JPS60195509A - Projection optical device - Google Patents

Projection optical device

Info

Publication number
JPS60195509A
JPS60195509A JP5076384A JP5076384A JPS60195509A JP S60195509 A JPS60195509 A JP S60195509A JP 5076384 A JP5076384 A JP 5076384A JP 5076384 A JP5076384 A JP 5076384A JP S60195509 A JPS60195509 A JP S60195509A
Authority
JP
Japan
Prior art keywords
lens
air
pressure
magnification
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5076384A
Other languages
Japanese (ja)
Other versions
JPH0570124B2 (en
Inventor
Akira Anzai
安西 暁
Hiroshi Tanaka
博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP5076384A priority Critical patent/JPS60195509A/en
Priority to DE19843443856 priority patent/DE3443856A1/en
Publication of JPS60195509A publication Critical patent/JPS60195509A/en
Priority to US07/291,324 priority patent/US4883345A/en
Publication of JPH0570124B2 publication Critical patent/JPH0570124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Abstract

PURPOSE:To correct a magnification variation of a projection objective lens, and to maintain a sufficient magnification accuracy for practical use by cutting off a part or the whole of an air chamber formed between lens surfaces in the projection objective lens, from the open air, and controlling this air chamber to a prescribed constant pressure. CONSTITUTION:An internal lens barrel is formed substantially by piling up 14 supporting cylinders, and they are contained and supported as one body by an external lens barrel 20, and fixed by a holding ring 21. Air chambers B-N or 13 pieces are formed by the first supporting cylinder 1 - the fourth supporting cylinder 14 for supporting the first lens L1 through the fourtheenth lens L14, respectively. Through-holes 2a-13a for making the respective adjacent air chambers communicate are formed, and the fourteenth cylinder 14 and the first supporting cylinder support airtightly the lens, respectively. A pipe 22 is inserted into a through-hole 1a formed in the first supporting cylinder 1, and a pressure control device 23 controls a pressure of the unified air chambers B-N through the pipe 22.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は投影光学系の光学特性を簡便に補正し得る投影
光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a projection optical device that can easily correct the optical characteristics of a projection optical system.

(発明の背景) 縮小投影型露光装置(以下ステッパと呼ぶ)は近年超L
SIの生産現場に多く導入され、大きな成果をもたらし
ているが、その重要な性能の一つに車ね合せマツチング
精度があげられる0このマツチング精度に影響を与える
要素の中で重要なものに投影光学系の倍率誤差がある。
(Background of the invention) In recent years, reduction projection exposure devices (hereinafter referred to as steppers) have
It has been introduced in many SI production sites and has brought great results, but one of its important performances is the accuracy of car matching. There is a magnification error in the optical system.

超L8Iに用いられるパターンの大きさは年々微細化の
傾向を強め、それに伴ってマツチング精度の向上に対す
るニーズも強くなってきている。従って投影倍率を所定
の1直に保つ必要性はきわめて高くなってきている。現
在投影光学系の@率は装置の設置時に調整することによ
り倍率誤差が一応無視できる程度になっている0しかし
ながら、超L 81の高密度化に十分対応するためには
、装置の稼動時におけるクリーンルーム内の僅かな気圧
変動等、環境条件が変化した時の倍率誤差をも補正する
必要がある0 従来ステッパ以外の投影光学系では投影倍率を補正する
ために物体(レチクル)と投影レンズの間隔を機緘的に
変化させたり、投影レンズ甲のレンズエレメントを光軸
方向に動か1.た抄する方法がとられていた。しかしス
テッパのように極めて高精度な倍率設定が必要な装置に
上記のように光学部材を光軸方向に変化させるという方
法を採用すると機械的なり動部の偏心(ンノト、ティル
ト)のため光軸を正しく保った捷\変位を与えることが
難しい。そのため物体を含めた光学系が共軸でなくなっ
てしまい、光軸に対して非対称な倍率分布が像面上に生
じてしまう欠点が生ずる。又ウェハ上で0.05μm以
下の誤差しか発生しない様に精度良く倍率設定するため
には光学部材の変化量を偏心(/7ト、テ(ルト)を含
めて数μmないし1μm以下に制御する必要がありこれ
らの実現には多大の困難がともなう。
The size of patterns used in ultra-L8I is becoming increasingly finer year by year, and along with this, the need for improved matching accuracy is also becoming stronger. Therefore, it is becoming increasingly necessary to maintain the projection magnification at a predetermined value of 1. Currently, the @ ratio of the projection optical system is adjusted at the time of equipment installation, so that the magnification error can be ignored. It is also necessary to correct magnification errors caused by changes in environmental conditions, such as slight pressure fluctuations in a clean room.In conventional projection optical systems other than steppers, the distance between the object (reticle) and the projection lens is adjusted to correct the projection magnification. 1) by moving the lens element of the projection lens in the direction of the optical axis. The method used was to make paper. However, if the above method of changing the optical member in the direction of the optical axis is adopted for a device such as a stepper that requires extremely high-precision magnification setting, the optical axis will be distorted due to mechanical eccentricity (tilt) of the moving part. It is difficult to give the correct displacement. As a result, the optical system including the object is no longer coaxial, resulting in a disadvantage that a magnification distribution asymmetrical with respect to the optical axis occurs on the image plane. In addition, in order to accurately set the magnification so that an error of 0.05 μm or less occurs on the wafer, the amount of change in the optical member must be controlled to be within a few μm or 1 μm, including eccentricity (/7 and tilt). This is necessary, and the realization of these things will be accompanied by great difficulties.

