シーブトレイ85段ケ有する低沸点物塔103に導管
101及び102より供給し、11ボイラー104にス
チーム全5.9トン/時供給して蒸留した。塔底から導
管105’に介して更にシーブトレイ51段ケ有する高
沸点物塔106で、塔頂圧力0.05 Kg / cr
ftGの条件で、伝熱面積600−n11のリボイラー
109にスチーム10.3 トン/時ケ供給して蒸留し
た。
Crude El)C45' containing 0.7 mol% of low-boiling substances and 0.5 mol% of high-boiling substances, 2 tons/h, heat transfer area 3
It was supplied through conduits 101 and 102 to a low boiler column 103 equipped with all 000 thermosiphon reboilers 104 and having 85 sieve trays, and a total of 5.9 tons/hour of steam was supplied to boiler 104 for distillation. A high boiler column 106 with 51 sieve trays is connected from the bottom of the column via a conduit 105', and the pressure at the top of the column is 0.05 Kg/cr.
ftG, steam was distilled by supplying 10.3 tons/hour of steam to the reboiler 109 having a heat transfer area of 600-n11.

塔頂より排出される85℃のEDCガス73.4トン/
時が導管117會介してコンデンサー111に供給され
そのうちの72.8 トン/時のE 1) Cガスが凝
縮され、ポンプ113で還流される。この際の凝縮熱は
、5.64 x 10’に、calZ時である。。一方
、塩化水素及び水金微量含有した非・凝縮EDCガス(
1,6トン/時は、導管118金介して、ベントコンデ
ンサー114に供給され、冷却された後抜き出される。
73.4 tons of EDC gas at 85℃ discharged from the top of the tower
Time is supplied to condenser 111 via conduit 117, of which 72.8 tons/hour of E1) C gas is condensed and refluxed by pump 113. The heat of condensation at this time is 5.64 x 10' at calZ. . On the other hand, non-condensed EDC gas (
1.6 tons/hour is fed via conduit 118 to a vent condenser 114, cooled and then withdrawn.

一方、高沸点物質全5モルチ含有した95°Cの缶出液
3.8トン/時が、導管110を介してE D C回収
塔へ供給される。
On the other hand, 3.8 tons/hour of bottoms at 95° C. containing 5 moles of high-boiling substances are fed via conduit 110 to the E DC recovery column.

塔106の上部より導管107を介して抜き出された8
5℃の液状の精製K D Cは、低沸点物質0.5モル
チ及び高沸点物質0.01モル%に含有していた。この
蒸留法に於て、塔103及び106に供給されたスチー
ム量は16.2 トン/時であった。
8 extracted from the upper part of the column 106 via the conduit 107
The purified KDC in liquid form at 5°C contained 0.5 mol% of low-boiling substances and 0.01 mol% of high-boiling substances. In this distillation method, the amount of steam supplied to columns 103 and 106 was 16.2 tons/hour.

比較例2 第2図のフローシートに従って操作される。Comparative example 2 It is operated according to the flow sheet shown in FIG.

比較例1の低沸点物塔の缶出液と組成、温度、流量きも
同じ状態の粗EDCが、導管201ケ介して、比較例1
と同じ構造に有する高沸点物塔202の同じ蒸留段へ供
給され、塔頂圧力0.05Kg / cr/l Gで蒸
留される。
Crude EDC, which has the same composition, temperature, and flow rate as the bottoms of the low boiler column of Comparative Example 1, is transferred to Comparative Example 1 through 201 conduits.
It is fed to the same distillation stage of the high boiler column 202 having the same structure as , and distilled at a column top pressure of 0.05 Kg/cr/l G.

塔頂より排出する85℃のEDCガス73.4 トン/
時は、ターボ圧縮機203で1.4.1 Kf/iG。
73.4 tons of EDC gas at 85℃ discharged from the top of the tower
At that time, the turbo compressor 203 was 1.4.1 Kf/iG.

131℃まで昇圧昇温され、その内71.3 トン/時
が導管204を介して、伝熱面積1ooomのサーモサ
イフオン式リボイラー205の管外側に供給される。供
給されたEDCガスは、導管206を介して循環する9
5°Cの塔202の塔底液と5.55 X 10’Kc
al 7時の熱交換金して、凝縮し導管207を介して
気液分離槽208に供給される。
The pressure and temperature are increased to 131° C., of which 71.3 tons/hour is supplied via a conduit 204 to the outside of the tube of a thermosiphon reboiler 205 having a heat transfer area of 1000 mm. The supplied EDC gas is circulated through conduit 206 9
Bottom liquid of column 202 at 5°C and 5.55 x 10'Kc
The heat exchanged during al7 is condensed and supplied to a gas-liquid separation tank 208 via a conduit 207.

