JPS60195350A - Fuel supply control device in internal-combustion engine - Google Patents

Fuel supply control device in internal-combustion engine

Info

Publication number
JPS60195350A
JPS60195350A JP59050181A JP5018184A JPS60195350A JP S60195350 A JPS60195350 A JP S60195350A JP 59050181 A JP59050181 A JP 59050181A JP 5018184 A JP5018184 A JP 5018184A JP S60195350 A JPS60195350 A JP S60195350A
Authority
JP
Japan
Prior art keywords
fuel injection
engine
fuel
auxiliary
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59050181A
Other languages
Japanese (ja)
Inventor
Toshinari Nagai
俊成 永井
Shoji Watanabe
昭二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59050181A priority Critical patent/JPS60195350A/en
Publication of JPS60195350A publication Critical patent/JPS60195350A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To sufficiently exhibit the cooling effect of intake-air to practically improve the distribution of air-fuel ratio among engine cylinders, accordingly, so that the output performance of an engine is enhanced, by making the ratio of fuel injection of main and auxiliary injection valves variable in accordance with the rotational speed of the engine. CONSTITUTION:An optimum fuel injection rate alpha of an auxiliary injection valve is beforehand obtained from a two-dimensional map which is based upon the relationship between the load of an engine, such as, for example, the amount of intake-air, and the rotational speed Ne of the engine, as shown in the drawing, in accordance with the relationship among the injection rate alpha of the auxiliary injection valve (=injection amount of auxiliary injection valve/(fuel injection amount of auxiliary injection valve + fuel injection amount of main fuel injection valve), output torque Ti, variations in output torque Ti, emission HC, CO, NOX and the distribution of air-fuel ratio DELTAA/F, and the cooling effect of intake-air may be satisfactorily exhibited. Accordingly, the amount (q) of fuel injection is computed in accordance with predetermined operating condition parameters of the engine, and therefore, a fuel injection amount of q(1-alpha), where is obtained as mentioned above, of fuel is injected from a main fuel injection amount, and as well a fuel injection amount qalpha of fuel is injected from the auxiliary fuel injection valve.

Description

【発明の詳細な説明】 技術分野 本発明は吸入空気を冷却するために副燃料噴射弁を付加
した内燃機関の燃料供給制御装置寵に関する。
Description: TECHNICAL FIELD The present invention relates to a fuel supply control device for an internal combustion engine which is provided with an auxiliary fuel injection valve for cooling intake air.

従来技術 各気筒毎に設けられた主燃料噴射弁(単に、主噴射弁と
する)の外に、吸気管の上流たとえばサージタンクある
いはスロットル?グイ近傍に副燃料噴射弁(単に、副噴
射弁とする)を設けた内燃機関は既に知られている。こ
の副噴射弁の燃料噴射によシ吸入空気を冷却して充填効
率を向上させ、従って、出力性能を向上させることがで
きる。つまシ、第1図に示すようKz’!に大空気の温
度THAが低くなると、吸入空気量J1cmは大きくな
シ、従って、出力トルクT1も向上する。ちなみに、吸
気温THAを50℃から20℃まで低下させると、吸入
空気量Gaも出力トルクTlも50−20/273+5
0中’J%向上する。
Prior Art In addition to the main fuel injection valve (simply referred to as the main injection valve) provided for each cylinder, there is a fuel injection valve upstream of the intake pipe, such as a surge tank or throttle. Internal combustion engines are already known in which an auxiliary fuel injection valve (simply referred to as an auxiliary injection valve) is provided near the fuel injection valve. The fuel injection from the sub-injector cools the intake air, improving the filling efficiency and, therefore, improving the output performance. As shown in Figure 1, Kz'! When the large air temperature THA becomes lower, the intake air amount J1cm increases, and therefore the output torque T1 also increases. By the way, when the intake air temperature THA is lowered from 50℃ to 20℃, the intake air amount Ga and the output torque Tl will be 50-20/273+5.
0 Medium 'J% improvement.

第2図は空燃比A/F対出力トルクTi比特性を示す。FIG. 2 shows the air-fuel ratio A/F vs. output torque Ti ratio characteristic.