(発明の目的) 本発明は、これらの欠点を除き、非対称な倍率分布を発
生することなく簡便に倍率、結像面位置等の光学特性の
変動を補正し得る投影光学装置を提供することを目的と
する。
(Object of the Invention) An object of the present invention is to eliminate these drawbacks and provide a projection optical device that can easily correct variations in optical characteristics such as magnification and image plane position without causing an asymmetric magnification distribution. purpose.

(発明の概要) 本発明にあたって投影対物レンズの投影倍率の変動賛因
の一つが大気圧変動にあることを見い出(7、圧力変動
のみによっても投影倍率が無視し得ない程度に変化する
場合があることが判明した。
(Summary of the invention) In the present invention, it was discovered that one of the causes of variations in the projection magnification of the projection objective lens is atmospheric pressure fluctuations (7. Pressure fluctuations alone can change the projection magnification to a non-ignorable degree. It turns out that there are cases.

そこで、不発明け、投影対物レンズ内の各空気間隔及び
投影対物レンズと投影原板(レチクル)との間の空間並
びに投影対物レンズと感光物体(ウニ・・)との間の空
間のうち、投影対物レンズ内のレンズ面間に形成場れる
空気室の一部または全部を外気から遮断(密封)し、こ
の空気室を所定の一定圧力に制御することによって投影
対物レンズの倍率変動を補正実用上十分な倍率精度の維
持を可能としたものである。
Therefore, among the air spaces within the projection objective, the space between the projection objective and the projection original plate (reticle), and the space between the projection objective and the photosensitive object (urchin...), the projection objective By shielding (sealing) part or all of the air chamber formed between the lens surfaces in the lens from the outside air and controlling this air chamber to a predetermined constant pressure, it is possible to correct magnification fluctuations of the projection objective lens, which is sufficient for practical use. This makes it possible to maintain high magnification accuracy.

このような本発明によれば、露光−A置において交換可
能に取付けられる投影原板(レチクル)や、露光及びア
ライメントごとに頻繁に移動する感光物体(ウェハ)に
ついては何ら関与することなく投影対物レンズにおいて
のみ倍率補正がなされるため極めて簡単な構成である。
According to the present invention, the projection objective lens does not need to be involved in any way with the projection original plate (reticle) which is replaceably mounted at the exposure-A position, or the photosensitive object (wafer) which frequently moves during each exposure and alignment. This is an extremely simple configuration because magnification correction is performed only in this case.

また補正のために投影対物レンズを動かすといった機械
的な動きを必要とせず、いわば静的補正であるため、偏
心を生ずる恐れが無く結1域性能を非対称に劣化させる
こともない。
Further, since the correction does not require mechanical movement such as moving the projection objective lens, and is a so-called static correction, there is no possibility of eccentricity occurring, and there is no asymmetrical deterioration of the first-band performance.

