JPS60195345A - Air-fuel ratio controller for internal-combustion engine - Google Patents

Air-fuel ratio controller for internal-combustion engine

Info

Publication number
JPS60195345A
JPS60195345A JP59049220A JP4922084A JPS60195345A JP S60195345 A JPS60195345 A JP S60195345A JP 59049220 A JP59049220 A JP 59049220A JP 4922084 A JP4922084 A JP 4922084A JP S60195345 A JPS60195345 A JP S60195345A
Authority
JP
Japan
Prior art keywords
fuel injection
intake pipe
transient state
intake
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59049220A
Other languages
Japanese (ja)
Inventor
Kuniaki Sawamoto
沢本 国章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59049220A priority Critical patent/JPS60195345A/en
Publication of JPS60195345A publication Critical patent/JPS60195345A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make an air-fuel ratio at a transient state flat, and improve drivability as well as to reduce harmful exhaust gas, by making a fuel injection quantity so as to be compensated in due to consideration of a phase difference between fuel injection timing and suction timing at a time when an engine is in the transient state of acceleration and deceleration conditions. CONSTITUTION:A suction air passing sectional area An is measured out of a throttle opening sensor 17 at every fuel injection timing from an ignition coil 14, and this variation DELTAA=An-An-1 is calculated. An engine speed N is measured out of the ignition coil 14 while suction pipe pressure P is measured out of a suction pipe pressure sensor 10, and a fundamental injection quantity Tp=K1. P is calculated. K1 is a proportional constant. Judging that the DELTAA>= specified value is an accelerating condition and the DELTAA< specified value is a steady condition, a compensation value KACC of a fuel injection quantity is calculated, and K2/N commensurate to a phase difference (time difference) DELTAt between fuel injection timing and suction timing is calculated. In order to make an air-fuel ratio flat, the phase difference DELTAt is compensated with the compensation value KACC. In addition, injection takes place at the fuel injection quantity Ti=KACC. Tp.

Description

【発明の詳細な説明】 (技術分野) この発明は、内燃機関の空燃比制御装置に関し、より詳
細には、機関の加減速条件等の過渡状態において空燃比
を補正するようにした内燃機関の空燃比制御装置に関す
る。
[Detailed Description of the Invention] (Technical Field) The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly, to an air-fuel ratio control device for an internal combustion engine that corrects the air-fuel ratio in transient states such as engine acceleration/deceleration conditions. This invention relates to an air-fuel ratio control device.

ここで、この発明において「加減速条件」とは、機関を
加速または減速しようとする制御状態を言い、より具体
的には、機関の吸気管内に設けられた絞弁を開きつつあ
る過渡状態を「加速条件」、閉じつつある過渡状態を「
減速条件」と称する。
Here, in this invention, "acceleration/deceleration condition" refers to a control state in which the engine is accelerated or decelerated, and more specifically, it refers to a transient state in which a throttle valve provided in the intake pipe of the engine is opening. "Acceleration condition", the closing transient state is "
"deceleration conditions".

またこの発明は、吸入空気の圧力を測定し、測定された
吸気管圧に基づいて燃料噴射量を決定し、空燃比を制御
する、いわゆる「D−ジェトロ方式」の内燃機関の空燃
比制御装置に関するものである。
The present invention also provides an air-fuel ratio control device for an internal combustion engine using the so-called "D-JETRO method," which measures the pressure of intake air, determines the fuel injection amount based on the measured intake pipe pressure, and controls the air-fuel ratio. It is related to.

(従来技術) 従来のD−ジェ)o方式の内燃機関の空燃比制御装置と
しては、例えば第1図に示すようなものがある(fll
えは昭和58年9月30日自動車技術会発行「新編自動
車工学便覧〈第4m〉」参照)。
(Prior Art) As an example of a conventional air-fuel ratio control device for an internal combustion engine using the D-Je system, there is one shown in FIG.
(Refer to "New Automotive Engineering Handbook (No. 4m)" published by the Society of Automotive Engineers of Japan on September 30, 1981).

同図において、燃料はツーエルタンク1がらフーエルI
ンf2に吸入され、圧送される。次にフネエルダン・ぐ
3によシ脈動が抑えられる。次にツユエルフィルタ4に
よりゴミを取り除いてから、インジェクタ5へ供給され
る。また、このインジェクタ5に供給される燃料の圧力
と吸気管9の内圧との差が一定となるように、ゾレッシ
ャVギーレータ6が作動する。
In the same figure, fuel is transferred from Tool Tank 1 to Fuel I.
It is sucked into the tube f2 and fed under pressure. Next, the pulsation is suppressed by Funerdan Gu3. Next, after dust is removed by a Tsuyuel filter 4, the fuel is supplied to an injector 5. Further, the Zoresha V-gealator 6 operates so that the difference between the pressure of the fuel supplied to the injector 5 and the internal pressure of the intake pipe 9 is constant.