第2図に示すように、空燃比A/F に対して出力トル
クTiはあるところで(11:出力空燃比と呼ぶ)ピー
クとなシ、このビークよシリッチでもリーンでも出力ト
ルクT1は低くなる。また、吸気温か低くなると、第1
図で説明したように出力トルクTlは高くなる。たとえ
ば吸気温かTHAHからTHALまで低くなると、出力
空燃比でのTIはblからblまで向上しΔT1 分だ
けアップする。
As shown in FIG. 2, the output torque Ti with respect to the air-fuel ratio A/F peaks at a certain point (referred to as 11: output air-fuel ratio), and beyond this peak, the output torque T1 becomes low whether the engine is rich or lean. Also, when the intake temperature becomes low, the first
As explained in the figure, the output torque Tl increases. For example, when the intake temperature decreases from THAH to THAL, the TI at the output air-fuel ratio increases from bl to bl, increasing by ΔT1.

しかし、分配が悪化すると、たとえば仮に4気筒機関で
平均空燃比は出力空燃比龜1に合わせたが、この場合に
、2気筒の空燃比A/Fがa2に、残り2気筒の空燃比
A/Fがa3になシ、分配がΔA/Fだけ悪化したとす
るとその時のトルクは空燃比A/Fが712に対するト
ルクと83に対するトルクを平均したトルクbs Lか
出なくなる。結局、吸気温THAを低下させて出力性能
向上なΔT、分だけねらっても、分配が悪化するとΔT
2 分だけしか向上しない。さらに分配が悪化すればす
、よシ出りトルクTiが低くなシ、かえって副噴射弁か
ら燃)を噴射させない方が出力トルクTiは高くなる1
合がある。
However, if the distribution deteriorates, for example, in a 4-cylinder engine, the average air-fuel ratio is adjusted to the output air-fuel ratio 1, but in this case, the air-fuel ratio A/F of 2 cylinders becomes a2, and the air-fuel ratio A/F of the remaining 2 cylinders becomes If /F is set to a3 and the distribution is deteriorated by ΔA/F, the torque at that time will be equal to the average torque bsL of the torque for air-fuel ratio A/F of 712 and 83. In the end, even if you aim to improve output performance by lowering the intake air temperature THA, if the distribution deteriorates, the ΔT
It only improves by 2 minutes. If the distribution deteriorates further, the output torque Ti will be lower, and on the contrary, the output torque Ti will be higher if the fuel is not injected from the sub-injector.
There is a case.

以上のように分配が悪化すると、副噴射弁の燃料噴射に
よシいくら吸入空気を冷却して吸入空気重量Gaが増え
ても出力トルクTiは充分向上しないという問題点があ
った。
When the distribution deteriorates as described above, there is a problem in that the output torque Ti cannot be sufficiently improved no matter how much the intake air is cooled by the fuel injection of the sub-injector and the intake air weight Ga increases.

発明の目的 本発明の目的は、上述の従来形の問題点に鑑み、主噴射
弁と副噴射弁と噴射割合を負荷、回転速度によシ可変と
することにより、たとえに、分配悪化によるエミッシヨ
ン、運転性悪化が顕著な軽負荷低回転で杖副噴射弁によ
る噴射割合を小さくし、分配悪化による諸性能低下が少
い高負荷高回転域では上記噴射割合を大きくすることに
よシ、吸気冷却効果を十分発揮させ、従って、実質的に
空燃比分配を改善して出力性能を向上せしめることにあ
る。
Purpose of the Invention In view of the above-mentioned problems of the conventional type, an object of the present invention is to make the main injection valve, sub-injection valve, and injection ratio variable depending on the load and rotation speed, thereby reducing emissions caused by poor distribution, for example. By reducing the injection ratio by the sub-injection valve at light loads and low rotations where the deterioration of drivability is noticeable, and by increasing the above injection ratio at high loads and high rotations where various performances are less likely to deteriorate due to deterioration of distribution, the intake air The objective is to sufficiently exhibit the cooling effect, thereby substantially improving the air-fuel ratio distribution and improving output performance.