まだ、本発明では、投影対物レンズの製造場所とこれを
組込んだ投影露光装置の使用場所とは異なるため、標高
差等により基本的に大気圧に差があり、対物レンズ内部
の圧力を使用場所の環境に応じて最適とする。投影対物
レンズの密封空気室の圧力を使用場所便の環境に応じて
変えるためには、圧力制御手段によって最適圧力となる
ように制御する。特に、投影対物レンズの密封空気室の
圧力を使用場所の環境に順応するよう最適圧力に保つこ
とは、密封空気室の内部と外部との圧力差を小きくでき
るため以下の点で優れている。(1)投影対物レンズの
密封空気室を構成するレンズ要素のうち最も外側のレン
ズ表面が大気圧とレンズ内部の圧力との圧力差によって
変形したり変位を生ずる恐れが少なく、(2)また密封
空気室中の気体のリークがあっても圧力制御手段によっ
て最適圧力に制御されるため倍率等の光学性能に変動を
生ずることが少ない。
However, in the present invention, since the manufacturing location of the projection objective lens and the usage location of the projection exposure apparatus incorporating it are different, there is basically a difference in atmospheric pressure due to differences in altitude, etc., and the pressure inside the objective lens is used. Optimal depending on the location environment. In order to change the pressure in the sealed air chamber of the projection objective lens depending on the environment at the place of use, the pressure is controlled to an optimum pressure by a pressure control means. In particular, maintaining the pressure in the sealed air chamber of the projection objective lens at an optimal pressure that adapts to the environment of the place of use is advantageous in the following points because the pressure difference between the inside and outside of the sealed air chamber can be reduced. . (1) There is little risk that the outermost lens surface of the lens elements constituting the sealed air chamber of the projection objective will be deformed or displaced due to the pressure difference between atmospheric pressure and the pressure inside the lens; Even if there is a leak of gas in the air chamber, the pressure is controlled to the optimum pressure by the pressure control means, so there is little chance of fluctuations in optical performance such as magnification.

(実施例) 以下、実施例に基づいて本発明を説明する。第1図はス
テッパーに用いられる投影対物レンズの一例を示すレン
ズ配置図であり、この対物レンズによりレチクル(R)
上の所定のパターンがウェハ(W)上に縮小投影される
。図中にはウェハとレチクルとの軸上物点の共役関係を
表わす光線を示した。この対物レンズはレチクル(R)
側がら順にL+、Ls 、・・・Le+の合計14個の
レンズからなり、各レンズの間隔及びレチクル(R) 
、ウェハ(W)との間に、レチクル側から順にaX b
、c、・・・・・、0の合計15個の空気間隔が形成さ
れている。この対物レンズの諸元を表IK示す。但し、
rは谷レンズ面の曲率半径、Dは各レンズの中心厚及び
空気間隔、Nは谷レンズの五線(λ= 365.Or+
m)に対する屈折率を表わし、表中左端の数字はレチク
ル側から順序を表わすものとする。また、D。
(Examples) The present invention will be described below based on Examples. FIG. 1 is a lens arrangement diagram showing an example of a projection objective lens used in a stepper.
The above predetermined pattern is reduced and projected onto the wafer (W). In the figure, light rays representing the conjugate relationship between on-axis object points between the wafer and the reticle are shown. This objective lens is a reticle (R)
Consists of a total of 14 lenses, L+, Ls, ...Le+ in order from the side, and the distance between each lens and reticle (R)
, aX b in order from the reticle side between the wafer (W) and the wafer (W).
, c, ..., 0, a total of 15 air intervals are formed. The specifications of this objective lens are shown in Table IK. however,
r is the radius of curvature of the valley lens surface, D is the center thickness and air spacing of each lens, and N is the staff of the valley lens (λ = 365.Or+
m), and the leftmost number in the table represents the order from the reticle side. Also, D.

はレチクル(R)と最前レンズ面との間隔、訴は最終レ
ンズ面とウェハ(W)との間隔を表わす。
represents the distance between the reticle (R) and the foremost lens surface, and represents the distance between the final lens surface and the wafer (W).

いま、この対物レンズにおいて、空気間隔a、bl・・
・0の気圧をそれぞれ+137.5 rrrnHgだけ
変化させたとすると、各空気間隔の相対屈折率は1.0
0005に変化し、この時の倍率変化、及び結像面すな
わちレチクル(R)との共役面の変化は表2に示すよう
になる。但し、倍率変化ΔXは、結像面上において気圧
変動がない時に光軸より5、66 mm離れた位置に結
像する像点が、各空気間隔の気圧変化後の移動量をμm
単位で表わし、気圧変動が無い場合の結像面すなわち所
定のウェハ面上により大きく投影される場合(拡大)を
正符号として示した。また、結像面の変化ΔZは軸上の
結像点の変化として示し、対物レンズから遠ざかる場合
を正符号上して示した。両省の値は共にμm単位である
Now, in this objective lens, the air intervals a, bl...
・If the atmospheric pressure at 0 is changed by +137.5 rrrnHg, the relative refractive index of each air gap is 1.0
Table 2 shows the change in magnification and the change in the imaging plane, that is, the conjugate plane with the reticle (R). However, the magnification change ΔX is the amount by which the image point, which is imaged at a position 5 or 66 mm away from the optical axis when there is no change in air pressure on the imaging plane, moves after the air pressure changes in each air interval in μm.
It is expressed in units, and a positive sign indicates a case where the image is projected larger (enlargement) on the image forming plane when there is no atmospheric pressure fluctuation, that is, on a predetermined wafer surface. Further, the change ΔZ in the imaging plane is shown as a change in the imaging point on the axis, and the case where it moves away from the objective lens is indicated with a positive sign. Both values are in μm.