空気はエアクリーナ7から吸い込まれて除塵され、絞弁
8により吸入空気量が加減され、吸気管9において吸気
管圧センサ10により吸気管圧Pが検出され、インジェ
クタ5から噴射された燃料と混合し、混合気が各気筒1
1に供給される。
The air is sucked in from the air cleaner 7 to remove dust, the intake air amount is adjusted by the throttle valve 8, the intake pipe pressure P is detected by the intake pipe pressure sensor 10 in the intake pipe 9, and the air is mixed with the fuel injected from the injector 5. , the mixture is 1 for each cylinder
1.

コントロールユニ、ト12には、上記の吸気管圧センサ
10からの吸気管圧P信号の他に、水温センサ13から
の冷却水温信号、点火コイル14のマイナス端子信号、
絞弁8と同軸に取9付けられた絞弁開度センサ15から
の絞弁開度θ信号が入力される。
The control unit 12 includes, in addition to the intake pipe pressure P signal from the intake pipe pressure sensor 10, a cooling water temperature signal from the water temperature sensor 13, a negative terminal signal of the ignition coil 14,
A throttle valve opening θ signal from a throttle valve opening sensor 15 mounted coaxially with the throttle valve 8 is input.

コントロールユニット12においては、先ず吸気管圧セ
ンサ10の出力から吸気管圧Pを測定し、これに比例定
数に、を乗じて、基本噴射量Tp=に、・Pとする。次
に、水温センサ13の出力に応じた補正係数KTWと、
バッテリ電圧に応じた補正値T!lにより、燃料噴射量
Ti=KTw−Tp+Tsをめる。
In the control unit 12, first, the intake pipe pressure P is measured from the output of the intake pipe pressure sensor 10, and this is multiplied by a proportionality constant to set the basic injection amount Tp=.P. Next, a correction coefficient KTW according to the output of the water temperature sensor 13,
Correction value T according to battery voltage! The fuel injection amount Ti=KTw-Tp+Ts is determined by l.

燃料を噴射するタイミングは、点火コイル14の点火信
号から決定される機関回転に同期したタイミングと、加
速条件での割込みタイミングとがある。
The timing for injecting fuel includes timing synchronized with the engine rotation determined from the ignition signal of the ignition coil 14, and interrupt timing under acceleration conditions.

加速条件での割込みタイミングは第2図および第3図に
示すように、絞弁開度センサ15に装着されたクシ歯を
スイッチがON −OFFするたびに、割込み噴射を行
なう・ しかしながら、このような従来の内燃機関の空燃比制御
装置にあっては、機関回転に同期した燃料噴射タイミン
グと吸気タイミングとの間に位相差(時間差)がらり、
この位相差を考慮せずに燃料噴射量を決定していたため
、過渡運転時などで燃料噴射後、吸気までの間に1機関
の要求噴射量が変化した場合には、その変化分が空燃比
のズレとなり、例えば加速条件では要求噴射量に対して
実噴射量が不足し、空燃比が希薄化する慣れが生じる。
As shown in Figs. 2 and 3, the interrupt timing under acceleration conditions is such that the interrupt injection is performed each time the comb teeth attached to the throttle valve opening sensor 15 are turned on and off. In conventional air-fuel ratio control devices for internal combustion engines, there is a phase difference (time difference) between the fuel injection timing and the intake timing, which are synchronized with the engine rotation.
Because the fuel injection amount was determined without taking this phase difference into account, if the required injection amount for one engine changes after fuel injection until intake during transient operation, the amount of change will be reflected in the air-fuel ratio. For example, under acceleration conditions, the actual injection amount is insufficient compared to the required injection amount, and the air-fuel ratio becomes lean.

そこでこのような燃料不足を補うために加速条件では絞
弁開度センナに装着されたクシ歯をスイッチがON −
OFFするたびに割込み噴射を行なってはいるが、この
ような割込み噴射に依存した補正では、加速不良を生じ
ないようかなりの余裕をもって補正量を設定せざるを得
ないため、今度は過濃化によるエミッション、特にCO
および1−1cの排気ガス成分が増加するという問題点
があった。
Therefore, in order to compensate for such a fuel shortage, under acceleration conditions, the comb tooth switch attached to the throttle valve opening sensor is turned on.
Interrupt injection is performed every time the engine is turned off, but with corrections that rely on such interrupt injections, the amount of correction must be set with a considerable margin to avoid poor acceleration, which may lead to overconcentration. emissions, especially CO
There was a problem that the exhaust gas components of 1-1c and 1-1c increased.

この問題点を改善するために上記の位相差を小さくシ、
燃料噴射タイミングを吸気タイミングに近づけることが
考えられるが、あまり近づけすぎると、今度は燃料の霧
化が悪化してしまい、アイドル運転時の性能が低下する
等の問題が生じ、得策ではない。
In order to improve this problem, the above phase difference can be reduced.
It is conceivable to bring the fuel injection timing closer to the intake timing, but if it is brought too close, the atomization of the fuel will worsen, causing problems such as a decline in performance during idling, which is not a good idea.