発明の構成 上述の目的を達成するだめの本発明の構成は第3図に示
される。すなわち、各気筒毎に設けられた主燃料噴射弁
に加えて吸気通路の上流部に各気筒共通に設けられた副
燃料噴射弁を具備する内燃機関において燃料噴射量演算
手段は機関の所定運転状態・fラメータに応じて燃料噴
射量qを演算する。他方、負荷検出手段鉱機関の負荷を
検出し、回転速度検出手段は機関の回転速度を検出し、
噴射割合演算手段は検出された負荷、回転速度に応じて
主燃料噴射弁と副燃料噴射弁との噴射割合αを演算する
。主燃料噴射量演算手段は演算された噴射割合に応じて
燃料噴射量qよυ主燃料噴射量q(1−α)を演算し、
副燃料噴射量演算手段は演算された噴射割合αに応じて
燃料噴射量qよシ副燃料噴射量qαを演算する。そして
、主燃料噴射実行手段は主燃料噴射量q(1−α)を主
燃料噴射弁よシ噴射し、副燃料噴射実行手段は副燃料噴
射量qαを副燃料噴射弁よυ噴射するものである。
DESCRIPTION OF THE INVENTION The structure of the present invention which achieves the above objects is shown in FIG. That is, in an internal combustion engine that includes a main fuel injector provided for each cylinder and an auxiliary fuel injector commonly provided for each cylinder in the upstream portion of the intake passage, the fuel injection amount calculation means calculates the amount of fuel to be calculated based on the predetermined operating state of the engine.・Calculate the fuel injection amount q according to the f parameter. On the other hand, the load detection means detects the load of the mining engine, the rotational speed detection means detects the rotational speed of the engine,
The injection ratio calculation means calculates the injection ratio α between the main fuel injection valve and the auxiliary fuel injection valve according to the detected load and rotational speed. The main fuel injection amount calculating means calculates the fuel injection amount q to υ main fuel injection amount q(1-α) according to the calculated injection ratio,
The auxiliary fuel injection amount calculation means calculates the auxiliary fuel injection amount qα by the fuel injection amount q according to the calculated injection ratio α. The main fuel injection execution means injects the main fuel injection amount q(1-α) from the main fuel injection valve, and the auxiliary fuel injection execution means injects the auxiliary fuel injection amount qα from the auxiliary fuel injection valve. be.

実施例 第4図以降の図面によシ本発明の詳細な説明する。Example The present invention will be explained in detail with reference to the drawings from FIG. 4 onwards.

始めに、本発明の原理つまシ噴射割合を可参二にした方
が有理な理由を第4図を用いて説明する。
First, the principle of the present invention, the reason why it is more reasonable to make the injection ratio variable, will be explained with reference to FIG.

第4図においては、横軸は副噴射弁の噴射割合α(中副
噴射弁の噴射量/(主噴射弁+副噴射弁9の噴射量)を
示し、縦軸は、トルクTI、トルク変動ΔTis エミ
ッシ目ンたとえばHC、Co 、 NOx。
In Fig. 4, the horizontal axis shows the injection ratio α of the auxiliary injector (the injection amount of the auxiliary injection valve/(the injection amount of the main injection valve + the auxiliary injection valve 9)), and the vertical axis shows the torque TI, torque fluctuation ΔTis Emissive items such as HC, Co, NOx.