表 1 表2 第1実施例: 上記の表2より第1空間a即ち、レチクルと投影対物レ
ンズとの空間、及び第15空間0即ちウェハと投影対物
レンズとの空間における倍4f動は共に正の値であり、
その合計は0.043でらる○従って、投影対物レンズ
内に形成される全ての空間、即ち第2空間b〜第14空
間nを大気圧から遮断し、一体的に密閉することによっ
て、これら投影対物レンズ内の空間に帰因する倍率変化
は発生せず、第1空間aと第15空間0とによる倍率変
動のみとなり、全糸によって生じ得る倍率変動の約4%
に抑えることが可能となるO 父、投影対物レンズ内に形成される全ての空間を大気圧
から遮断することによって、結像面の変化も1.02μ
mになり全系によって生じ祷る変化の約7%に抑えられ
る0 第2図は表1に示した投影対物レンズの鏡筒構造及び圧
力制御手段を示す図であるO対物レンズを構成する14
個のレンズL1、L2、・・・・・・、L12はそれぞ
れ第1支持筒(1)、第2支持筒(2)、・・・・・・
、第14支持筒(14)によって支持されている。
Table 1 Table 2 First Example: From Table 2 above, the double 4f motion in the first space a, that is, the space between the reticle and the projection objective lens, and the fifteenth space 0, that is, the space between the wafer and the projection objective lens, are both positive. is the value of
The total is 0.043. Therefore, by cutting off all the spaces formed within the projection objective lens, that is, the second space b to the fourteenth space n, from atmospheric pressure and integrally sealing them, There is no change in magnification due to the space within the projection objective lens, and only the change in magnification is due to the first space a and the fifteenth space 0, which is about 4% of the change in magnification that can occur due to all the threads.
By shielding the entire space formed within the projection objective lens from atmospheric pressure, the change in the image plane can also be reduced to 1.02μ.
Figure 2 is a diagram showing the lens barrel structure and pressure control means of the projection objective shown in Table 1.
The lenses L1, L2, ..., L12 are the first support tube (1), the second support tube (2), ..., respectively.
, supported by a fourteenth support tube (14).

これら14個の支持筒が槓み重ねられることKよりて実
質的に内部鏡部が形成され、これらは外部鏡筒(20)
にょワて一体的に収納支持され、押え31k(21)に
よって固定されている。第ルンズL+ から第14レン
ズL+tをそれぞれ支持する第1支持筒(1)〜第14
支持筒(14)Kよって13個の空気室B−Nが形成さ
れており、これらの空気室B−Nはそれぞれ第1図に示
した空気間隔b〜nに対応している。こ\で第2レンズ
L2を支持する第2支持尚(2)から第13レンズを支
持する第13支持筒(13)までKはそれぞれ隣接する
空気室を連通ずるための貫通孔(2a)〜(Zaa)が
形成されている。また、対物レンズの先端に位置する第
14レンズL++ f支持する第14支持筒(14)は
、第14レンズL+4を介して第13空気室Nを外気か
ら遮断するように第14レンズL+tを気密支持し、ま
た外部鏡筒(2o)によって気密支持されている。そし
て、第ルンズL+を支持する第1支持筒は第2レンズL
2を気密支持する。この気密支持のためにはQ−+)ン
グ婢のパツキンが使用される。第1支持筒1に形成され
た貫通孔(la)には管(22)が挿入されている。第
1支持筒(1)と!(22)との間にも気密のためにパ
ツキンが配設されている。
By stacking these 14 support tubes, an inner mirror section is essentially formed, and these are connected to the outer barrel (20).
It is integrally housed and supported, and is fixed by a presser foot 31k (21). The first support tube (1) to the fourteenth lens that supports the lens L+ to the fourteenth lens L+t, respectively.
Thirteen air chambers BN are formed by the support tube (14) K, and these air chambers BN correspond to the air intervals bn shown in FIG. 1, respectively. From the second support tube (2) that supports the second lens L2 to the thirteenth support tube (13) that supports the thirteenth lens, K denotes through holes (2a) to communicate the adjacent air chambers, respectively. (Zaa) is formed. In addition, the fourteenth support tube (14) that supports the fourteenth lens L++f located at the tip of the objective lens airtightly seals the fourteenth lens L+t so as to isolate the thirteenth air chamber N from the outside air via the fourteenth lens L+4. It is also supported in an airtight manner by an external lens barrel (2o). The first support tube supporting the second lens L+ is the second lens L+.
2 is airtightly supported. For this air-tight support, a Q-+) seal is used. A tube (22) is inserted into the through hole (la) formed in the first support cylinder 1. With the first support tube (1)! (22) is also provided with a gasket for airtightness.

