JPS60196702A - Optical fiber cable containing gaseous hydrogen detecting fiber - Google Patents
Optical fiber cable containing gaseous hydrogen detecting fiberInfo
- Publication number
- JPS60196702A JPS60196702A JP59053878A JP5387884A JPS60196702A JP S60196702 A JPS60196702 A JP S60196702A JP 59053878 A JP59053878 A JP 59053878A JP 5387884 A JP5387884 A JP 5387884A JP S60196702 A JPS60196702 A JP S60196702A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- content
- gaseous hydrogen
- fiber cable
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 57
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 239000000835 fiber Substances 0.000 title claims abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 title abstract description 22
- 239000001257 hydrogen Substances 0.000 title abstract description 22
- 230000005540 biological transmission Effects 0.000 claims abstract description 35
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims description 2
- 229910019020 PtO2 Inorganic materials 0.000 claims 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 5
- 238000007689 inspection Methods 0.000 abstract description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/44384—Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/44382—Means specially adapted for strengthening or protecting the cables the means comprising hydrogen absorbing materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、光フアイバケーブルの伝送損失の経時的変化
を検知するだめの検知ファイバ入シ光ファイバケーブル
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical fiber cable with a detection fiber for detecting changes over time in transmission loss of an optical fiber cable.
近年、その特長である広帯域性、長距離伝送可能、軽量
、電磁誘導を受けない等々を生かすべく光フアイバケー
ブルの導入が多方面で、かつ急速に行なわれている。In recent years, optical fiber cables have been rapidly introduced in a wide variety of fields to take advantage of their characteristics such as wideband performance, long-distance transmission, light weight, and no electromagnetic induction.
しかしながら、この光フアイバケーブルにも今のところ
次のような問題がある。すなわち、1.2μmをこえる
長波長帯において、水素が光フアイバ中に拡散すると、
伝送損失が増加することが明らかになっている。この水
素の発生源は、光ファイバの被覆材料をはじめとする光
フアイバケーブルの構成材料であったシ、あるいは、外
部からケーブルに侵入した水が電気分解した結果であっ
たシする。いずれにせよ、一度発生するとガラス内、す
(以下OH基と称す)を生ずる。その速さは水素いる。However, this optical fiber cable also has the following problems at present. In other words, in the long wavelength band exceeding 1.2 μm, when hydrogen diffuses into the optical fiber,
It has become clear that transmission loss increases. The source of this hydrogen may be the constituent materials of the optical fiber cable, including the coating material of the optical fiber, or it may be the result of electrolysis of water that has entered the cable from the outside. In any case, once generated, OH groups (hereinafter referred to as OH groups) are generated within the glass. Hydrogen has that speed.
従って、ケーブル内で前記理由により水素が発生すると
、その分圧に比例して光フアイバ内への水素の拡散がお
こシ、OH基が増加する。この拡散した水素と、それに
伴なって生ずるOH基とにより光ファイバの伝送損失が
増加する。それ故、これを防止するために水素の発生そ
のものを防止できるケーブル構造、ケーブル材料の開発
と、水素の影響を受けない光ファイバの開発とが急がれ
ている。しかし、水素の発生の機構は複雑であシ、数十
年という長期信頼性のある光フアイバケーブルを完成す
るには、まだまだ時間が必要である。Therefore, when hydrogen is generated within the cable for the above-mentioned reason, hydrogen diffuses into the optical fiber in proportion to its partial pressure, and the number of OH groups increases. This diffused hydrogen and the accompanying OH groups increase the transmission loss of the optical fiber. Therefore, in order to prevent this, there is an urgent need to develop cable structures and cable materials that can prevent hydrogen generation itself, and to develop optical fibers that are not affected by hydrogen. However, the mechanism of hydrogen generation is complex, and it will take a long time to create optical fiber cables that will be reliable for decades.
前記問題に鑑み、本発明の目的は、数十年という長期信
頼性のある光フアイバケーブルが完成されるまでの間、
光フアイバケーブル内の水素ガスの発生をすみやかに検
知し、水素及びその発生源を除去する等、保守をすみや
かに行なうことを可能とする水素ガス検知ファイバ入シ
光ファイバケーブルを提供するとと゛にある。In view of the above problems, an object of the present invention is to provide an optical fiber cable with long-term reliability of several decades.
It is an object of the present invention to provide an optical fiber cable containing a hydrogen gas detection fiber, which enables prompt maintenance such as detecting the generation of hydrogen gas within the optical fiber cable and removing the hydrogen and its source. .