(発明の目的) この発明は、このような従来の問題点に着目してなされ
たもので、機関の吸気管圧に応じて燃料供給量を決定す
るD−ノエトo方式による内燃機関の空燃比制御装置に
おいて、特に加減速条件において、燃料噴射タイミング
と吸気タイミングとの位相差を考慮して燃料噴射量を補
正し、加減速条件等過渡状態での空燃比をフラットにし
、運転性を向上し、有害排出ガスを減少させることを目
的とする。
(Object of the Invention) The present invention has been made by focusing on such conventional problems, and it is an air-fuel ratio of an internal combustion engine based on the D-noeto method, which determines the amount of fuel supplied according to the intake pipe pressure of the engine. The control device corrects the fuel injection amount, taking into account the phase difference between fuel injection timing and intake timing, especially under acceleration/deceleration conditions, flattens the air-fuel ratio during transient conditions such as acceleration/deceleration conditions, and improves drivability. , aiming to reduce harmful exhaust gases.

(発明の構成及び作用) 第4図はこの発明の構成を明示するだめの全体構成図で
ある。
(Structure and operation of the invention) FIG. 4 is an overall configuration diagram clearly showing the structure of the invention.

図示の如く、内燃機関の吸気管9には吸入空気圧Pを検
出する吸気管圧センサ10及び絞弁8の開度を検出する
絞弁開度センサ17が設けられている。吸入空気断面積
検出手段は絞弁8付近の吸入空気通過断面積Aを検出し
、過渡状態判定手段及び補正値演算手段に出力する。過
渡状態判定手段は検出された吸入空気通過断面積Aに基
づき、内燃機関が過渡状態であるか否かを判定し、判定
結果を吸気管圧P(。)検出手段及び計測手段に出力す
る。吸気管圧P(。)検出手段は吸気管圧センサ10で
検出された吸入空気圧Pと過渡状態判定手段の出力信号
に基づき、過渡状態開始直前の吸気管圧P(o)を検出
する。time計測手段は過渡状態判定手段の出力信号
に基づき、過渡状態開始からの経過時間timeを計測
する。回転数検出手段は内燃機関の回転数Nを検出する
As shown in the figure, an intake pipe 9 of the internal combustion engine is provided with an intake pipe pressure sensor 10 for detecting intake air pressure P and a throttle valve opening sensor 17 for detecting the opening of the throttle valve 8. The intake air cross-sectional area detection means detects the intake air passage cross-sectional area A near the throttle valve 8 and outputs it to the transient state determination means and the correction value calculation means. The transient state determining means determines whether the internal combustion engine is in a transient state based on the detected intake air passage cross-sectional area A, and outputs the determination result to the intake pipe pressure P(.) detecting means and measuring means. The intake pipe pressure P(.) detection means detects the intake pipe pressure P(o) immediately before the start of the transient state based on the intake air pressure P detected by the intake pipe pressure sensor 10 and the output signal of the transient state determination means. The time measuring means measures the elapsed time time from the start of the transient state based on the output signal of the transient state determining means. The rotation speed detection means detects the rotation speed N of the internal combustion engine.

以上のようにして得られた吸入空気通過断面J/iAと
経過時間timeと吸気管圧P(。)と回転数Nとめ・
ら、基本燃料噴射量T、に対する過渡状態での補正量K
を、好ましくは以下の式に基づいて演算する。
The intake air passage cross section J/iA obtained as above, the elapsed time time, the intake pipe pressure P(.), and the rotation speed N.
, the correction amount K in the transient state for the basic fuel injection amount T,
is preferably calculated based on the following formula.

ただし、 であり、Paは大気圧、■は吸入管容積、Δ【は燃料噴
射時と吸気弁開弁時の位相差Δしてある。
However, Pa is the atmospheric pressure, ■ is the intake pipe volume, and Δ[ is the phase difference Δ between fuel injection and intake valve opening.

燃料噴射量演算手段は、吸入空気圧Pと回転数Nとから
基本燃料噴射量T、を演算し、この値T、に前記補正値
Kを乗算して実際の燃料噴射量T1を演算して、インジ
ェクタを駆動するだめの信号を出力する。
The fuel injection amount calculation means calculates a basic fuel injection amount T from the intake air pressure P and the rotational speed N, and multiplies this value T by the correction value K to calculate an actual fuel injection amount T1. Outputs a signal to drive the injector.

以下、この発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

第5図は、この発明の内燃機関の空燃比制御装置の一実
施例を示す。前述した従来装置と異なる点ハ、コントロ
ールユニ、ト16の内部の構成および作用と、絞弁開度
センサ17の構成および作用にある。その他の構成要素
は、第1図と同じ参照番号で示す。
FIG. 5 shows an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention. The difference from the conventional device described above lies in the internal configuration and operation of the control unit 16 and the configuration and operation of the throttle valve opening sensor 17. Other components are designated with the same reference numerals as in FIG.