一方、塔202の圧力全保持するため過剰の熱エネルギ
ーは、コンデンサー210で冷却除去される7その結果
導管209を介してコンデンサー210に供給され、凝
縮した後導管211に介し気液分離槽208へ供給され
たEDCは1.5トン/時であった。
On the other hand, excess thermal energy to maintain the full pressure in the column 202 is cooled and removed in a condenser 210.7 As a result, it is supplied to a condenser 210 via a conduit 209, and after being condensed, it is sent to a gas-liquid separation tank 208 via a conduit 211. The EDC supplied was 1.5 tons/hour.

分離槽208より塩化水素及び水分全微量含有したE 
l) Cガス11.6トン/時は導管215を介し、コ
ンデンサー216に供給され冷却された後排出される。
E containing all trace amounts of hydrogen chloride and water from the separation tank 208
l) 11.6 tons/hour of C gas is supplied via conduit 215 to condenser 216, cooled, and then discharged.

分離槽2081こ蓄えられた1 13.5°Cの液状E
DCは、熱交換器212で85℃まで冷却された後、ポ
ンプ213により導管214’に介して塔202の塔頂
へ還流される。一方、比較例1と同組成同温度の缶出液
3.8トン/時が、導管217會介してI(DC回収塔
へ供給される。
Liquid E at 13.5°C stored in 2081 separation tanks
The DC is cooled to 85° C. in heat exchanger 212 and then refluxed to the top of column 202 via conduit 214′ by pump 213. On the other hand, 3.8 tons/hour of bottoms having the same composition and temperature as in Comparative Example 1 was supplied to I (DC recovery tower) via conduit 217.

塔202の比較例1の塔106と同じ蒸留段から、導管
218を介して抜き出された85℃の液状の精製EDC
は、低沸点物質0.5モルチ及び高沸点物質11.01
モル%’に含有していた。
Liquid purified EDC at 85° C. withdrawn via conduit 218 from the same distillation stage as column 106 of Comparative Example 1 in column 202
is 0.5 mol of low boiling point substance and 11.01 mol of high boiling point substance
It was contained in mol%'.

この操作で圧縮機203に要した電力は、91OKWH
/時であった。
The power required for the compressor 203 in this operation is 91 OKWH
/ It was time.

実施例 本発明の実施態様の一つは、@3図のフローシートに従
って操作される。
EXAMPLE One embodiment of the present invention operates according to the flow sheet of Figure @3.

比較例1と組成、温度、流量とも同じ状態の粗EDC4
5,2トン/時が、同構造の低沸点物塔303に導管3
 (11及び302より供給され同条件下で蒸留された
Crude EDC4 with the same composition, temperature, and flow rate as Comparative Example 1
5.2 tons/hour is passed through conduit 3 to low boiler column 303 of the same structure.
(Supplied from sources 11 and 302 and distilled under the same conditions.

低沸点物塔303の缶出液は、導管304を介し比較例
1と同構造の高沸点物塔305へ供給され、塔頂圧力1
.0 Kg/iGの条件で蒸留された。
The bottoms of the low boiling point column 303 are supplied via a conduit 304 to a high boiling point column 305 having the same structure as in Comparative Example 1, and the top pressure of the column is 1.
.. Distilled under the condition of 0 Kg/iG.

塔頂より排出される106℃の73.4 トン/時のE
DCガスは、導管306を介してターボ圧縮機307に
供給され、2.l Ky/cr/lG、i 30℃の状
態まで圧縮された。該ターボ圧縮機は電動機lこより毎
分約3600回転で駆動された。
73.4 tons/hour of E at 106°C discharged from the top of the tower
DC gas is supplied to turbo compressor 307 via conduit 306; 2. l Ky/cr/lG, i Compressed to 30°C. The turbo compressor was driven by an electric motor at approximately 3600 revolutions per minute.

