JPH0211839A - Fuel injection controller for internal combustion engine - Google Patents

Fuel injection controller for internal combustion engine

Info

Publication number
JPH0211839A
JPH0211839A JP16290988A JP16290988A JPH0211839A JP H0211839 A JPH0211839 A JP H0211839A JP 16290988 A JP16290988 A JP 16290988A JP 16290988 A JP16290988 A JP 16290988A JP H0211839 A JPH0211839 A JP H0211839A
Authority
JP
Japan
Prior art keywords
amount
engine
correction
injection
synchronous injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16290988A
Other languages
Japanese (ja)
Other versions
JP2505540B2 (en
Inventor
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16290988A priority Critical patent/JP2505540B2/en
Priority to US07/360,813 priority patent/US4922877A/en
Publication of JPH0211839A publication Critical patent/JPH0211839A/en
Application granted granted Critical
Publication of JP2505540B2 publication Critical patent/JP2505540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the flatness of the air-fuel ratio by correcting the synchronous injection quantity by the transition correction quantity and shortage correction quantity, besides the transition correction quantity, when an engine shifts to a prescribed transition state. CONSTITUTION:In a transition judging means 6, the variation quantity of the engine load is obtained from the operation state of an engine, and it is judged that the engine is in a prescribed transition state. A synchronous injection quantity calculating means (c) calculates the synchronous injection quantity in each revolution on the basis of the engine operation state, and when the transition to a prescribed transition state is performed, the synchronous injection quantity is corrected according to the transition correction quantity and corrected with the transition correction quantity and the shortage portion accompanied with the correction is corrected by the shortage correction quantity. Since a fuel injection means (g) jets fuel on the basis of the output of the synchronous injection calculating means (c), the correction for the synchronous injection quantity in transition is made proper, and the flatness of the air-fuel ratio is improved, and the emission characteristic can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等内燃機関の燃料噴射制御装置に係り
、詳しくは、過渡運転時における空燃比のフラット性を
高める装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel injection control device for an internal combustion engine such as an automobile, and more particularly to a device that improves the flatness of the air-fuel ratio during transient operation.

(従来の技術) 自動車等車両のエンジンに対する要求出力が変化した際
には、その要求程度に応じて応答性よく燃料供給量を制
御することが必要であり、これは特に過渡運転時におけ
る空燃比に影響を与えドライブフィーリングや排気組成
等の運転性能を左右する。
(Prior art) When the required output for the engine of a vehicle such as an automobile changes, it is necessary to control the fuel supply amount with good responsiveness according to the degree of the request. This affects driving performance such as drive feeling and exhaust composition.

一般に、機関の加減速時における空燃比の目標空燃比か
らのずれは、吸気系の吸気マニホールドや吸気ボーI−
に付着した付着燃料および浮遊燃料の量的変化に起因す
るものであり、この付着、浮遊燃料量は機関の運転状態
に応して大きく変化する。
Generally, the deviation of the air-fuel ratio from the target air-fuel ratio during engine acceleration/deceleration is caused by the intake manifold of the intake system or the intake bow I-
This is due to changes in the amount of adhering fuel and floating fuel attached to the engine, and the amount of adhering and floating fuel varies greatly depending on the operating condition of the engine.

具体的には加減速時の燃料噴射量は絞弁開度の変化量Δ
TVO等により補正されていたが、ΔTV○は空気量や
壁流との相関がなく (弱く)空燃比(A/F)のフラ
ット性が悪いため、排気エミッションや緩加速運転性等
の改良化が少なかった。
Specifically, the fuel injection amount during acceleration/deceleration is the change amount Δ of the throttle valve opening.
Although it was corrected by TVO, etc., ΔTV○ has no correlation with air volume or wall flow, and (weak) flatness of the air-fuel ratio (A/F) is poor. Therefore, improvements should be made to exhaust emissions, slow acceleration drivability, etc. There were few.

また、壁流の多い冷却水の低中間温領域では、加速時に
燃焼室内に入る燃料量が少なくなるので常時燃料噴射量
を多くしてリンチとする必要があり、これは燃費も良く
ない。
Furthermore, in a low intermediate temperature region of the cooling water where there is a lot of wall flow, the amount of fuel that enters the combustion chamber during acceleration decreases, so it is necessary to constantly increase the amount of fuel injection to achieve lynch, which does not improve fuel efficiency.