組成が5ins −Ge01 − Psisよりなり、
かつP* Osの含有量が前”紀伝送用光ファイバのコ
アのP 宜Osの含有量よシ大きい水素ガス検知ファイ
バとを有するものである。The composition consists of 5ins-Ge01-Psis,
In addition, the hydrogen gas detection fiber has a P*Os content greater than the P*Os content of the core of the optical fiber for transmission.
本発明の実施例を図を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
光フアイバ内に吸収拡散した水素による光ファイバの伝
送損失の増加傾向は、光ファイバのコアのp、o、の含
有量に依存し、かつまた使用波長λにも依存することが
知られている。It is known that the tendency for the transmission loss of an optical fiber to increase due to hydrogen absorbed and diffused into the optical fiber depends on the content of p, o, in the core of the optical fiber, and also on the wavelength λ used. .
具体的には、λ=Ll+μm帯やλ=L55μm帯で伝
送損失の増加傾向が顕著に現われ、λ=15μm帯はそ
の裾に当シ増加傾向はごくわずかしか現われない。第1
図はλ= 1.55μm帯での光フアイバ伝送損失値と
P菅Omの関係を示している。これはP、O,の含有量
の異なる光ファイバを水素100チ、温度200℃の雰
囲気中に4時間放置した後、λ= 1.55μm帯で測
定した結果で、横軸にコアのP露0藝の含有量をとシ、
縦軸にλ= 1.55μmでの伝送損失値をとっである
。さらに、伝送損失の増加速度がコアのP、0.の含有
量に依存するかどうかを加速試験で調べると、P菅OI
の含有量が1.5倍になると増加速度は約2倍になる。Specifically, an increasing tendency of transmission loss appears prominently in the λ=Ll+μm band and the λ=L55 μm band, and only a slight increasing tendency appears at the bottom of the λ=15 μm band. 1st
The figure shows the relationship between the optical fiber transmission loss value and P tube Om in the λ=1.55 μm band. This is the result of measurement in the λ = 1.55 μm band after optical fibers with different contents of P and O were left in an atmosphere of 100 μm of hydrogen and a temperature of 200°C for 4 hours. The horizontal axis shows the P exposure of the core. With the content of 0.
The vertical axis shows the transmission loss value at λ=1.55 μm. Furthermore, if the rate of increase in transmission loss is P of the core, 0. An accelerated test was conducted to determine whether PsugaOI depended on the content of
When the content of is increased by 1.5 times, the rate of increase is approximately doubled.
それ故、伝送用光ファイバのコアのP ! O*の含有
量より大きい含有量を示す光ファイバを前記伝送用光フ
ァイバと一緒に集合しておけば、前記伝送用光ファイバ
の伝送損失が大きくなシ過ぎる前に検知し、保守が可能
となる。因みに前述のごとく、PI3.の含有量が15
倍になれば、伝送損失の増加速度は2倍になるので、例
えば、検知用のファイバの伝送損失が0.2 dB /
K1gになったら警報を発するようにしておけば、伝送
用光ファイバの伝送損失が0.16B/h程度のうちに
保守、点検の行動がとれる。Therefore, P! of the core of the transmission optical fiber! If optical fibers exhibiting a content greater than the content of O* are gathered together with the transmission optical fiber, it is possible to detect and maintain the transmission loss of the transmission optical fiber before it becomes too large. Become. Incidentally, as mentioned above, PI3. The content of is 15
If it is doubled, the rate of increase in transmission loss will be doubled, so for example, if the transmission loss of the detection fiber is 0.2 dB/
If an alarm is issued when it reaches K1g, maintenance and inspection can be taken before the transmission loss of the transmission optical fiber reaches about 0.16 B/h.
但し、コアのp、o、の含有量が小さいと、この変化が
小さいから、伝送用光ファイバのコアのPro@の含有
量が0.65mo1%以下というように小さい場合は、
安全を考慮して検知用光ファイバには1 molチ以上
のProsを含有せしめておく。However, if the content of p, o, in the core is small, this change is small, so if the content of Pro@ in the core of the transmission optical fiber is small, such as 0.65 mo1% or less,
In consideration of safety, the detection optical fiber is made to contain 1 mol or more of Pros.