空燃比分配ΔA/Fを示している。また、実線が高負荷
高回転域の特性、破線が軽負荷低回転域の特性を示して
いる。軽負荷低回転域では、吸入空気流速が低いために
副噴射弁から噴射された燃料は微粒化されにくく、吸気
管内壁に付着する割合が多くなる。一方、高負荷高回転
域では吸気流速が速いため微粒化され易く付着燃料は少
くなる。従って、噴射割合αを徐々に増加していくと、
高負荷高回転の方が分配悪化傾向は小さく、その結果、
エミッション(特KCO)、)ルク変動JTの悪化傾向
は小さくなると共に、トルクTlが最大になる噴射割合
も高くなる。つまシ最適噴射割合として顛エミッション
、運転性が問題になる軽負荷、低回転域で憾、エミッシ
ョン、トルク変動から決定しく図中α1点もしくはα2
点)、一方、高負荷高回転域ではトルクが最大になる点
(図中α3点)を最適噴射割合とすればよいことが分る
The air-fuel ratio distribution ΔA/F is shown. Further, the solid line shows the characteristics in the high load high speed range, and the broken line shows the characteristics in the light load low speed range. In a light load and low rotation range, the intake air flow rate is low, so the fuel injected from the sub-injector is difficult to atomize, and a large proportion of the fuel adheres to the inner wall of the intake pipe. On the other hand, in a high-load, high-speed range, the intake air flow rate is high, so the fuel is easily atomized and the amount of adhering fuel is reduced. Therefore, when the injection ratio α is gradually increased,
The tendency for distribution deterioration is smaller at high loads and high rotations, and as a result,
The deterioration tendency of emission (special KCO) and torque fluctuation JT becomes smaller, and the injection ratio at which torque Tl becomes maximum also becomes higher. The optimal injection ratio is difficult to determine from the light load and low rotation range where emissions and drivability become a problem, and from the emissions and torque fluctuations, it is determined at the α1 point or α2 point in the figure.
On the other hand, it can be seen that in the high-load, high-speed range, the optimum injection ratio should be set at the point where the torque is maximum (point α3 in the figure).

本発明においては、第5図に示すように1負荷たとえば
吸入空気tLQと回転速度N6にもとづく2次元マツプ
として最適噴射割合αを予めめておき、このマツプを用
いることにょシ吸気冷却効果を十分発揮できるととKな
る。
In the present invention, as shown in FIG. 5, the optimum injection ratio α is prepared in advance as a two-dimensional map based on one load, for example, intake air tLQ and rotational speed N6, and by using this map, it is possible to obtain a sufficient intake air cooling effect. If I can do my best, I will be K.

第6図は本発明に係る内燃機関の燃料供給制御装置の一
実施例を示す全体概要図である。第6図においては、4
気筒機関を想定している。すなわち、機関本体1の各気
筒毎の分岐管2には主噴射弁3−1(3−2,3−3,
3−4)が設けられている。また、集合吸気管のたとえ
ばす〜ジタンク4には副噴射弁5が設けられている。っ
まシ、副噴射弁5は各気筒共通である。6はエア70−
メータであって、吸入空気量を直接計測して吸入空気量
に比例したアナログ電圧の電気信号を発生する。
FIG. 6 is an overall schematic diagram showing an embodiment of a fuel supply control device for an internal combustion engine according to the present invention. In Figure 6, 4
A cylinder engine is assumed. That is, main injection valves 3-1 (3-2, 3-3,
3-4) is provided. Further, a sub-injection valve 5 is provided in, for example, a suction tank 4 of the collective intake pipe. However, the sub-injection valve 5 is common to each cylinder. 6 is air 70-
A meter that directly measures the amount of intake air and generates an analog voltage electrical signal proportional to the amount of intake air.

rイストリピユータ7には、その軸がたとえはクランク
角に換算して720’、300回転する毎に角度位置信
号を発生する2つの回転角センサ8゜9が設けられてい
る。
The rist repeater 7 is provided with two rotation angle sensors 8.9 which generate an angular position signal every time the shaft rotates, for example, 720' or 300 revolutions in terms of crank angle.

制御回路IOは、エアフローメータ6、回転角セン?8
,9の各信号を処理して主噴射弁3−1〜3−4.副噴
射弁5の制御等を行うものであって、たとえばマイクロ
コンビーータにより構成されている。
The control circuit IO includes air flow meter 6 and rotation angle sensor? 8
, 9 to the main injection valves 3-1 to 3-4. It controls the sub-injection valve 5, and is composed of, for example, a microconbeater.