圧縮E D Cガスの内42.4 トン/時が導管30
8を介して、伝熱面積370dの低沸点物浴用サーモサ
イフオン式リボイラー309の管外側に供給きれ、導管
:(10’?介して管内側を循環する95℃の塔底液と
熱交換し、123℃の温度で凝縮して導管311?介し
、気液分離槽312に供給される。この場合の交換熱量
は3.14 X 1 (1’K(41117時であり、
これは比較例1で低沸点物塔103での蒸留に必要とさ
れたスチーム5.9トン/時lこ相当する。
Of the compressed EDC gas, 42.4 tons/hour is in conduit 30.
8, it is supplied to the outside of the tube of the thermosiphon reboiler 309 for a low-boiling point bath with a heat transfer area of 370 d, and heat is exchanged with the 95° C. bottom liquid circulating inside the tube through the conduit: (10'?). , and is condensed at a temperature of 123°C and supplied to the gas-liquid separation tank 312 via the conduit 311.The amount of heat exchanged in this case is 3.14 x 1 (1'K (41117 hours),
This corresponds to the 5.9 tons/hour of steam required for distillation in the low boiler column 103 in Comparative Example 1.

また、残りの圧縮E I) Cガス31.0トン/時は
、導管313を介して、伝熱面積10 (10デの筒沸
点物塔用サーモサイフオン式リボイラー314の管夕(
側に供給され、導管315會介して管内側全循環する1
15℃の塔底液と熱交換し、123℃の温度で凝縮して
、導管316を介し気液分離槽317に供給される。こ
の場合の交換熱量は2.29 X 10’Kcal /
時であり、これは4.4トン/時のスチームに相当する
。また伝熱面$ 300 m’のりボイラー3186と
は、スチーム6.5トン/時ケ供給した。これは:(,
4X 10’Kcal/時の熱量に相当する。
In addition, the remaining compressed E I) 31.0 tons/hour of C gas is transferred via a conduit 313 to a tube tube of a thermosiphon reboiler 314 for a tube boiler with a heat transfer area of 10 (10 deg).
1, which is supplied to the side and circulated throughout the inside of the tube via the conduit 315.
It exchanges heat with the bottom liquid at 15° C., condenses at a temperature of 123° C., and is supplied to a gas-liquid separation tank 317 via a conduit 316. The amount of heat exchanged in this case is 2.29 x 10'Kcal/
hour, which corresponds to 4.4 tons/hour of steam. The boiler 3186 with a heat transfer surface of $300 m' was supplied with steam at a rate of 6.5 tons/hour. this is:(,
It corresponds to a heat amount of 4X 10'Kcal/hour.

分離槽312及び317より塩化水素及び水音微量含有
したEDCガス各0.3トン/時全導管319ケ介して
排出する。
EDC gas containing trace amounts of hydrogen chloride and water is discharged from the separation tanks 312 and 317 at 0.3 tons/hour each through a total of 319 pipes.

分離槽312及び317に蓄えられた123℃の液状の
E I) Cは、熱交換器320及び321で106℃
まで冷却されポンプ322及び323により高沸点物塔
305の塔頂へ、導管324を介して還流される。
Liquid E I) C at 123°C stored in separation tanks 312 and 317 is heated to 106°C in heat exchangers 320 and 321.
The high boilers are cooled to 100% and refluxed via conduit 324 to the top of high boiler column 305 by pumps 322 and 323.

高沸点物塔305の塔底より比較例1と同組成で、温度
115°Cの缶出液3,8トン/時が導管325ケ介し
てEDC回収塔へ供給される。
From the bottom of the high boiler column 305, 3.8 tons/hour of bottoms having the same composition as in Comparative Example 1 and a temperature of 115° C. is supplied to the EDC recovery column through 325 conduits.

塔底より蒸留段48段目から2得られた4 0.5 )
シフ時、106℃の液状の精製EDCは、低沸点物質0
.5モルチ及び高沸点物質0.O1モル%ケ含有してお
り導管326金介してEDC分解炉へ供給される。
4 0.5 obtained from the 48th distillation stage from the bottom of the column
At the time of sifting, liquid purified EDC at 106°C has no low boiling point substances.
.. 5 molti and high boiling substances 0. It contains 1 mol% O and is fed to the EDC cracking furnace via a 326 gold conduit.