このように、検知用の光ファイバのコアのPI3゜含有
量を伝送用光ファイバのそれより大きくしておけば、こ
の検知用の光ファイバ迦メち速く、光フアイバ内へ拡散
してきた水素あるいは、この水素によって生ずるOH基
の影響で伝送損失増加を示す。それ故、これを水素ガス
検知ファイバと称するならば、この水素ガス検知ファイ
バの伝送損失の増加傾向を監視していれば、伝送用光フ
ァイバの伝送損失の増加量も推定でき、かつ保守、点検
の時期も正確に把握できる。In this way, if the PI3° content of the core of the optical fiber for detection is made larger than that of the optical fiber for transmission, the optical fiber for detection will quickly absorb the hydrogen or hydrogen that has diffused into the optical fiber. , transmission loss increases due to the influence of OH groups generated by this hydrogen. Therefore, if this is called a hydrogen gas detection fiber, if the increasing trend of transmission loss of this hydrogen gas detection fiber is monitored, it is possible to estimate the amount of increase in transmission loss of the transmission optical fiber, and also to perform maintenance and inspection. You can also accurately determine the timing.
ここで第2図に前記水素ガス検知ファイバ入り光フアイ
バケーブルの実施例を示す。第2図が示すようにステン
レス線等の抗張力線1のまわりに伝送用光ファイバ2と
、水素ガス検知ファイバうとを集合せしめシリジン樹脂
等からなる緩衝層4を設けた後、保護層5を設ける。第
2図では水素ガス検知ファイバ5は1本しか入っていな
いが2本あるいはそれ以上入っていてもよい。Here, FIG. 2 shows an embodiment of the optical fiber cable containing the hydrogen gas detection fiber. As shown in FIG. 2, a transmission optical fiber 2 and a hydrogen gas detection fiber are assembled around a tensile strength wire 1 such as a stainless steel wire, a buffer layer 4 made of syringe resin, etc. is provided, and then a protective layer 5 is provided. . In FIG. 2, only one hydrogen gas detection fiber 5 is included, but two or more may be included.
以上述べたように、本発明によれば、光フアイバケーブ
ル内の水素ガスの発生をすみやかに検知でき、水素ガス
及びその発生源を除去する等、ケーブルの保守、点検を
すみやかに行なうことができ、もって光フアイバケーブ
ルの信頼性維持に大いに貢献できる。As described above, according to the present invention, it is possible to promptly detect the generation of hydrogen gas in an optical fiber cable, and to promptly perform maintenance and inspection of the cable, such as removing hydrogen gas and its source. This can greatly contribute to maintaining the reliability of optical fiber cables.
第1図は水素100%、温度200℃の雰囲気に4時間
放置した光ファイバにおけるPros含有量と伝送損失
の値を示すグラフ、第2図は本発明の水素ガス検知ファ
イバ入シ光ファイバケーブルの一実施例の横断面である
。
2・・・・・・伝送用光ファイバ 5・・・・・・水素
ガス検知ファイバ
第1図Figure 1 is a graph showing the Pros content and transmission loss values of an optical fiber left in an atmosphere of 100% hydrogen and a temperature of 200°C for 4 hours, and Figure 2 is a graph showing the values of the Pros content and transmission loss of an optical fiber cable containing the hydrogen gas sensing fiber of the present invention. 1 is a cross section of one embodiment. 2...Optical fiber for transmission 5...Hydrogen gas detection fiber Figure 1
Claims (2)
GeO會−Prosよりなり、かつp、o、の含有量が
前記伝送用光ファイバのコアのP * Osの含有量よ
シ大きい水素ガス検知ファイバとを有する水素ガス検知
ファイバ入り光フアイバケーブル。(1) The composition of the transmission optical fiber and the core is 5ins −
An optical fiber cable containing a hydrogen gas sensing fiber, comprising a hydrogen gas sensing fiber made of GeO-Pros and having a p, o, content greater than a P*Os content in the core of the transmission optical fiber.
、65 mole以下の場合は、前記水素ガス検知ファ
イバのPtO1の含有量を1mo1%以上とし、前記伝
送用光ファイバのP、O,の含有量が0.65− mo
1%以上の場合は、前記水素ガス検知光ファイバのPl
olの含有量を前記伝送用光ファイバのPtO2の含有
量の1.5倍以上とすることを特徴とする特許請求の範
囲第1項記載の水素ガス検知ファイバ入シ光ファイバケ
ーブル。(2) The content of P*Os in the transmission optical fiber is 0.