第7図は第6図の制御回路lOの詳細なブロック回路図
である。第7図において、エア70−メータ6のアナロ
グ信号はマルチブレクツ101を介してADD変換器1
02に供給されている。
FIG. 7 is a detailed block circuit diagram of the control circuit IO of FIG. 6. In FIG. 7, the analog signal of the air 70-meter 6 is sent to the ADD converter 1
02.

回転角センサ8,9の各パルス信号は割込み要求信号お
よび基準タイミング信号を発生するためのタイミング発
生回路103に供給されている。
Each pulse signal from the rotation angle sensors 8 and 9 is supplied to a timing generation circuit 103 for generating an interrupt request signal and a reference timing signal.

さらに、回転角センサ9の・母ルス信号は回転速度形成
回路104を介して入力インターフェイス105の所定
位置に供給される。回転速度形成回路104は、30°
CA毎に開閉制御されるダート、およびこのダートを通
過するクロ、り発生回路106のクロック信号CLKの
・そルス数を計数するカウンタから構成され、従っ”C
1機関の回転速度に反比例した2通信号が形成されるこ
とになる。
Further, the base pulse signal of the rotation angle sensor 9 is supplied to a predetermined position of the input interface 105 via the rotation speed forming circuit 104. The rotation speed forming circuit 104 has a rotation speed of 30°.
It consists of a dart that is controlled to open and close for each CA, and a counter that counts the number of pulses of the clock signal CLK of the clock signal generation circuit 106 that passes through this dart.
Two signals are formed that are inversely proportional to the rotational speed of one engine.

ROM 109G’l:N メインルーチン、後述の割
込みルーチン等のプログラム、これらの処理に必要な種
々の固定データ、定数等が予め格納されている。
ROM 109G'l:N Programs such as a main routine and an interrupt routine to be described later, and various fixed data and constants necessary for these processes are stored in advance.

ラッチ回路l1l−1% ダウンカウンタ112−11
 フリラグフロップ113−1.および駆動回路114
−1は主噴射弁3−1〜3−4に対して設けられ、ラッ
チ回路111−2、ダウンカウンタ112−2、フリ、
グフロッグ113−2、および駆動回路114−2は副
噴射弁5に対して設けられている。たとえば、副噴射弁
5の噴射量データTが演算されると、このデータTは出
力インターフェイス110を介してラッチ回路111−
2にセットされる。次いで、所定時間後の噴射開始タイ
ミングにて噴射開始信号(ストローブ信号)S2が発生
すると、ラッチ回路111−2のデータがダウンカウン
タ112−2にシリセットされると同時に、フリラグフ
ロップ113−2がセットされる。この結果、駆動回路
114−2が動作して副噴射弁5が付勢される。この間
、ダウンカウンタ112−2はクロック計数を行い、最
後にダウンカウンタ112−2のキャリアウド端子が″
′1″レベルとなると、フリ、デフロッflL3−2が
リセットされて駆動回路113−2は副噴射弁5の付勢
を停止する。つまシ、上述の燃料噴射時間Tだけ副噴射
弁5は付勢され、従って、燃料噴射時間に応じた量の付
加的燃料が機関本体lの燃焼室に送込まれることになる
Latch circuit l1l-1% down counter 112-11
Free lag flop 113-1. and drive circuit 114
-1 is provided for the main injection valves 3-1 to 3-4, including a latch circuit 111-2, a down counter 112-2, a free,
The log frog 113-2 and the drive circuit 114-2 are provided for the sub-injection valve 5. For example, when the injection amount data T of the sub-injection valve 5 is calculated, this data T is sent to the latch circuit 111-
Set to 2. Next, when the injection start signal (strobe signal) S2 is generated at the injection start timing after a predetermined time, the data of the latch circuit 111-2 is reset to the down counter 112-2, and at the same time, the free lag flop 113-2 is reset. Set. As a result, the drive circuit 114-2 operates and the sub-injection valve 5 is energized. During this time, the down counter 112-2 performs clock counting, and finally the carrier terminal of the down counter 112-2 is
When it reaches the '1'' level, the differential flof flL3-2 is reset and the drive circuit 113-2 stops energizing the sub-injector 5.Tsumarily, the sub-injector 5 is energized for the above-mentioned fuel injection time T. Therefore, an amount of additional fuel corresponding to the fuel injection time is sent to the combustion chamber of the engine body l.