圧力制御装置(23)は管(22)を介して一体的空気
室B−Nの圧力を制御する。圧力制御装置(23)は、
空気室B−Hの圧力を上昇させる場合には加圧空気供給
装置(24)からの加圧空気金管(22)を介して空気
室B−Nに送り込み、これを下降させる場合には空気室
B〜N内の空気を排気装置(26)を介して排出する。
A pressure control device (23) controls the pressure in the integral air chamber BN via the pipe (22). The pressure control device (23) is
When increasing the pressure in the air chamber B-H, pressurized air is sent from the pressurized air supply device (24) to the air chamber B-N via the pressurized air tube (22), and when decreasing it, the air chamber B-H is fed into the air chamber B-N. The air in B to N is exhausted through the exhaust device (26).

圧力制御装置t(23)と加圧空気供給装置(24)と
の間には、空気室B−Nに送り込む空気を清浄にするだ
めのフィルタ(25)が配置されている。圧力セン丈−
(27)け9気室内の圧力を検出するためのもので、例
えば空気室Hの圧力を検出する。
A filter (25) is arranged between the pressure control device t (23) and the pressurized air supply device (24) to purify the air sent into the air chamber BN. Pressure center length
(27) 9 This is for detecting the pressure in the air chamber, for example, the pressure in the air chamber H.

圧力設定回路(28)は投影露光装置の使用場所の標高
等に応じた大気圧を設定する。比較回路(29)は圧力
センサー(27)の出力信号と圧力設定回路(28)の
出力信号とを比較し、両川力信号の差又は大小関係を示
す信号を発生する。
The pressure setting circuit (28) sets the atmospheric pressure according to the altitude of the place where the projection exposure apparatus is used. A comparison circuit (29) compares the output signal of the pressure sensor (27) and the output signal of the pressure setting circuit (28), and generates a signal indicating the difference or magnitude relationship between the two river force signals.

圧力制御装置(23)は比較回路(29)の出力信号を
入力として、圧力センサー(27)と圧力設定回路(2
8)の出力が所定関係となる(一致する)ように空気室
B−Nの圧力を制御する。
The pressure control device (23) inputs the output signal of the comparison circuit (29) and controls the pressure sensor (27) and the pressure setting circuit (2).
8) The pressure in the air chambers BN is controlled so that the outputs have a predetermined relationship (match).

このように、空気室B−Nの圧力Vi露光装置使用場所
の標高等に応じた大気圧に常時維持されるから投影対物
レンズの倍率を精密に維持することが可能になる。
In this way, the pressure Vi in the air chamber B-N is always maintained at an atmospheric pressure depending on the altitude, etc. of the location where the exposure apparatus is used, making it possible to precisely maintain the magnification of the projection objective lens.

第2実施例: 上記表2に示された倍率変化量ΔXについて各空間の値
をグラフに示したのが第3図である。第3図のグラフの
縦軸は倍率変化量ΔX、横軸は圧力変化量ΔPであり、
図中の各直線に示した記号は谷9間に対応する。また全
系における倍率変化量ΔTxを太い実線にて示した。
Second Example: FIG. 3 is a graph showing the values of each space regarding the amount of change in magnification ΔX shown in Table 2 above. The vertical axis of the graph in Figure 3 is the magnification change amount ΔX, and the horizontal axis is the pressure change amount ΔP.
The symbols shown on each straight line in the figure correspond to the valleys 9. Further, the amount of change in magnification ΔTx in the entire system is shown by a thick solid line.

上記の表2及び第3図のグラフから、全系による倍率変
動量S=1.004に対して、第3空気間隔C単独によ
って生ずる倍率変動量が最も近い値であることが判る0
遵りて、この第3空気間隔Cのみを密封することによう
て全糸の倍率変動をは1f補正することができる。すな
わち第3空気間隔Cによる倍率変動量1.164はこの
空間を大気から遮断し密封することにより零とできるか
ら全系による倍率変動との差のみが実質的な倍率変動量
となる。従ってこの場合、実質的な倍率変動量は一〇、
16であり16係に減少することが明らかである。この
補正後における全系の倍率変化ΔTx’の様子を第3図
中点線で示した。
From the above Table 2 and the graph in Figure 3, it can be seen that the magnification fluctuation amount caused by the third air gap C alone is the closest value to the magnification fluctuation amount S = 1.004 due to the entire system.
Accordingly, by sealing only this third air gap C, the magnification variation of all yarns can be corrected by 1f. In other words, the amount of magnification variation of 1.164 due to the third air gap C can be reduced to zero by sealing off and sealing this space from the atmosphere, so that only the difference from the magnification variation due to the entire system becomes the actual amount of magnification variation. Therefore, in this case, the actual amount of change in magnification is 10,
16, and it is clear that the number decreases to 16. The magnification change ΔTx' of the entire system after this correction is shown by the dotted line in FIG.