そごで、上記欠点を解消する内燃機関の燃料噴射制御装
置としては、例えば特開昭58−6238号公報に記載
のものがある。この装置では、壁面付着燃料量および壁
面付着燃料が吸気時に燃焼室に持ち去られる持ち去り燃
料量が噴射燃料量に応して変化することに着目して燃料
噴射量に応じて壁面付着燃料量を推定算出するとともに
、その算出値を積算し、この積算結果から持ち去り燃料
量を推定算出している。そして、算出した壁面付着燃料
量から持ち去り燃料量を差引いたものを同期噴射量に加
えて実行同期噴射量としている。すなわち、壁面付着燃
料量が多いときは同期噴射量を増量し、持ち去り燃料量
が多いときは同期噴射量を減量して空燃比変動を抑制し
ている。
As a fuel injection control device for an internal combustion engine that eliminates the above-mentioned drawbacks, there is, for example, one described in Japanese Patent Laid-Open No. 58-6238. This device focuses on the fact that the amount of fuel adhering to the wall and the amount of fuel adhering to the wall carried away to the combustion chamber during intake changes depending on the amount of injected fuel. At the same time as the estimated calculation, the calculated value is integrated, and the amount of fuel taken away is estimated from the integrated result. Then, the amount obtained by subtracting the amount of fuel carried away from the calculated amount of fuel adhering to the wall surface is added to the synchronous injection amount to determine the effective synchronous injection amount. That is, when the amount of fuel adhering to the wall surface is large, the synchronous injection amount is increased, and when the amount of fuel carried away is large, the synchronous injection amount is decreased to suppress air-fuel ratio fluctuations.

(発明が解決しようとする課題) しかしながら、このような従来の内燃機関の燃料噴射制
御装置にあっては、壁流の挙動のうち比較的遅い時定数
で変化するものく以下、低周波分という)に対して燃料
噴射量が補正されるものの、比較的速い時定数で変化す
るもの(以下、高周波骨という)に対しての補正が考慮
されておらず、この点で次のような問題が発生していた
(Problem to be Solved by the Invention) However, in such a conventional fuel injection control device for an internal combustion engine, the behavior of the wall flow that changes with a relatively slow time constant is called the low frequency component. ), but the correction for things that change with a relatively fast time constant (hereinafter referred to as high-frequency bones) is not taken into consideration, and in this respect, the following problems arise. It was occurring.

すなわち、割込みの噴射に到らない緩加速において、加
速初めの1吸気目の空燃比(A/F)がややリーンとな
る事がある。これは噴射タイミングが吸気行程直前であ
ると、増量しても壁流となる割合が多いためと判明した
。また、噴射タイミングが早すぎても、古い空気量信号
で噴射するためややリーンとなる。
That is, during slow acceleration that does not reach interrupt injection, the air-fuel ratio (A/F) at the first intake at the beginning of acceleration may become slightly lean. It turns out that this is because when the injection timing is just before the intake stroke, there is a high proportion of wall flow even if the amount is increased. Furthermore, even if the injection timing is too early, the injection will be performed using an old air amount signal, resulting in a slightly lean result.

(発明の目的) そこで本発明、エンジンが所定の過渡状態に移行したと
き、過渡補正量に加えて過渡修正量および過不足補正量
によって同期噴射量を補正することにより、空燃比のフ
ラット性を高めて、エミッション特性を向上させること
を目的としている。
(Purpose of the Invention) Therefore, the present invention corrects the flatness of the air-fuel ratio by correcting the synchronous injection amount using the transient correction amount and the excess/deficiency correction amount in addition to the transient correction amount when the engine shifts to a predetermined transient state. The purpose is to increase the emission characteristics.