第8図のフローチャートを参照して第6図の制御回路l
Oの動作を説明する。第8図において、ステップ801
は所定クランク角たとえば180゜CA毎にスタートし
、ステラf802に進み、ここで、エアフローメータ6
から吸入空気量データQおよび回転速度形成回路104
から回転速度データN、3を取込む。ステップ803で
は、データQ。
Referring to the flowchart in FIG. 8, the control circuit l in FIG.
The operation of O will be explained. In FIG. 8, step 801
starts at every predetermined crank angle, for example 180° CA, and proceeds to Stella F802, where the air flow meter 6
From the intake air amount data Q and rotational speed forming circuit 104
Take in the rotational speed data N, 3 from. In step 803, the data Q.

Noにもとづく図示しない2次元マッグを用いて基本噴
射ftq、、を演算し、次いで、必要な運転状態パラメ
ータを用いて補正計算を行って燃料噴射量qを演算する
。なお、この燃料噴射量qは主噴射弁3−1〜3−4と
副噴射弁5とから噴射される燃料の総量を示している。
Basic injection ftq, , is calculated using a two-dimensional mag (not shown) based on No., and then a correction calculation is performed using necessary operating state parameters to calculate the fuel injection amount q. Note that this fuel injection amount q indicates the total amount of fuel injected from the main injection valves 3-1 to 3-4 and the sub-injection valve 5.

ステップ804では、データQおよびNeにもとづく第
5図に示す2次元マツプを用いて最適噴射割合αを演算
する。
In step 804, the optimum injection ratio α is calculated using the two-dimensional map shown in FIG. 5 based on the data Q and Ne.

ステップ805では、主噴射弁3−1〜3−4の噴射時
間τ□を τ□←q(1−α) として演算して、ステ、7’806にてこのTmをラッ
チ回路111−1にセットする。
In step 805, the injection time τ□ of the main injection valves 3-1 to 3-4 is calculated as τ□←q(1-α), and in step 7'806, this Tm is sent to the latch circuit 111-1. set.

ステップ807では、主噴射弁3−1〜3−4の噴射時
間τ8を τ8←qα として演算して、ステラf808にてこのτBをラッチ
回路111−2にセットする。
In step 807, the injection time τ8 of the main injection valves 3-1 to 3-4 is calculated as τ8←qα, and the stellar f808 sets this τB in the latch circuit 111-2.

そして、ステラ7°809にてこのルーチンは終了する
This routine then ends at Stella 7°809.

このように、τ1.τ8がラッチ回路111−1゜11
1−2にそれぞれセットされると、所定タイミングにて
発生する噴射開始信号SL+82によりラッチ回路11
1−1.l1l−2の7”−夕はダウンカウンタ112
−1,112−2にセットされて噴射が実行されること
になる。なお、噴射開始信号S2は副噴射弁近傍の吸入
空気流速が大きいときに発生するように制御する方が分
配比の点で有利である。また、通常、噴射開始信号S。
In this way, τ1. τ8 is the latch circuit 111-1°11
1-2, the latch circuit 11 is activated by the injection start signal SL+82 generated at a predetermined timing.
1-1. l1l-2's 7"-Yu is down counter 112
-1, 112-2 and injection will be executed. Note that it is more advantageous in terms of the distribution ratio to control the injection start signal S2 so that it is generated when the intake air flow velocity near the sub-injector is high. Also, normally, the injection start signal S.

は180°CA毎でなく、360’CA毎に発生し、各
主噴射弁3−1〜3−4は同時噴射される。
occurs not every 180° CA but every 360'CA, and the main injection valves 3-1 to 3-4 inject simultaneously.

なお、上述の実施例において、負荷として吸入空気量を
用いたが、吸入空気圧、スロットル弁開度等でもよいこ
とL言うまでもない。
In the above-described embodiment, the amount of intake air is used as the load, but it goes without saying that intake air pressure, throttle valve opening, etc. may also be used.