さて、1つの空気間隔のみではなく、複数の空気間隔を
組合せて大気から遮断するよう密閉することによっても
大気圧変動による倍率変化を補正することが可能である
。例えば、上記の対物レンズにおいて、第7空気間隔g
から第12空気間隔lまでの連続する6つのレンズ間1
4を大気から遮断し一体的に密閉するならば、これら6
つの空気間隔で生ずる倍率変動の和0.935が零とで
きるので、全系で生ずる倍率変動1.004との差0.
069のみの小さい値の変動に補正することができる。
Now, it is possible to correct the magnification change due to atmospheric pressure fluctuations not only by one air interval but also by sealing a plurality of air intervals in combination to isolate them from the atmosphere. For example, in the objective lens described above, the seventh air interval g
1 between six consecutive lenses from to the 12th air spacing l
If 4 is isolated from the atmosphere and sealed integrally, these 6
Since the sum of 0.935 of the magnification fluctuations occurring in the two air intervals can be reduced to zero, the difference from the magnification fluctuation of 1.004 occurring in the entire system is 0.935.
It is possible to correct for a small value variation of only 0.069.

すなわち、全系における倍率変動は6.9チにまで補正
されることになる。また、これら6つの空気間隔に加え
て第13空気間隔m1にも大気から遮断し密閉する構成
とすれば、全系における倍率変動量は−0,067とな
りより良好に補正することが可能となる。さらに、第1
4空気間隔nをも大気から遮断して密閉し合計8つの密
閉空間を形成することとすれば、これら8つの空間によ
る倍率変動の補正量は1.063となり、全系の倍率変
動itを−0,059までに小さく補正することが可能
である。
That is, the magnification variation in the entire system is corrected to 6.9 inches. In addition, if the 13th air interval m1 is also sealed off from the atmosphere in addition to these six air intervals, the amount of magnification variation in the entire system becomes -0,067, which allows for better correction. . Furthermore, the first
If 4 air intervals n are also sealed and sealed from the atmosphere to form a total of 8 sealed spaces, the correction amount for the magnification fluctuation due to these 8 spaces will be 1.063, and the magnification fluctuation it of the entire system will be - It is possible to make the correction as small as 0,059.

この実施例のうち、第3空気間隔Cのみを大気から遮断
し密閉する構成が最も簡単であるが、この第3空気間隔
cl密閉することによって、結像面の全系による変動が
より大きくなる。これに対し、第7空気間陽gから第1
4空気間隔nまでの連続する8個の空気間隔を密閉する
場合には、全系の結+*面変動はこれら8個の空気間隔
による結像面変動の合引量3.91だけ同時に補正され
るため、いくぶん有利となる。
Of these embodiments, the configuration in which only the third air interval C is sealed and sealed from the atmosphere is the simplest, but by sealing the third air interval CL, fluctuations due to the entire system of the image forming surface become larger. . On the other hand, from the seventh air interval positive g to the first
When 8 consecutive air spaces up to 4 air spaces n are sealed, the fluctuation of the focal plane of the entire system is simultaneously corrected by the sum of 3.91 of the fluctuations of the imaging plane due to these 8 air spaces. Therefore, it is somewhat advantageous.

このように、空気間隔の一部を密閉する場合にも第2図
の鏡筒構造をそのま\使える。即ち、密閉する空気間隔
の両側のレンズを支持する支持筒と外部鏡筒(20)と
の間にO−IJング等f!r:挾み込めばよい。また第
2図の圧力制御手段もそのまま使える。即ち密閉された
空気間隔と圧力制御装置(23)とを接続するとともに
、圧力センサー(27)を密閉された空気間隔に配置す
る。こうすることにより、投影対物レンズの一部の空気
間隔(空気室)の圧力を最適圧力に保つことが可能とな
る。
In this way, even when part of the air gap is sealed, the lens barrel structure shown in FIG. 2 can be used as is. That is, there is an O-IJ ring, etc. between the support tube that supports the lens on both sides of the air gap to be sealed and the external lens barrel (20). r: Just put it in. Further, the pressure control means shown in FIG. 2 can be used as is. That is, the closed air space is connected to the pressure control device (23), and the pressure sensor (27) is placed in the closed air space. This makes it possible to maintain the pressure in a part of the air space (air chamber) of the projection objective at an optimum pressure.