(課題を解決するための手段) 本発明による内燃機関の燃料噴射制御装置は上記目的達
成のため、その基本概念図を第1図に示すように、エン
ジンの運転状態を検出する運転状態検出手段aと、エン
ジンの運転状態からエンジン負荷の変化量を求め、該エ
ンジン負荷の変化量に基づいてエンジンが所定の過渡状
態にあることを判別する過渡判別手段すと、エンジンの
運転状態に基づいて回転毎の同期噴射量を演算し、所定
の過渡状態に移行すると、該同期噴射量を過渡補正量に
応じて補正するとともに、過渡修正量で修正し、かつ該
修正に伴う過不足分を過不足補正量で補正する同期噴射
量演算手段Cと、エンジンが所定の過渡状態に移行した
とき、前記エンジン負荷の変化量に基づいて前記過渡補
正量を演算する過渡補正量演算手段dと、エンジンが所
定の過渡状態に移行したとき、同期噴射のタイミングに
基づいて前記過渡修正量を演算する修正量演算手段eと
、前回の同期噴射における過渡修正量に基づいて今回の
前記過不足補正量を演算する過不足補正量演算手段fと
、同期噴射量演算手段Cの出力に基づいて燃料を噴射す
る燃料噴射手段gと、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the fuel injection control device for an internal combustion engine according to the present invention has an operating state detection means for detecting the operating state of the engine, as a basic conceptual diagram thereof is shown in FIG. a, a transient determination means for determining the amount of change in engine load from the operating state of the engine, and determining whether the engine is in a predetermined transient state based on the amount of change in engine load; After calculating the synchronous injection amount for each rotation and moving to a predetermined transient state, the synchronous injection amount is corrected according to the transient correction amount, and also corrected by the transient correction amount, and the excess or deficiency caused by the correction is corrected. synchronous injection amount calculation means C that corrects with an insufficient correction amount; transient correction amount calculation means d that calculates the transient correction amount based on the amount of change in the engine load when the engine shifts to a predetermined transient state; a correction amount calculation means e which calculates the transient correction amount based on the timing of the synchronous injection when the transition to a predetermined transient state; It includes an excess/deficiency correction amount calculating means f for calculating, and a fuel injection means g for injecting fuel based on the output of the synchronous injection amount calculating means C.

(作用) 本発明では、エンジンが所定の過渡状態に移行したとき
、過渡補正量に加えて同期噴射タイミングに基づく過渡
修正量および該修正誤差を補正する過不足補正量によっ
て同期噴射量が補正される。
(Function) In the present invention, when the engine shifts to a predetermined transient state, the synchronous injection amount is corrected by the transient correction amount based on the synchronous injection timing and the excess/deficiency correction amount that corrects the correction error in addition to the transient correction amount. Ru.

したがって、過渡時における同期噴射量の補正が適切な
ものとなって、空燃比のフラット性が高まり、エミッシ
ョン特性が向上する。
Therefore, the correction of the synchronous injection amount at the time of transition becomes appropriate, the air-fuel ratio becomes more flat, and the emission characteristics are improved.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜8図は本発明に係る内燃機関の燃料噴射制御装置
の一実施例を示す図である。まず、構成を説明する。第
2図は本装置の全体構成を示す図である。第2図におい
て、1はエンジンであり、吸入空気はエアクリーナ2か
ら吸気管3を通り、燃料は噴射信号Siに基づきインジ
ェクタ(燃料噴射手段)4から噴射される。そして、気
筒内で燃焼した排気は排気管5を通して触媒コンバータ
6に導入され、触媒コンバータ6内で排気中の有害成分
(C(l )−1(、N0x)を三元触媒により清浄化
して排出される。
2 to 8 are diagrams showing an embodiment of a fuel injection control device for an internal combustion engine according to the present invention. First, the configuration will be explained. FIG. 2 is a diagram showing the overall configuration of this device. In FIG. 2, 1 is an engine, intake air passes through an air cleaner 2 and an intake pipe 3, and fuel is injected from an injector (fuel injection means) 4 based on an injection signal Si. The exhaust gas combusted in the cylinder is introduced into the catalytic converter 6 through the exhaust pipe 5, where the harmful components (C(l)-1(, NOx) in the exhaust gas are purified by a three-way catalyst and then discharged. be done.

吸入空気の流量Qaばホットワイヤ式のエアフロメータ
7により検出され、吸気管3内の絞弁8によって制御さ
れる。なお、エアフロメーク7のタイプとしては、ホッ
トフィルム式でもよく、要は吸入空気の流量を測定する
ものであればよい。
The intake air flow rate Qa is detected by a hot wire type air flow meter 7 and controlled by a throttle valve 8 in the intake pipe 3. Note that the type of air flow make 7 may be a hot film type, and in short, any type that measures the flow rate of intake air may be used.

したがって、フラップ式のものでもよいが、本実施例で
は負圧センサは除かれる。なお、負圧センサを用いたシ
ステムに本発明を適用することはいっこうにかまわない
Therefore, although a flap type sensor may be used, the negative pressure sensor is omitted in this embodiment. Note that the present invention may be applied to a system using a negative pressure sensor.

