JPS60195855A - Large capacity ion source - Google Patents
Large capacity ion sourceInfo
- Publication number
- JPS60195855A JPS60195855A JP5097384A JP5097384A JPS60195855A JP S60195855 A JPS60195855 A JP S60195855A JP 5097384 A JP5097384 A JP 5097384A JP 5097384 A JP5097384 A JP 5097384A JP S60195855 A JPS60195855 A JP S60195855A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- plasma
- plasma generation
- ion beam
- ion source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 15
- 238000000605 extraction Methods 0.000 claims abstract description 12
- 238000010891 electric arc Methods 0.000 claims abstract description 5
- 150000002500 ions Chemical class 0.000 claims description 32
- 230000007935 neutral effect Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052786 argon Inorganic materials 0.000 abstract description 7
- 239000007789 gas Substances 0.000 abstract description 7
- 230000001133 acceleration Effects 0.000 abstract description 3
- 230000006698 induction Effects 0.000 abstract 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000004157 plasmatron Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/08—Ion sources; Ion guns using arc discharge
- H01J27/14—Other arc discharge ion sources using an applied magnetic field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/08—Ion sources; Ion guns
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、金属等の固定材料の表面に注入あるいは表面
を加工するイオンを発生するイオン源に係り、特に大電
流のイオンビームを得るための大容量イオン源に関する
。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ion source that generates ions to be implanted into or to process the surface of a fixed material such as a metal, and in particular, relates to an ion source that generates ions for implanting or processing the surface of a fixed material such as a metal, and particularly for obtaining a large current ion beam. Regarding large capacity ion sources.
従来、 20keV 〜100keV程度のエネルギの
各種イオンを固体表面に注入し、固体表面の耐摩耗性を
改善したり、表面に薄膜を作るためのイオン源として、
デュオプラズマトロン等各種のイオン源が開発され、主
に半導体用に実用化されているが、出力であるイオンビ
ーム電流がIOmA以下程度と小さく、金属の固体表面
等に1017〜1010個/dと大量に注入するために
は連続使用で1日を越える等、処理に非常に多くの時間
を必要とする欠点がある。Conventionally, various ions with an energy of about 20 keV to 100 keV are injected into a solid surface, and used as an ion source to improve the wear resistance of the solid surface or to create a thin film on the surface.
Various ion sources such as Duo Plasmatron have been developed and have been put into practical use mainly for semiconductors, but the output ion beam current is small, about IOmA or less, and 1017 to 1010 ions/d are produced on solid metal surfaces. In order to inject a large amount, it has the disadvantage that it requires a very long processing time, such as continuous use for more than one day.
また、最近、核融柵プラズマの加熱実験用に、水素2重
水素イオンビームを対象に第1図のような大容量イオン
源が開発され、使用されている。Recently, a large-capacity ion source as shown in FIG. 1 has been developed and used for a hydrogen-di-deuterium ion beam for heating experiments of fusion fence plasma.
第1図で、ガス導入口1より水素ガスをプラズマ発生容
器2に導入し、タングステンフィラメントでできたカソ
ード3とアーク放電のアノード電極を兼ねているプラズ
マ発生容器2との間に直流電圧を印加することによって
、アーク放電を生じさせ、水素ガスを電離し、プラズマ
を作る。このプラズマより、プラズマm極4.加速電極
5.減速電極6にあけた直径4nn程度の多数のアパチ
ャあるいは、スリットにより、水素イオンビームを引き
出す。水素イオンのプラズマを効率良く閉じ込めるため
に、多数の永久磁石7と、第1図、第2図(、)に示す
ように、N極とS極が交互に変化するように取りつける
。第1図のイオン源のH−II矢視方向の磁界の強さの
分布を第2図(b)に示す。In Figure 1, hydrogen gas is introduced into the plasma generation vessel 2 through the gas inlet 1, and a DC voltage is applied between the cathode 3 made of tungsten filament and the plasma generation vessel 2, which also serves as an anode electrode for arc discharge. This causes arc discharge, ionizes hydrogen gas, and creates plasma. From this plasma, plasma m pole 4. Accelerating electrode5. A hydrogen ion beam is extracted through a large number of apertures or slits with a diameter of about 4 nn formed in the deceleration electrode 6. In order to efficiently confine the hydrogen ion plasma, a large number of permanent magnets 7 are attached so that the north and south poles alternate as shown in FIGS. 1 and 2 (,). FIG. 2(b) shows the distribution of the magnetic field strength in the direction of arrow H-II of the ion source in FIG. 1.