, 65 mole or less, the content of PtO1 in the hydrogen gas detection fiber is 1 mo1% or more, and the content of P, O, in the transmission optical fiber is 0.65 mole or less.
If it is 1% or more, the Pl of the hydrogen gas detection optical fiber
2. The hydrogen gas detection fiber-containing optical fiber cable according to claim 1, wherein the content of ol is 1.5 times or more the content of PtO2 in the transmission optical fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59053878A JPS60196702A (en) | 1984-03-21 | 1984-03-21 | Optical fiber cable containing gaseous hydrogen detecting fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59053878A JPS60196702A (en) | 1984-03-21 | 1984-03-21 | Optical fiber cable containing gaseous hydrogen detecting fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60196702A true JPS60196702A (en) | 1985-10-05 |
Family
ID=12955003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59053878A Pending JPS60196702A (en) | 1984-03-21 | 1984-03-21 | Optical fiber cable containing gaseous hydrogen detecting fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60196702A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035784A1 (en) * | 2006-09-22 | 2008-03-27 | J-Power Systems Corporation | Optical fiber temperature distribution measuring apparatus, optical fiber temperature distribution measuring method and optical fiber temperature distribution measuring system |
-
1984
- 1984-03-21 JP JP59053878A patent/JPS60196702A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035784A1 (en) * | 2006-09-22 | 2008-03-27 | J-Power Systems Corporation | Optical fiber temperature distribution measuring apparatus, optical fiber temperature distribution measuring method and optical fiber temperature distribution measuring system |
WO2008035436A1 (en) * | 2006-09-22 | 2008-03-27 | J-Power Systems Corporation | Device for measuring temperature distribution of optical fiber and method for measuring temperature distribution of optical fiber |
GB2453264A (en) * | 2006-09-22 | 2009-04-01 | J Power Systems Corp | Optical fiber temperature distribution measuring apparatus, optical fiber temperature distribution measuring method and system |
CN101427117A (en) * | 2006-09-22 | 2009-05-06 | 日本电力电线电缆株式会社 | Optical fiber temperature distribution measuring apparatus, optical fiber temperature distribution measuring method and optical fiber temperature distribution measuring system |
GB2453264B (en) * | 2006-09-22 | 2012-05-02 | J Power Systems Corp | Optical fiber temperature distribution measuring apparatus, method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kanamori et al. | Transmission characteristics and reliability of pure-silica-core single-mode fibers | |
US4877306A (en) | Coated optical waveguide fibers | |
CN201392418Y (en) | Composite sensing optical cable | |
FI75049B (en) | MIKROBOEJKAENSLIG FIBEROPTISK KABEL. | |
KR20110032514A (en) | High-speed demodulation system for fbg sensors using multi-window fabry-perot filter | |
ATE19310T1 (en) | OPTICAL WAVE GUIDE FIBER AND PROCESS FOR MAKING A PREFORM. | |
JP2008224744A (en) | Optical fiber | |
Shibata et al. | Refractive index dispersion of lightguide glasses at high temperature | |
JP5735605B2 (en) | Apparatus and method for simultaneously implementing optical fiber Bragg grating sensor as temperature and radiation dose sensor | |
JPS60196702A (en) | Optical fiber cable containing gaseous hydrogen detecting fiber | |
Su et al. | Research on Qualification Technology and Qualification System of Safety Grade Optical Fiber Cable in Nuclear Power Plant | |
Skutnik et al. | Passivated Optical Fibers for Harsh Environments | |
Guillermain et al. | Macro-bending influence on radiation induced attenuation measurement in optical fibres | |
JP2601726B2 (en) | Inspection method for hermetic coated optical fiber | |
JPH01147412A (en) | Single mode optical fiber | |
JPH0127071Y2 (en) | ||
Mauron | Reliability and lifetime of optical fibres and fibre Bragg gratings for metrology and telecommunications | |
JPS60166837A (en) | Detection of leaked oil | |
Melin et al. | Official URL | |
JPS57124228A (en) | Standard optical fiber for excitation | |
Lauritzen et al. | INFLUENCE OF DIFFERENTIAL MODE ATTENUATION ON BACKSCATTERING ATTENUATION MEASUREMENTS | |
JPS6318309A (en) | Hydrogen sensor contained optical cable | |
JPS59178413A (en) | Maintenance method for optical cable | |
Morisawa et al. | Effect of doping swelling polymer cladding with phthalocyanine dye in plastic optical fiber humidity sensors | |
Skutnik | How coating/polymer properties affect fiber/cable performance |