発明の詳細 な説明したように本発明によれば、負荷および回転速度
に応じて主噴射弁による噴射と副噴射弁による噴射との
割合を可変にしているために、十分吸気冷却効果が期待
でき、この結果、実質的に空燃比分配を改善でき、出力
性能を向上できる。
As described in detail, according to the present invention, since the ratio of injection by the main injection valve and injection by the sub-injection valve is made variable according to the load and rotational speed, a sufficient intake air cooling effect can be expected. As a result, the air-fuel ratio distribution can be substantially improved and the output performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸気温対出力トルク、吸入空気重量時−性を示
すグラフ、第2図は空燃比対出力トルク特性を示すグラ
フ、第3図は本発明の詳細な説明するための全体ブロッ
ク図、第4図は本発明の詳細な説明するためのグラフ、
第5図は本発明に係る噴射割合αの2次元マツプを示す
グラフ、第6図は本発明に係る内燃機関の燃料供給制御
装置の一実施例を示す全体概要図、第7図は第6図の制
御回路10の詳細なブロック回路図、第8図は第5図の
制御回路lOの動作を説明するだめのフローチャートで
ある。 l・・・機関本体、3−1〜3−2・・・主燃料噴射弁
、5・・・副燃料噴射弁、6・・・エア7o−メータ、
8゜9・・・回転角上ンテ、10・・・制御回路。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 松 下 操 弁理士 山 口 昭 之 弁理士 西 山 雅 也 第1図 第2図 02 01 01 (リッチ)A/(リーン) 第4図 CA(’/、) 第5図 (イh)Net高〕
Fig. 1 is a graph showing intake temperature vs. output torque and intake air weight vs. characteristics, Fig. 2 is a graph showing air-fuel ratio vs. output torque characteristics, and Fig. 3 is an overall block diagram for explaining the present invention in detail. , FIG. 4 is a graph for detailed explanation of the present invention,
FIG. 5 is a graph showing a two-dimensional map of the injection ratio α according to the present invention, FIG. 6 is an overall schematic diagram showing an embodiment of the fuel supply control device for an internal combustion engine according to the present invention, and FIG. FIG. 8 is a detailed block circuit diagram of the control circuit 10 shown in the figure, and is a flowchart for explaining the operation of the control circuit 10 of FIG. l... Engine main body, 3-1 to 3-2... Main fuel injection valve, 5... Sub-fuel injection valve, 6... Air 7o-meter,
8゜9...Rotation angle up, 10...Control circuit. Patent Applicant Toyota Motor Corporation Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Masashi Matsushita Patent Attorney Akira Yamaguchi Patent Attorney Masaya Nishiyama Figure 1 Figure 2 02 01 01 (Rich) )A/(Lean) Figure 4 CA('/,) Figure 5 (Ah) Net High]

Claims (1)