第6図i、i、第5図のコントロールユニット16の構
成を示すブロック図である。同図において、吸気管圧セ
ンサ10.絞弁開度センサ17および水温センサ13の
各出力信号は、マルチプレクサ18に入力される。この
マルチプレクサ18は、点火コイル14からの信号によ
シ動作するランチ回路19により切り換えられて、各セ
ンサ出力をφ変換器20によりA/I)変換する。また
、点火コイル14の信号はカウンタ21によりカウント
され、機関回転数Nがめられる。
FIG. 6 i is a block diagram showing the configuration of the control unit 16 of FIG. 5; In the figure, intake pipe pressure sensor 10. Each output signal from the throttle valve opening sensor 17 and the water temperature sensor 13 is input to a multiplexer 18 . This multiplexer 18 is switched by a launch circuit 19 operated by a signal from the ignition coil 14, and each sensor output is converted into A/I by a φ converter 20. Further, the signal from the ignition coil 14 is counted by a counter 21, and the engine rotation speed N is determined.

A/D変換器20でい変換された各センサ出力と、カウ
ンタ21からの機関回転数Nより、演算器22は後述す
るフローチャート(第9図)に示す演算を行なう。この
場合、メモリ23を用いる。
Based on the sensor outputs converted by the A/D converter 20 and the engine rotational speed N from the counter 21, the calculator 22 performs calculations shown in a flowchart (FIG. 9) to be described later. In this case, memory 23 is used.

演算器22により演算された燃料噴射幅T、力;レジス
タ24に書き込まれ、比較器25によりタイマ26で計
測されたT1の時間だけ、駆動回路27を作動させ、イ
ンジェクタ5を駆動する。
The fuel injection width T and force calculated by the calculator 22 are written in the register 24, and the drive circuit 27 is operated by the comparator 25 for the time T1 measured by the timer 26 to drive the injector 5.

上記ノコントロールユニ、ト(制御回路)16は、マイ
クロコンビーータを用いると容易に実現できる。
The control unit (control circuit) 16 described above can be easily realized using a microcontroller.

絞弁開度センサ17は、第7図に示すような構成となっ
ている。すなわち同図において、17aは抵抗であL1
7bは絞弁軸17cと同軸に回転して抵抗172に接触
するブラシである。抵抗17aの端子17d、17e間
には一定電圧(例えば5v)が加わり、ブラシ17bの
端子17fからこの絞弁開度センサ17の出力が発生す
る。
The throttle valve opening sensor 17 has a configuration as shown in FIG. That is, in the same figure, 17a is a resistor L1
7b is a brush that rotates coaxially with the throttle valve shaft 17c and contacts the resistor 172. A constant voltage (for example, 5V) is applied between terminals 17d and 17e of resistor 17a, and the output of throttle valve opening sensor 17 is generated from terminal 17f of brush 17b.

第8図は、この絞弁開度センサ17の出力特性。FIG. 8 shows the output characteristics of this throttle valve opening sensor 17.

すなわち、第7図に示す絞弁開度θに対する端子17f
の出力電圧を示す。端子17dに対して端子17eに5
vを印加すると、端子17fの出力は(1−μsθ)x
5(V)の特性を示し、これは絞弁開度θの時の絞り弁
部分の吸入空気通過断面積Aを表わす。逆にいうと、第
6図の特性を与えるように抵抗17aの形状が設定され
ている。
That is, the terminal 17f for the throttle valve opening degree θ shown in FIG.
shows the output voltage of 5 to terminal 17e for terminal 17d.
When v is applied, the output of terminal 17f is (1-μsθ)x
5 (V), which represents the intake air passage cross-sectional area A of the throttle valve portion when the throttle valve opening degree is θ. In other words, the shape of the resistor 17a is set so as to provide the characteristics shown in FIG.

従来の絞弁開度センサ15(第1図)は絞弁開度0を測
定するもので、このθから吸入空気通過断面積Aをめる
には演算を必要とするが、この絞弁開度センサ17%よ
れば、吸入空気通過断面積Aを直接測定できるという利
点がある。
The conventional throttle valve opening sensor 15 (Fig. 1) measures the throttle valve opening of 0, and calculation is required to calculate the intake air passage cross-sectional area A from this θ. The 17% degree sensor has the advantage that the intake air passage cross-sectional area A can be directly measured.

次に、この発明の作用を、加速による過渡状態において
燃料噴射量を補正する場合を例として、第9図のフロー
チャートおよび第10図のタイムチャートによシ説明す
る。
Next, the operation of the present invention will be explained using the flow chart of FIG. 9 and the time chart of FIG. 10, taking as an example the case where the fuel injection amount is corrected in a transient state due to acceleration.