この操作で圧縮機307に要した電力は500KWH/
時であった。また高沸点物塔305の圧力を比較例1及
び2より昇圧し1−OKg/ clL Gとした事で、
EDC分解及びEDC回収塔の必要熱量が:(、I X
 111’Kcal 7時減少した。これはスチーム0
.6トン/時に相当する。
The power required for the compressor 307 in this operation was 500KWH/
It was time. In addition, the pressure in the high boiler column 305 was increased from Comparative Examples 1 and 2 to 1-OKg/clL G,
The amount of heat required for EDC decomposition and EDC recovery tower is: (, I
111'Kcal decreased at 7 o'clock. This is steam 0
.. This corresponds to 6 tons/hour.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は比較例としての1.2ジクロルエタ
ンの蒸留法を示すフローシート、第3図は本発明の一実
施態様を示すフローシートである。 第1,2及び3図において、各々の記号は下記の内容?
示す。 103・・・・・・低梯点物塔 104・・・・・・低沸点物浴用サーモサイフオン式リ
ボイラー ]06・・・・・・高沸点物塔 109・・・・・・高沸点物浴用サーモサイフオン式リ
ボイラー 111・・・・・・コンデンサー 202・・・・・・高沸点物塔 203・・・・・・ターボ圧縮機 205・・・・・・サーモサイフオン式リボイラー20
8・・・・・・気液分離槽 210・・・・・・コンデンサー 212・・・・・・熱交換器 303・・・・・・低沸点物基 305・・・・・・高沸点物基 307・・・・・・ターボ圧縮機 309・・・・・・低沸点物浴用サーモサイフオン式リ
ボイラー 312・・・・・・気液分離槽 3゛4°°°゛°4°°°゛°高沸 −e−t! 7.
1−7式”12ボイラー 317・・・・・・気液分離槽 瀝 318・・・・・・リボイラー 320.321・・・・・・熱交換器 特許出願人 東洋1達工業株式会社 第 2 図 ff已 ろ 図
1 and 2 are flow sheets showing a method for distilling 1.2 dichloroethane as a comparative example, and FIG. 3 is a flow sheet showing an embodiment of the present invention. In Figures 1, 2 and 3, each symbol has the following meaning?
show. 103...Low-boiling point column 104...Thermosiphon reboiler for low-boiling point bath] 06... High-boiling point column 109... High-boiling point column Bath thermosiphon reboiler 111...Condenser 202...High boiler column 203...Turbo compressor 205...Thermosiphon reboiler 20
8... Gas-liquid separation tank 210... Condenser 212... Heat exchanger 303... Low boiling point group 305... High boiling point substance Group 307... Turbo compressor 309... Thermosiphon reboiler for low boiling point bath 312... Gas-liquid separation tank 3゛4°°°゛°4°°°゛°High boiling -e-t! 7.
Type 1-7"12 Boiler 317... Gas-liquid separation tank 318... Reboiler 320.321... Heat exchanger patent applicant Toyo Ichida Kogyo Co., Ltd. No. 2 Figure ff

Claims (3)

【特許請求の範囲】[Claims] (1)低沸点物蒸留工程、高沸点物蒸留工程及び高沸点
物基の塔頂から回収されるガスの熱回収工程からなる高
沸点物質を含む1,2ジクロルエタンの蒸留法において
、高沸点物基の塔頂圧力全0.5Ky / ail G
以上の加圧下で蒸留し、かつ塔頂から回収される1、2
ジクロルエタンガスを圧縮機にヨリ、更に吸入圧力及び
温度より0.5.Kg/cr!1以上、10℃以上昇圧
昇温し、これr高沸点物基、低沸点物基、脱水塔、1,
2ジクロル工タン回収塔及び塩化ビニル塔からなる群か
ら選ばれる少なくとも2個の塔のりボイラーの熱源とし
使用することt特徴とする1、2ジクロルエタンの蒸留
法。
(1) In the distillation method for 1,2 dichloroethane containing high-boiling substances, which consists of a low-boiling point distillation step, a high-boiling point distillation step, and a heat recovery step of the gas recovered from the top of the high-boiling point group, high-boiling point substances Base tower top pressure total 0.5Ky/ail G
1 and 2 distilled under the above pressure and recovered from the top of the column.
Add dichloroethane gas to the compressor, and further reduce the suction pressure and temperature by 0.5. Kg/cr! 1 or more, the pressure and temperature are increased by 10°C or more, and this r high-boiling point group, low-boiling point group, dehydration tower, 1,
A method for distilling 1,2-dichloroethane, characterized in that at least two columns selected from the group consisting of a 2-dichloroethane recovery column and a vinyl chloride column are used as a heat source for a boiler.
(2) 高沸点物基の塔頂圧力を0.5〜1.5Kg/
ff1Gで蒸留する特許請求の範囲第(1)項記載の1
.2ジグロルエタンの蒸留法。
(2) Adjust the tower top pressure of high boiling point groups to 0.5 to 1.5 kg/
1 of claim (1) distilled with ff1G
.. Distillation method of 2-diglolethane.
(3) 1.2ジクロル工タンガス會圧縮機により更に
吸入圧力より0.5〜2.0Kg/Clft昇圧する特
許請求の範囲第(1)項又は第(2)項記載の1,2ジ
クロルエタンの蒸留法。
(3) 1,2 dichloroethane according to claim (1) or (2), whose pressure is further increased by 0.5 to 2.0 Kg/Clft from the suction pressure using a 1.2 dichloroethane gas compressor. Distillation method.
JP58127828A 1983-07-13 1983-07-15 Distillation of 1,2-dichloroethane Granted JPS6019732A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58127828A JPS6019732A (en) 1983-07-15 1983-07-15 Distillation of 1,2-dichloroethane
EP84108243A EP0131932B1 (en) 1983-07-13 1984-07-13 Method for distillation of 1,2-dichloroethane
DE8484108243T DE3461028D1 (en) 1983-07-13 1984-07-13 Method for distillation of 1,2-dichloroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127828A JPS6019732A (en) 1983-07-15 1983-07-15 Distillation of 1,2-dichloroethane