核融合用のイオン源では、第2図(b)に示すように、
内径150Iに対し、一様な水素プラズマのできる範囲
プラズマ密度±10%の範囲とするが、第2図(b)で
、10〜20ガウス以下、すなわち、プラズマ電極4等
のイオンビーム引き出し用のアパチャのある範囲が直径
8(1m以下である。一方、窒素やアルゴン等の質量が
10以上のイオンビームを引き出す用途では、プラズマ
の一様な範囲が水素イオンに比べて面積で3倍程度拡大
する現象があるため、第1図のイオン源の構造で窒素等
のイオンビームを作ると、アークの利用供率、イオンビ
ーム出力等が大巾に低下する。In the ion source for nuclear fusion, as shown in Figure 2(b),
For an inner diameter of 150I, the range where a uniform hydrogen plasma can be produced is a plasma density of ±10%. The area where the aperture is located is 8 meters in diameter (less than 1 meter).On the other hand, in applications that extract ion beams of nitrogen, argon, etc. with a mass of 10 or more, the uniform area of the plasma is approximately three times larger in area than that for hydrogen ions. Because of this phenomenon, if an ion beam of nitrogen or the like is produced using the ion source structure shown in FIG. 1, the arc utilization rate, ion beam output, etc. will be greatly reduced.
本発明の目的は、窒素、アルゴン等の質量が大きいイオ
ンに対し、高効率でイオンビームを引き出すのに好適な
大容量イオン源を提供するにある。An object of the present invention is to provide a large-capacity ion source suitable for extracting an ion beam with high efficiency for ions having a large mass such as nitrogen or argon.
第1図はイオン源は、水素1重水素等の最も軽い質量の
イオンに対して開発されたものである。FIG. 1 shows an ion source developed for the lightest mass ions, such as hydrogen and deuterium.
一般にプラズマ損失は、イオンの質量をM、プラズマ容
器内壁の磁界の強さをBとすると、5/Bに比例すると
いう理論があり、IRtが水素の10倍を越える窒素や
アルゴンに対しては、第1図の構造ではプラズマ損失が
大きすぎ、実用的でないと予測されていた。しかし、第
1図の磁界でプラズマを作って実験したところ、アルゴ
ンのように水素の40倍の質量のイオンでも、水素と等
程度の効率でプラズマを作ることができること、プラズ
マの一様な範囲は水素よりはるかに広い範囲になること
を実験により発見した。従って、水素用のイオン源と同
一構造のイオン源では、重いイオンに対して発生する一
様なプラズマの一部しか利用できず、ビーム出力が著し
く小さくなるので、重いイオンに適したイオン源構造に
する必要があった。In general, there is a theory that plasma loss is proportional to 5/B, where M is the mass of the ions and B is the strength of the magnetic field on the inner wall of the plasma container. It was predicted that the structure shown in FIG. 1 would have too large a plasma loss and would be impractical. However, when we experimented by creating plasma using the magnetic field shown in Figure 1, we found that even ions like argon, which have a mass 40 times that of hydrogen, can create plasma with the same efficiency as hydrogen. It was discovered through experiments that the range of hydrogen is much wider than that of hydrogen. Therefore, an ion source with the same structure as an ion source for hydrogen can only utilize a part of the uniform plasma generated for heavy ions, and the beam output will be significantly small. It was necessary to do so.
以下、本発明の一実施例を第3図、第4図により説明す
る。プラズマ発生容器21の外周に、多数の永久磁石2
2を設け、タングステンフィシメン1−製のカソード2
3と、アノード電極を兼ねるプラズマ発生容器21の間
に直流電圧を印加し、ガス導入口24より導入したアル
ゴンガス25等のガスを、低圧のアーク放電によりW1
離し、できたプラズマより、プラズマ電極26.加速電
極27、減速電極28のビーム引き出し電極系により、
イオンビームをとり出す。プラズマ発生容器21は、内
径150m、外径156+n+a、深さ165圃のステ
ンレス製であり、円筒面外周上に、高さ方向に磁化した
高さ25 ytm r +I] 8 mm +長さ15
0+nm残留磁化8500ガウスの永久磁石を16列、
N極とS極が円筒面外周に交互に接するように配置する
。また、プラズマ発生容器21の底面には、高さ25n
wn、中8陶、長さ120mと40画の永久磁石が各々
二個、はぼ等間隔に、N極とS極を円筒の外側底面に交
互に変るように配置している。An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. A large number of permanent magnets 2 are placed around the outer periphery of the plasma generation container 21.
2, and a cathode 2 made of tungsten ficimene 1.
A DC voltage is applied between W1 and the plasma generating container 21 which also serves as an anode electrode, and gas such as argon gas 25 introduced from the gas inlet 24 is heated to W1 by low-pressure arc discharge.
The plasma electrode 26. With the beam extraction electrode system of the accelerating electrode 27 and decelerating electrode 28,
Take out the ion beam. The plasma generation container 21 is made of stainless steel and has an inner diameter of 150 m, an outer diameter of 156 + n + a, and a depth of 165 m, and is magnetized in the height direction on the outer periphery of the cylindrical surface with a height of 25 ytm r + I] 8 mm + length of 15.