先ず、点火コイル14よりの燃料噴射タイミング毎に、
絞弁開度センサ17から吸入空気通過断面積Anを測定
し、記憶する(ステ、f31 )。次いで前回の吸入空
気通過断面積A。−1から、吸入空気通過断面積の変化
量ΔA−An−An−1を演算する(ステツf32)。
First, at each fuel injection timing from the ignition coil 14,
The intake air passage cross-sectional area An is measured from the throttle valve opening sensor 17 and stored (step f31). Next, the previous intake air passage cross-sectional area A. -1, the amount of change ΔA-An-An-1 in the intake air passage cross-sectional area is calculated (step f32).

次に点火コイル14の点火信号よシ機関回転数Nを測定
する(ステップ33)。
Next, the ignition signal of the ignition coil 14 and the engine rotational speed N are measured (step 33).

さらに、吸気管圧センサ1oよシ吸気管圧Pを測定しく
ステラ7’34 LこのPに比例定数に、を乗じて、基
本噴射量Tp=に、・Pを演算する(ステップ35)。
Furthermore, the intake pipe pressure P is measured by the intake pipe pressure sensor 1o, and this P is multiplied by a proportionality constant to calculate the basic injection amount Tp=.P (step 35).

次いで、ステップ32でめたΔAを予め定めた所定値と
比較しくステツ7036)、YES(ΔA≧所定値)で
あれば機関は加速条件、NO(ΔAく所定値)であれば
定常条件と判定する。
Next, the ΔA obtained in step 32 is compared with a predetermined value (Step 7036), and if YES (ΔA≧predetermined value), the engine is determined to be in an acceleration condition, and if NO (ΔA × predetermined value), the engine is determined to be in a steady condition. do.

YES (加速条件)の場合は、加速フラグを見る(ス
テップ37)。加速フラグ=0の場合は、今まで定常条
件でありかつ加速を開始した場合であるので、加速フラ
グ=1にセットしくステップ38)、次いでtime 
= Oにセットする(ステップ39)。そして、燃料噴
射量の補正値KACCを演算する(ステップ43)。
If YES (acceleration condition), check the acceleration flag (step 37). If the acceleration flag = 0, it means that the condition has been steady and acceleration has started, so the acceleration flag should be set to 1 (step 38), and then time
= O (step 39). Then, a correction value KACC for the fuel injection amount is calculated (step 43).

ステップ36でNo (定常条件)の場合にも、加速フ
ラグを判定する(ステ、ゾ40)。ステップ40で加速
フラグ=1の場合は、加速条件が終了したと判定し、加
速フラグ−〇とする(ステップ41)。次いで、ステ、
プ40でNOの場合、およびステ、ゾ37でYESの場
合と共に、timeをカウントアツプしてtime =
 time 十に27Nとする(ステ。
If the result in step 36 is No (steady condition), the acceleration flag is also determined (step 40). If the acceleration flag=1 in step 40, it is determined that the acceleration condition has ended, and the acceleration flag is set to -0 (step 41). Next, Ste.
If NO in Step 40 and YES in Step 37, count up the time and set time =
time 10 to 27N (Ste.

グ42)。ここで、K2は比例定数、Nは機関回転数で
、K2/Nは燃料噴射タイミングと吸気タイミングとの
位相差(時間差)Δtに相当する。次いで、補正値KA
CCを演算する(ステップ43)。′次ニ、ステップ4
3における燃料噴射量の補正値KAccの演算の仕方を
説明する。
42). Here, K2 is a proportional constant, N is the engine speed, and K2/N corresponds to the phase difference (time difference) Δt between the fuel injection timing and the intake timing. Next, the correction value KA
CC is calculated (step 43). 'Next, step 4
The method of calculating the fuel injection amount correction value KAcc in No. 3 will be explained.

絞弁8をステップ状に変化させると、吸入空気通過断面
積Aも第10図(a)のようにA。からA1ヘステップ
状に変化する。この変化に対して吸気管圧Pは、変化直
前の吸気管圧P (0)から変化が終了して定常状態の
吸気管圧P1になるまで、過渡的に指数関数的に菱化し
、第10図(b)のように、のように変化する。(1)
式において ■ T−・・・・・・・・・(3) C3N十C,A である。但し、 time :加速開始からの経過時間 C4IC2,C3:定数 Pa:大気圧 ■ :吸気管容積 A :吸入空気通過断面積 N :機関回転数 さらに前述したように、燃料噴射タイミングと吸気タイ
ミングにはズレがあり、このため実際に気筒に吸入され
る時の吸気管圧と、燃料噴射のために測定された吸気管
圧は同一でなく、ΔtキK 2/Nの位相差がある。こ
こで、吸気タイミングとは基準として吸気弁の最大リフ
ト時を指すこととする。
When the throttle valve 8 is changed stepwise, the intake air passage cross-sectional area A also becomes A as shown in FIG. 10(a). It changes stepwise from A1 to A1. In response to this change, the intake pipe pressure P transiently exponentially becomes rhombic from the intake pipe pressure P (0) immediately before the change until the change ends and the steady state intake pipe pressure P1 is reached. As shown in figure (b), it changes as follows. (1)
In the formula, ■ T-... (3) C3N0C,A. However, time: Elapsed time from the start of acceleration C4IC2, C3: Constant Pa: Atmospheric pressure ■: Intake pipe volume A: Intake air passage cross-sectional area N: Engine speed Furthermore, as mentioned above, fuel injection timing and intake timing There is a difference, and therefore the intake pipe pressure when the fuel is actually drawn into the cylinder and the intake pipe pressure measured for fuel injection are not the same, and there is a phase difference of ΔtK2/N. Here, the intake timing refers to the maximum lift of the intake valve as a reference.