【特許請求の範囲】 1、各気筒毎に設けられた主燃料噴射弁に加えて吸気通
路の上流部に前記各気筒共通に設けられた副燃料噴射弁
を具備する内燃機関において、該機関の所定運転状態・
やラメータに応じて燃料噴射量を演算する燃料噴射量演
算手段、前記機関の負荷を検出する負荷検出手段、前記
機関の回転速度を検出する回転速度検出手段、該検出さ
れた負荷、回転速度に応じて主燃料噴射弁と前記副燃料
噴射弁との噴射割合を演算する噴射割合演算手段、該演
算された噴射割合に応じて前記燃料噴射量より主燃料噴
射量を演算する主燃料噴射量演算手段、前記演算された
噴射割合に応じて前記燃料噴射量よシ副燃料噴射量を演
算する副燃料噴射量演算手段、前記主燃料噴射量を前記
主燃料噴射弁よシ噴射する主燃料噴射実行手段、および
前記副燃料噴射量を前記副燃料噴射弁よシ噴射する副燃
料噴射実行手段を具備する内燃機関の燃料供給制御装置
症。 2、前記噴射割合演算手段が、前記機関の高負荷、高回
転域になるほど前記副燃料噴射割合を大きく、他方、前
記機関の低負荷、低回転域になるほど前記副燃料噴射割
合を小さく演算する特許請求の範囲第1項に記載の内燃
機関の燃料供給制御装置。
[Scope of Claims] 1. In an internal combustion engine that is provided with a main fuel injection valve provided for each cylinder and an auxiliary fuel injection valve provided in common for each cylinder in the upstream portion of the intake passage, Specified operating state/
a fuel injection amount calculation means for calculating the fuel injection amount according to the engine speed and the rotation speed; a load detection means for detecting the load of the engine; a rotation speed detection means for detecting the rotation speed of the engine; injection ratio calculation means for calculating the injection ratio between the main fuel injection valve and the auxiliary fuel injection valve according to the calculated injection ratio; and a main fuel injection amount calculation unit for calculating the main fuel injection amount from the fuel injection amount according to the calculated injection ratio. means, auxiliary fuel injection amount calculating means for calculating the auxiliary fuel injection amount from the fuel injection amount according to the calculated injection ratio, main fuel injection execution for injecting the main fuel injection amount from the main fuel injection valve. and auxiliary fuel injection execution means for injecting the auxiliary fuel injection amount from the auxiliary fuel injection valve. 2. The injection ratio calculation means calculates the auxiliary fuel injection ratio to be larger as the load and rotation range of the engine becomes higher, and to decrease the auxiliary fuel injection ratio as the load and rotation range of the engine becomes lower. A fuel supply control device for an internal combustion engine according to claim 1.
JP59050181A 1984-03-17 1984-03-17 Fuel supply control device in internal-combustion engine Pending JPS60195350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050181A JPS60195350A (en) 1984-03-17 1984-03-17 Fuel supply control device in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050181A JPS60195350A (en) 1984-03-17 1984-03-17 Fuel supply control device in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60195350A true JPS60195350A (en) 1985-10-03

Family

ID=12852018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050181A Pending JPS60195350A (en) 1984-03-17 1984-03-17 Fuel supply control device in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60195350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105298668A (en) * 2014-05-15 2016-02-03 罗伯特·博世有限公司 Method and apparatus for controlling an air-fuel mixture for operating an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105298668A (en) * 2014-05-15 2016-02-03 罗伯特·博世有限公司 Method and apparatus for controlling an air-fuel mixture for operating an internal combustion engine
CN105298668B (en) * 2014-05-15 2020-10-09 罗伯特·博世有限公司 Method and device for controlling an air-fuel mixture for operating an internal combustion engine

Similar Documents

Publication Publication Date Title
US7146963B2 (en) State determination device for internal combustion engine
US7198031B2 (en) Control device of internal combustion engine
JP2765305B2 (en) Internal combustion engine
US7412821B2 (en) Control apparatus for internal combustion engine
US7258102B2 (en) Control device for internal combustion engine
US7114488B2 (en) Control apparatus for internal combustion engine
US4561401A (en) Air-fuel ratio control system
US20060207241A1 (en) Control apparatus for internal combustion engine
US5159914A (en) Dynamic fuel control
US8437944B2 (en) Fuel injection device of internal combustion engine
US7343900B2 (en) Ignition timing controller of internal combustion engine
JP2006194098A (en) Fuel injection control device for internal combustion engine
JP3265997B2 (en) Control device for internal combustion engine
JP2007032326A (en) Controller of internal combustion engine
JPS60195350A (en) Fuel supply control device in internal-combustion engine
JP4742633B2 (en) Control device for internal combustion engine
JP2009293526A (en) Cylinder injection type spark ignition internal combustion engine
JP3064806B2 (en) Fuel supply control device for internal combustion engine
JP5282636B2 (en) Control device for internal combustion engine
JPS60195352A (en) Fuel supply control device in internal-combustion engine
US11421623B2 (en) Internal combustion engine control device
JP3617714B2 (en) In-cylinder fuel control system
JPS60195351A (en) Fuel supply control device in internal-combustion engine
JPH11201010A (en) Ignition timing control device for internal combustion engine
JPH0245028B2 (en)