以上のようにして、ステッパーを使用する場所の環境に
最も適した空気室圧力を維持することができ、大気圧の
変動によっても倍率変動が少なく結像面の変動も少ない
状態で投影露光を行なうことが可能となる。伺、投影対
物レンズ内の空気室に窒素ガスや炭酸ガス等の特定の気
体を充満させて、その圧力を所定1直に維持することに
よっても同様に倍率変動全補正し得ることはいうまでも
ない。尚、空気室の圧力は標高に応じて決めてもよいし
、その土地の平均大気圧(年間、月間等の)であっても
よい。また、第2実施例において空気室の密閉のみでは
若干の倍率変動が残る場合があるが、これをも除去した
い場合には、他の空気室ヲ智閉して該他の空気室の圧力
を積極的に変化させるよう制御(該他の空気室の屈折率
を変える)してもよい。また、ウェハ露光時に投影対物
レンズを通過する露光々の一部吸収によって該投影対物
レンズの光学特性が変化する場合にも、この他の空気室
の圧力を制御すれば光学特性の変化を補正できる。
As described above, it is possible to maintain the air chamber pressure that is most suitable for the environment where the stepper is used, and projection exposure can be performed with less variation in magnification and less variation in the imaging plane even when atmospheric pressure changes. becomes possible. It goes without saying that it is also possible to completely correct magnification fluctuations in the same way by filling the air chamber in the projection objective lens with a specific gas such as nitrogen gas or carbon dioxide gas and maintaining the pressure at a predetermined level. do not have. Note that the pressure in the air chamber may be determined depending on the altitude, or may be the average atmospheric pressure of the area (annual, monthly, etc.). In addition, in the second embodiment, a slight variation in magnification may remain if only the air chamber is sealed, but if you want to eliminate this as well, close the other air chambers to reduce the pressure in the other air chambers. It may be controlled to change actively (change the refractive index of the other air chamber). Furthermore, even if the optical characteristics of the projection objective lens change due to partial absorption of the exposed light that passes through the projection objective lens during wafer exposure, the change in optical characteristics can be corrected by controlling the pressure in the other air chambers. .

(発明の効果) 以上のごとく、本発明によれば投影対物レンズを光軸方
向に動かすといった機械的な動作を必要とすることなく
静的に倍率変動の補正が可能であり、光学性能を非対称
に劣化濱せることもなく常に安定した高精度の重ね合せ
マツチングがなされ、超LSI等の高密度半導体素子の
製造に大きく寄与するものである。また、空気室が外部
と少しではあるが通じていて長時間経過すると空気室の
圧力が無視し得ない程度に変1ヒするような場合にも、
圧力制御手段の動作によって常に最適圧力に維持するこ
とができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to statically correct magnification fluctuations without requiring mechanical operations such as moving the projection objective lens in the optical axis direction, and it is possible to asymmetric optical performance. This method consistently performs stable and highly accurate overlay matching without any deterioration, and greatly contributes to the production of high-density semiconductor devices such as VLSIs. Also, if the air chamber has a small communication with the outside and the pressure in the air chamber changes to a degree that cannot be ignored after a long period of time,
The optimum pressure can be maintained at all times by operating the pressure control means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は投影対物レンズのレンズ構成図、第2図は本発
明の第1実施倒における投影対物ルンズ鏡筒の構造と圧
力制御手段の説明図、第3図は本発明の第2実施例を説
明するだめのグラフである。 (主要部分の符号の説明) R・・・・・・投影原板(レナクル) W・・・・・・感光物体(ウェハ) L+、l、t〜Lu・・・・・・レンズa)b−o・・
・・・・空気間隔 13、 C−N・・・・空気室 23・・・・・・圧力制御装置 27・・・・・・圧力センサー 28・・・・・圧力設定回路 29・・・・・比較回路 出願人 日本光学工業株式会社 代理人 渡辺隆男
FIG. 1 is a lens configuration diagram of the projection objective lens, FIG. 2 is an explanatory diagram of the structure and pressure control means of the projection objective lens barrel in the first embodiment of the present invention, and FIG. 3 is a second embodiment of the present invention. This is a useless graph to explain. (Explanation of symbols of main parts) R...Projection original plate (lenacle) W...Photosensitive object (wafer) L+, l, t~Lu...lens a) b- o...
...Air interval 13, C-N...Air chamber 23...Pressure control device 27...Pressure sensor 28...Pressure setting circuit 29...・Comparison circuit applicant Takao Watanabe, agent of Nippon Kogaku Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 投影原板上のパターンを感光物体面上に投影露光するた
めの対物レンズを有する投影光学装置において、該投影
対物レンズ内の各レンズ面の間に形成される複数の空気
間隔の全部又は一部を外気から連断する手段と、該空気
間隔の圧力を所定の圧力に維持する圧力制御手段を設け
たことを特徴とする投影光学装置。
In a projection optical device having an objective lens for projecting and exposing a pattern on a projection original plate onto a photosensitive object surface, all or part of a plurality of air gaps formed between each lens surface in the projection objective lens are 1. A projection optical device comprising: means for connecting the air to outside air; and pressure control means for maintaining the pressure in the air gap at a predetermined pressure.
JP5076384A 1983-12-02 1984-03-16 Projection optical device Granted JPS60195509A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5076384A JPS60195509A (en) 1984-03-16 1984-03-16 Projection optical device
DE19843443856 DE3443856A1 (en) 1983-12-02 1984-11-30 OPTICAL PROJECTION DEVICE
US07/291,324 US4883345A (en) 1983-12-02 1988-12-28 Projection optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5076384A JPS60195509A (en) 1984-03-16 1984-03-16 Projection optical device