従って、加速条件での空燃比を一定にするには、この位
相差Δしを補正する必要がアリ、v下に示す補正値KA
CCを用いる。
Therefore, in order to keep the air-fuel ratio constant under acceleration conditions, it is necessary to correct this phase difference Δ, and the correction value KA shown below is
Use CC.

P++(P(。)−P、)・e τ (4)式の補正値KACCは、第10図(e)のように
変化する。
P++(P(.)-P,)·e τ The correction value KACC of equation (4) changes as shown in FIG. 10(e).

第9図に戻って、このようにして演算した補正値KAC
Cとステラf35でめた基本噴射量Tpとを乗算し、燃
料噴射量T1=KAco−Tpをめ(ステツf44.第
10図(d))、このTiで燃料を噴射する(ステップ
45)。
Returning to FIG. 9, the correction value KAC calculated in this way
Multiply C by the basic injection amount Tp determined in Stella f35 to arrive at the fuel injection amount T1=KAco-Tp (step f44, FIG. 10(d)), and inject fuel at this Ti (step 45).

この結果、空燃比は第10図(f)に示すように、加速
条件という過渡状態においても破線で示すように一定と
なり、運転性が向上し、有害排出ガスが減少する。この
ような位相差を考慮せずに補正しない場合は、第10図
(g)に示すように、加速条件では空燃比が変動する。
As a result, as shown in FIG. 10(f), the air-fuel ratio remains constant as shown by the broken line even under transient conditions of acceleration, improving drivability and reducing harmful exhaust gases. If such a phase difference is not corrected without consideration, the air-fuel ratio will fluctuate under acceleration conditions, as shown in FIG. 10(g).

なお、第10図(c)および第10図(d)の破線は、
(1)式(第10図(b))による吸気管圧Pに比例定
数に1を乗じてめた基本噴射量Tpを表わす。
In addition, the broken lines in FIG. 10(c) and FIG. 10(d) are
It represents the basic injection amount Tp obtained by multiplying the intake pipe pressure P by the proportionality constant by 1 according to equation (1) (FIG. 10(b)).

以上、加速条件の場合を説明したが、減速条件について
行う場合も、第9図のフローチャートと略同様にして行
うことができる。
Although the case of the acceleration condition has been described above, the case of the deceleration condition can also be carried out in substantially the same manner as the flowchart of FIG. 9.

すなわち、減速条件の場合も、第9図のステップ36に
おいて、吸入空気通過断面積の変化量ΔAを予め定めた
所定値と比較してΔ八が所定値よりも小さければ減速条
件と判定し、ステップ43と同様(4)式の補正値をめ
て基本噴射量Tpを補正すれば、同様に減速条件での空
燃比をフラットにすることができる。−この場合に、Δ
Aと比較する所定値の絶対値を加速条件判定の場合の所
定値と同じにするならば、ΔAの絶対値をとって正の所
定値と比較することにより、加減速を同じ条件で判定す
ることができる。
That is, even in the case of a deceleration condition, in step 36 of FIG. 9, the amount of change ΔA in the intake air passage cross-sectional area is compared with a predetermined value, and if Δ8 is smaller than the predetermined value, it is determined that the deceleration condition is present. Similarly to step 43, by correcting the basic injection amount Tp using the correction value of equation (4), the air-fuel ratio under deceleration conditions can be made flat in the same way. −In this case, Δ
If the absolute value of the predetermined value to be compared with A is the same as the predetermined value for acceleration condition determination, acceleration/deceleration is determined under the same conditions by taking the absolute value of ΔA and comparing it with a positive predetermined value. be able to.

なお、機関の加減速条件の判定方法としては、上述した
絞弁8部分の吸入空気通過断面積Aの変位量ΔAによる
ものの他、機関の吸気管圧Pの変化量ΔPが所定値以上
か否かにより判定してもよい。
The acceleration/deceleration conditions of the engine can be determined by determining whether the amount of change ΔP in the intake pipe pressure P of the engine is greater than or equal to a predetermined value, in addition to the method based on the displacement amount ΔA of the intake air passage cross-sectional area A of the throttle valve 8 portion described above. The determination may be made based on the following.