16 rows of permanent magnets with 0+nm residual magnetization of 8500 Gauss,
The N and S poles are arranged so as to alternately touch the outer periphery of the cylindrical surface. Further, the bottom surface of the plasma generation container 21 has a height of 25n.
Two permanent magnets each with a length of 120 m and a length of 40 strokes are arranged at approximately equal intervals, with N and S poles alternating on the outside bottom of the cylinder.
この時のIV−IV線−1〕に磁界の強さの分布をil
l’l定した値を第4図に示す。また、第4図にアルゴ
ンプラズマの密度分布を示す。At this time, the distribution of magnetic field strength is il
The determined values are shown in FIG. Furthermore, FIG. 4 shows the density distribution of argon plasma.
一様なアルゴンプラズマは、直径130m+n、すなわ
ち、第2図のIV −TV矢視線上で、40ガウス以上
の磁界の強さの部分にもあり水素プラズマの3倍程度の
広い面積にわたっていることがわかる。Uniform argon plasma has a diameter of 130m+n, that is, on the IV-TV arrow line in Figure 2, it can be found in areas where the magnetic field strength is 40 Gauss or more, and covers an area about three times that of hydrogen plasma. Recognize.
はだ、アーク電力]kWによりできるイオンの個数も、
水素と同程度以上と高効率であることも実験により確認
した。従って、プラズマ電極26等のビーム引き出し電
極系のビーム引き出しアパチャも、直径130mの範囲
に設け、従来の核融合用のイオン源の3倍のビーム出力
が得られる。逆に、第1図と同しビーム出力を得る際に
は、プラズマ発生容器をコンパクトにでき、プイラメン
ト電力、アーク電力等も、1/3pA度にできる効果が
ある。The number of ions produced by arc power] kW is also
It was also confirmed through experiments that the efficiency is as high as or higher than that of hydrogen. Therefore, the beam extraction aperture of the beam extraction electrode system such as the plasma electrode 26 is also provided in a range of 130 m in diameter, and a beam output three times that of a conventional ion source for nuclear fusion can be obtained. On the other hand, when obtaining the same beam output as in FIG. 1, the plasma generation vessel can be made compact and the filament power, arc power, etc. can be reduced to 1/3 pA degree.
また、第3図に示すイオン源は、永久磁石のN極と多極
を交互に電化させた構造となっており。The ion source shown in FIG. 3 has a structure in which the N pole and multipole of a permanent magnet are alternately electrified.
引き出し電極等へのもれ磁界を非常に小さくできるので
、ビー11の発散角が200〜5ooo v程度の低い
加速電圧でも小さいこと、大口径化が容易であることか
ら、イオンミリング、イオンビームスパッタ、リアクテ
ィブエツチング等広範囲の用途がある。Since the leakage magnetic field to the extraction electrode etc. can be made very small, the divergence angle of the beam 11 is small even at a low acceleration voltage of about 200 to 5 ooo v, and it is easy to increase the diameter, so it is suitable for ion milling and ion beam sputtering. It has a wide range of uses such as , reactive etching, etc.
本発明によれば、プラズマを有効に利用できるので、従
来と同し外形1法、同じアーク電力に刺し、従来の二倍
程度のイオンビーム出力を得ることができる。According to the present invention, since plasma can be used effectively, it is possible to obtain an ion beam output approximately twice that of the conventional method with the same external shape and the same arc power as the conventional method.
第1図は従来のイオン源の断面図、第2図(a)。
(b)は第1図のII −n矢視線分上の磁界の強さの
分布を示す特性図、第3図は本発明の一実施例の断面図
、第4図は第3図のIV −IV矢視線上の磁界分布と
プラズマ密度に示す特性図である。
4.26・・・プラズマ電極、5,27・・・加速電極
。
第1日
も2霞
(CL)
(b)
招3(2)
桔4FIG. 1 is a cross-sectional view of a conventional ion source, and FIG. 2(a) is a cross-sectional view of a conventional ion source. (b) is a characteristic diagram showing the distribution of magnetic field strength along the II-n arrow line in FIG. 1, FIG. 3 is a cross-sectional view of one embodiment of the present invention, and FIG. It is a characteristic diagram showing the magnetic field distribution and plasma density on the -IV arrow line. 4.26...Plasma electrode, 5,27...Acceleration electrode. 1st day also 2 Kasumi (CL) (b) Invitation 3 (2) Ki 4
Claims (1)
せた複ブタの永久磁石を有するプラズマ発生容器でプラ
ズマ発生室を形成し、前記プラズマ発生室内に設けられ
、sis子を利用してアーク放電を起こさせ、前記プラ
ズマ発生室内でイオン化した時のイオンの質量数が10
以上となる中性ガスを電離してイオンを生成するカソー
ドとなるフィラメントと、生成されたイオンとイオンビ
ームとして引き出す複数の引き出し[極とを備えたイオ
ン源において。 前記の容器の壁面に設置した前記永久磁石の磁極に対向
する磁界の強さとして少なくとも40ガウスを越える領
域を含む範囲に、多数のイオンビーム引き出し用のアパ
チへアあるいはスリット付きの引き出しffi極を備え
たことを特徴とする大容量イオン源。[Scope of Claims] 1. A plasma generation chamber is formed by a plasma generation chamber having a multi-pig permanent magnet whose magnetic poles face the rear surface of the container and whose polarities are alternately combined, and a plasma generation chamber is provided within the plasma generation chamber, The mass number of ions when ionized in the plasma generation chamber by causing an arc discharge using sis particles is 10.