Publications (2)

Publication Number Publication Date
JPS6019732A true JPS6019732A (en) 1985-01-31
JPH0332531B2 JPH0332531B2 (en) 1991-05-13

Family

ID=14969666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127828A Granted JPS6019732A (en) 1983-07-13 1983-07-15 Distillation of 1,2-dichloroethane

Country Status (1)

Country Link
JP (1) JPS6019732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509480A (en) * 1999-09-22 2003-03-11 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for utilizing heat in producing 1,2-dichloroethane
JP2005343898A (en) * 2004-06-01 2005-12-15 Bayer Materialscience Ag Process for separation of aqueous amine solution by distillation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509480A (en) * 1999-09-22 2003-03-11 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for utilizing heat in producing 1,2-dichloroethane
JP2005343898A (en) * 2004-06-01 2005-12-15 Bayer Materialscience Ag Process for separation of aqueous amine solution by distillation

Also Published As

Publication number Publication date
JPH0332531B2 (en) 1991-05-13

Similar Documents

Publication Publication Date Title
US4788357A (en) Vinyl chloride production
US4778567A (en) Method for purification of ethylene oxide and recovery of heat thereof
JP4182608B2 (en) Separation and recovery of hydrogen chloride and water
CN104428276B (en) The method comprising the mixture of Ketohexamethylene and Hexalin from phenol production
JPS5874624A (en) Manufacture and purification of 1,2-dichloroethane
EP0055607A2 (en) Process for recovery of olefinic nitriles
JP4859084B2 (en) Method and apparatus utilizing reaction heat generated when producing 1,2-dichloroethane
JP4126465B2 (en) Method of fractionating light components from the residual liquor
CN108689798B (en) Method for improving quality of methyl chloride recovered by synthesizing organic silicon monomer
KR101380032B1 (en) Method of operating a distillation column for purifying 1,2-dichloroethane and for coupled sodium hydroxide solution evaporative concentration
US4261818A (en) Method for making separations from aqueous solutions
JP4914441B2 (en) Method and apparatus for utilizing the heat of reaction generated in the production of 1,2-dichloroethane
JP2005529951A (en) EB / SM splitter heat recovery
US3691020A (en) Styrene plant waste heat utilization in a water desalination process
US4613697A (en) Process for the displacement to the gaseous phase of the excess of NH3
JPS6019732A (en) Distillation of 1,2-dichloroethane
CN103922891B (en) Energy integration method for producing benzyl chloride by two-stage reaction rectification series connection
JPH0819014B2 (en) Method for producing ethane dichloride
EP0131932B1 (en) Method for distillation of 1,2-dichloroethane
JPS61277637A (en) Purification of 1,2-dichloroethane
JP3128809B2 (en) Heat recovery method in distillation operation
JP2003113144A (en) Method for producing alkylaryl carbonate
EP0132194B1 (en) Low steam consumption process for the manufacture of urea
JPS60115535A (en) Distillation of 1,2-dichloroethane
JP5094148B2 (en) Method for producing allyl alcohol