また、補正値KACCおよびK。2cは、機関の冷却水
温に応じてさらに補正してもよく、基本的には冷却水温
が低い程補正値KACCおよびKDお。をさらに大きく
する。
Also, correction values KACC and K. 2c may be further corrected depending on the engine cooling water temperature, and basically, the lower the cooling water temperature, the lower the correction values KACC and KD. Make it even bigger.

(発明の効果) 以上説明したように、この発明の内燃機関の空燃比制御
装置によれば、機関の加減速条件等の過渡状態において
、燃料噴射タイミングと吸気タイミングとの位相差を考
慮して燃料噴射量を補正する構成としたため、過渡状態
における空燃比を一定(ブラシl )にでき、運転性を
向上させ、有害排出ガスを減少できるという効果が得ら
れる。
(Effects of the Invention) As explained above, according to the air-fuel ratio control device for an internal combustion engine of the present invention, the phase difference between the fuel injection timing and the intake timing is taken into consideration in a transient state such as an acceleration/deceleration condition of the engine. Since the fuel injection amount is corrected, the air-fuel ratio in a transient state can be kept constant (brush 1), improving drivability and reducing harmful exhaust gases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のD−ノエトロ方式による内燃機関の空燃
比制御装置の構成図、第2図は従来の絞弁開度センサの
構成を示す平面図、第3図は第2図の絞弁開度センサの
作用を説明するタイムチャート、第4図はこの発明の構
成を示す機能ブロック図、第5図はこの発明の内燃機関
の空燃比制御装置の一実施例の構成図、第6図は第5図
のコントロールユニットの構成を示すブロック図、第7
図はこの発明で用いられている絞弁開度センサの構成図
、第8図は第7図の絞弁開度センサの特性を示す図、第
9図はこの発明の内燃機関の空燃比制御装置の作用を説
明するフローチャート、第10図は各パラメータの変化
を示すタイムチャートである。 5・・インジエクタ、10・・・吸気管圧センサ、11
・・・気筒、14・・・点火コイル、16・・・コン1
ロールユニツト、17・・・絞弁開度センサ、17a・
・・抵抗、17b・・・ブラシ、21・・・カウンタ、
22・・演算器、27・・駆動回路、A・・・吸入空気
通つ間断面積・KACCI KDEC・・・補正値、N
・・・機関回転数、P・・・吸気管圧、P(。)・・・
加減速開始直前の吸気管圧、T。 ・基本噴射量、T1 ・・燃料噴射量、time 加減
速開始からの経過時間、Δt・・・位相差、θ・・・絞
弁開度。 特許出願人 日産自動車株式会社 特許出願代理人 弁理士 山 本 恵 − 幕7図 本8 図 3Lt/r7I
Fig. 1 is a block diagram of an air-fuel ratio control device for an internal combustion engine using the conventional D-noetro system, Fig. 2 is a plan view showing the structure of a conventional throttle valve opening sensor, and Fig. 3 is a diagram of the throttle valve of Fig. 2. FIG. 4 is a functional block diagram showing the configuration of the present invention. FIG. 5 is a configuration diagram of an embodiment of the air-fuel ratio control device for an internal combustion engine of the present invention. FIG. 7 is a block diagram showing the configuration of the control unit in FIG.
Fig. 8 is a diagram showing the configuration of the throttle valve opening sensor used in the present invention, Fig. 8 is a diagram showing the characteristics of the throttle valve opening sensor shown in Fig. 7, and Fig. 9 is a diagram showing the air-fuel ratio control of the internal combustion engine of the present invention. A flowchart explaining the operation of the device, and FIG. 10 is a time chart showing changes in each parameter. 5... Injector, 10... Intake pipe pressure sensor, 11
... cylinder, 14 ... ignition coil, 16 ... controller 1
Roll unit, 17... Throttle valve opening sensor, 17a...
...Resistor, 17b...Brush, 21...Counter,
22... Arithmetic unit, 27... Drive circuit, A... Cross-sectional area through which intake air passes KACCI KDEC... Correction value, N
...Engine speed, P...Intake pipe pressure, P(.)...
Intake pipe pressure just before the start of acceleration/deceleration, T.・Basic injection amount, T1 ・・Fuel injection amount, time: Elapsed time from the start of acceleration/deceleration, Δt: Phase difference, θ: Throttle valve opening. Patent Applicant Nissan Motor Co., Ltd. Patent Application Agent Megumi Yamamoto - Maku 7 Diagram 8 Figure 3Lt/r7I

Claims (2)