In an ion source that includes a filament that serves as a cathode that ionizes the neutral gas to generate ions, and a plurality of extraction poles that extract the generated ions as an ion beam. A large number of ion beam extraction apertures or extraction ffi poles with slits are installed in a range including a region where the strength of the magnetic field facing the magnetic pole of the permanent magnet installed on the wall of the container exceeds at least 40 Gauss. A large-capacity ion source characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5097384A JPS60195855A (en) | 1984-03-19 | 1984-03-19 | Large capacity ion source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5097384A JPS60195855A (en) | 1984-03-19 | 1984-03-19 | Large capacity ion source |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60195855A true JPS60195855A (en) | 1985-10-04 |
Family
ID=12873752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5097384A Pending JPS60195855A (en) | 1984-03-19 | 1984-03-19 | Large capacity ion source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60195855A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62281236A (en) * | 1986-05-29 | 1987-12-07 | Hitachi Ltd | Ion source |
JPS63114036A (en) * | 1986-10-31 | 1988-05-18 | Japan Atom Energy Res Inst | Electron beam generator |
US4767931A (en) * | 1986-12-17 | 1988-08-30 | Hitachi, Ltd. | Ion beam apparatus |
JPS63171954U (en) * | 1987-04-27 | 1988-11-09 | ||
US4941915A (en) * | 1988-02-08 | 1990-07-17 | Nippon Telegraph And Telephone Corporation | Thin film forming apparatus and ion source utilizing plasma sputtering |
-
1984
- 1984-03-19 JP JP5097384A patent/JPS60195855A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62281236A (en) * | 1986-05-29 | 1987-12-07 | Hitachi Ltd | Ion source |
JPS63114036A (en) * | 1986-10-31 | 1988-05-18 | Japan Atom Energy Res Inst | Electron beam generator |
US4767931A (en) * | 1986-12-17 | 1988-08-30 | Hitachi, Ltd. | Ion beam apparatus |
JPS63171954U (en) * | 1987-04-27 | 1988-11-09 | ||
US4941915A (en) * | 1988-02-08 | 1990-07-17 | Nippon Telegraph And Telephone Corporation | Thin film forming apparatus and ion source utilizing plasma sputtering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stirling et al. | 15 cm duoPIGatron ion source | |
CA2345627A1 (en) | Method of reducing axial beam focusing | |
JPH0479460B2 (en) | ||
JPS6037700A (en) | Anionic ion source | |
JPS60195855A (en) | Large capacity ion source | |
JPH0423400B2 (en) | ||
Takeiri et al. | High-energy acceleration of an intense negative ion beam | |
GB1083626A (en) | Improvements in and relating to ion sources | |
Dong-Dong et al. | Design of a new compact THz source based on Smith-Purcell radiation | |
GB2058142A (en) | Sputtering electrodes | |
JPS6250941B2 (en) | ||
Zhang et al. | H− cusp source development for 100 MeV compact cyclotron at China Institute of Atomic Energy | |
RU2071137C1 (en) | Ion source | |
Yu et al. | A versatile pocket PIG ion source with permanent magnet | |
JPS62108429A (en) | Plasma generator | |
Dougar-Jabon et al. | Plasma confinement in an electron cyclotron double cusp trap | |
Leung | Development of high current and high brightness negative hydrogen ion sources | |
JPS60258839A (en) | Ion beam apparatus | |
JPH0864392A (en) | Plasma sealing mirror magnetic field generator | |
Gelbart et al. | Parallel beams co-extraction | |
JPH06212420A (en) | Sputtering or etching method | |
JPS63228549A (en) | Microwave polyvalent ion source | |
Lee et al. | Design of a compact ECR ion source with Ku band | |
Kamperschroer | Neutral Atom and Negative Hydrogen Ion Production with a Hall Accelerator. | |
JPS61227168A (en) | Thin metallic film forming device |