Publications (2)

Publication Number Publication Date
JPS60195509A true JPS60195509A (en) 1985-10-04
JPH0570124B2 JPH0570124B2 (en) 1993-10-04

Family

ID=12867868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5076384A Granted JPS60195509A (en) 1983-12-02 1984-03-16 Projection optical device

Country Status (1)

Country Link
JP (1) JPS60195509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229838A (en) * 1985-12-26 1987-10-08 Nikon Corp Optical projection apparatus
US5260832A (en) * 1990-10-22 1993-11-09 Olympus Optical Co., Ltd. Projection lens system
TWI402599B (en) * 2008-06-20 2013-07-21 Hon Hai Prec Ind Co Ltd Lens module and camera module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699308A (en) * 1979-12-29 1981-08-10 Zeiss Jena Veb Carl High performance objective lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699308A (en) * 1979-12-29 1981-08-10 Zeiss Jena Veb Carl High performance objective lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229838A (en) * 1985-12-26 1987-10-08 Nikon Corp Optical projection apparatus
US5260832A (en) * 1990-10-22 1993-11-09 Olympus Optical Co., Ltd. Projection lens system
US5448408A (en) * 1990-10-22 1995-09-05 Olympus Optical Co., Ltd. Projection lens system
TWI402599B (en) * 2008-06-20 2013-07-21 Hon Hai Prec Ind Co Ltd Lens module and camera module

Also Published As

Publication number Publication date
JPH0570124B2 (en) 1993-10-04

Similar Documents

Publication Publication Date Title
US7301605B2 (en) Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices
US5973863A (en) Exposure projection apparatus
US4871237A (en) Method and apparatus for adjusting imaging performance of projection optical apparatus
US7864293B2 (en) Exposure apparatus, exposure method, and producing method of microdevice
US4699505A (en) Exposure method and exposure apparatus
US6362926B1 (en) Projection exposure apparatus and method
US20020171815A1 (en) Method for manufacturing exposure apparatus and method for manufacturing micro device
US20050024617A1 (en) Projection optical system and exposure apparatus having the projection optical system
KR20020076159A (en) Projection optical system, projection exposure apparatus having the projection optical system, and projection exposure method
US20090097106A1 (en) Reflective-Type Projection Optical System and Exposure Apparatus Equipped with the Reflective-Type Projection Optical System
JPH0578930B2 (en)
KR20070083543A (en) Projection optical system, exposure equipment and exposure method
JPH0697301B2 (en) Projection exposure device
JPH059934B2 (en)
JPH10142555A (en) Projection exposure device
US4883345A (en) Projection optical apparatus
US20090161087A1 (en) Projection optical system, aligner, and method for fabricating device
JPS60195509A (en) Projection optical device
JPS6179228A (en) Projective optical device
KR101096478B1 (en) Exposure device
JPS60120342A (en) Optical projecting device
JP2005079470A (en) Adjustment method of illumination optical system, method and device for exposure, device manufacturing method
JPH07321005A (en) Projection aligner
JPH09298151A (en) Projection aligner
JP2007027439A (en) Projection optical system, exposure system, and manufacturing method of device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term