【特許請求の範囲】[Claims] (1)内燃機関の吸入空気圧Pを検出する吸気管圧セン
サと、吸気管に設けられた絞弁の開度を検出する絞弁開
度センサと、前記絞弁開度センサからの信号に基づき絞
弁部の吸入空気通過断面積Aを検出する吸入空気通過断
面積検出手段と、該手段からの信号に基づき内燃機関の
過渡状態の有無を判定する過渡状態判定手段と、該手段
の信号に基づき過渡状態開始からの経過時間Lirne
を計測するtime計測手段と、前記過渡状態判定手段
と吸気管圧センサとからの信号に基づき過渡状態開始直
前の吸気管圧P(。ンを検出する吸気管圧P(。)検出
手段と、内燃機関の回転数Nを検出する回転数検出手段
と、前記吸入空気通過断面積Aと経過時間timeと吸
気管圧P(o)と回転数Nとから過渡状態での補正値K
を演算する補正値演算手段と、前記吸入空気圧Pと回転
数Nとから基本燃料噴射量T、を演算し、該値Tpに前
記補正量Kを乗算して実際の燃料噴射量Tiを演算して
インジェクタを駆動するための信号を出力する燃料噴射
量演算手段とを具備して構成されることを特徴とする内
燃機関の空燃比制御装置。
(1) An intake pipe pressure sensor that detects the intake air pressure P of the internal combustion engine, a throttle valve opening sensor that detects the opening of a throttle valve provided in the intake pipe, and a throttle valve opening sensor that detects the opening of the throttle valve provided in the intake pipe. an intake air passage cross-sectional area detecting means for detecting the intake air passage cross-sectional area A of the throttle valve portion; a transient state determining means for determining the presence or absence of a transient state of the internal combustion engine based on a signal from the means; Based on the elapsed time from the start of the transient state Lirne
an intake pipe pressure P(.) detection means for detecting the intake pipe pressure P(.) immediately before the start of the transient state based on signals from the transient state determination means and the intake pipe pressure sensor; A rotation speed detection means for detecting the rotation speed N of the internal combustion engine, and a correction value K in a transient state from the intake air passage cross-sectional area A, the elapsed time time, the intake pipe pressure P(o), and the rotation speed N.
a correction value calculation means for calculating a basic fuel injection amount T from the intake air pressure P and the rotational speed N, and calculates an actual fuel injection amount Ti by multiplying the value Tp by the correction amount K. 1. An air-fuel ratio control device for an internal combustion engine, comprising: fuel injection amount calculation means for outputting a signal for driving an injector.
(2)前記補正量には、 ただし であシ、paは大気圧、■は吸気管容積、ΔLは燃料噴
射時と吸気弁開弁時の位相差Δtであることを特徴とす
る特許請求の範囲第1項に記載の内燃機関の空燃比制御
装置。
(2) The correction amount includes: pa is the atmospheric pressure, ■ is the intake pipe volume, and ΔL is the phase difference Δt between the time of fuel injection and the time of opening the intake valve. An air-fuel ratio control device for an internal combustion engine according to scope 1.
JP59049220A 1984-03-16 1984-03-16 Air-fuel ratio controller for internal-combustion engine Pending JPS60195345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049220A JPS60195345A (en) 1984-03-16 1984-03-16 Air-fuel ratio controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049220A JPS60195345A (en) 1984-03-16 1984-03-16 Air-fuel ratio controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60195345A true JPS60195345A (en) 1985-10-03

Family

ID=12824858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049220A Pending JPS60195345A (en) 1984-03-16 1984-03-16 Air-fuel ratio controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60195345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195491A (en) * 1991-05-14 1993-03-23 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for controlling an engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195491A (en) * 1991-05-14 1993-03-23 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for controlling an engine

Similar Documents

Publication Publication Date Title
JPH0359255B2 (en)
JPS62162746A (en) Air-fuel ratio control device
JPS6165038A (en) Air-fuel ratio control system
EP0335334B1 (en) Fuel supply control system for internal combustion engine with improved engine acceleration characteristics after fuel cut-off operation
US5634449A (en) Engine air-fuel ratio controller
JPS60195345A (en) Air-fuel ratio controller for internal-combustion engine
JP2579908B2 (en) Engine throttle valve control device
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JPH01305144A (en) Fuel injection controller of internal combustion engine
JPH0559994A (en) Control device for engine
JP3023614B2 (en) Air-fuel ratio control device for internal combustion engine
JP3192514B2 (en) Engine air-fuel ratio control device
JPS6312861A (en) Ignition timing controller for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JP2548612B2 (en) Fuel supply control device for internal combustion engine
JPH0734193Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0715271B2 (en) Fuel supply control device for internal combustion engine
JP2924577B2 (en) Engine stability control device
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPS639659A (en) Load detector for internal combustion engine
JPH0830460B2 (en) Ignition timing control device for internal combustion engine
JPS62276234A (en) Fuel feed control device for internal combustion engine
JPH0612085B2 (en) Fuel supply control device for internal combustion engine
JPH0211839A (en) Fuel injection controller for internal combustion engine