絞弁8の開度TVOは開度センサ9により検出され、エ
ンジン1の回転数Nはクランク角センサ10により検出
され、クランク角センサ10は爆発間隔(6気筒エンジ
ンでは120°、4気筒エンジンでは180°)毎に各
気筒の圧縮上死点(TDC)前の所定位置、例えばBT
DC70°でCH)レベルのパルスとなる基準信号Ca
を出力するとともに、クランク角の単位角度(例えば2
°)毎に[H] レベルのパルスとなる単位信号C1を
出力する。なお、基準信号Caのパルスを係数すること
により、エンジン回転数Nを知ることができる。
The opening degree TVO of the throttle valve 8 is detected by the opening degree sensor 9, and the rotation speed N of the engine 1 is detected by the crank angle sensor 10. 180°) at a predetermined position before compression top dead center (TDC) of each cylinder, for example
Reference signal Ca that becomes a pulse of CH) level at DC 70°
In addition to outputting the unit angle of the crank angle (for example, 2
A unit signal C1, which becomes a [H] level pulse, is output for each [H] level pulse. Note that the engine rotation speed N can be determined by calculating the pulses of the reference signal Ca as a coefficient.

また、ウォータジャケットを流れる冷却水の温度TWは
水温センサ11により検出され、排気中の酸素濃度は酸
素センサ12により検出される。酸素センサ12として
は、例えば特開昭61−24.1434号公報に示した
リッチからリーンまで検知可能センサ等が用いられる。
Further, the temperature TW of the cooling water flowing through the water jacket is detected by a water temperature sensor 11, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor 12. As the oxygen sensor 12, for example, a sensor capable of detecting from rich to lean as disclosed in Japanese Patent Laid-Open No. 61-24.1434 is used.

さらに、スタータモータの作動はスタートスイッチ13
により検出される。
Furthermore, the operation of the starter motor is controlled by the start switch 13.
Detected by

上記エアフロメータ7、開度センサ9、クランク角セン
サ10、水温センサ11、酸素センサ12およびスター
トスイッチ13は運転状態検出手段14を構成しており
、運転状態検出手段14からの出力はコントロールユニ
ット20に入力される。コントロールユニット20は過
渡判別手段、同期噴射演算手段、過渡補正量演算手段、
修正量演算手段および過不足補正量演算手段としての機
能を有し、CPU21、ROM22、RAM23および
I10ボート24により構成される。CPU21はRO
M22に書き込まれているプログラムに従ってI10ボ
ート24より必要とする外部データを取り込んだり、ま
たRAM23との間でデータの授受を行ったりしながら
噴射量制御に必要な処理値を演算処理し、必要に応して
処理したデータをI10ポート24へ出力する。I10
ポート24には運転状態検出手段14からの信号が入力
されるとともに、I10ポート24からは噴射信号Si
が出力される。ROM22はCPU21における演算プ
ログラムを格納しており、RAM23は演算に使用する
データをマツプ等の形で記憶している。
The air flow meter 7, the opening sensor 9, the crank angle sensor 10, the water temperature sensor 11, the oxygen sensor 12, and the start switch 13 constitute an operating state detecting means 14, and the output from the operating state detecting means 14 is sent to a control unit 20. is input. The control unit 20 includes a transient discrimination means, a synchronous injection calculation means, a transient correction amount calculation means,
It has functions as a correction amount calculation means and an excess/deficiency correction amount calculation means, and is composed of a CPU 21, a ROM 22, a RAM 23, and an I10 board 24. CPU21 is RO
According to the program written in the M22, necessary external data is taken in from the I10 boat 24, and while data is exchanged with the RAM 23, the processing values necessary for injection amount control are calculated, and the necessary The correspondingly processed data is output to the I10 port 24. I10
A signal from the operating state detection means 14 is input to the port 24, and an injection signal Si is input from the I10 port 24.
is output. The ROM 22 stores calculation programs for the CPU 21, and the RAM 23 stores data used in calculations in the form of a map or the like.

次に、作用を説明する。Next, the effect will be explained.

本実施例のメインプログラムは第5図以降のように示さ
れるが、第5図のプログラムにおいて演算されるAvt
pはサブルーチンで演算される。
The main program of this embodiment is shown as shown in FIG. 5 and after. Avt calculated in the program of FIG.
p is calculated in a subroutine.

説明の都合上、最初にAVjpを求めるサブルーチンか
ら述べる。
For convenience of explanation, the subroutine for determining AVjp will be described first.

第3図は平滑噴射量Avtpを求めるサブルーチンであ
る。
FIG. 3 shows a subroutine for calculating the smooth injection amount Avtp.

まず、Plでエアフロメータ7の出力を読み込んで吸入
空気量Qaを求める。これは、例えばテーブルルックア
ップによる。次いで、P2で0式に従って平滑部基本パ
ルス幅Tpoを演算する。
First, the output of the air flow meter 7 is read at Pl to determine the intake air amount Qa. This is for example by table lookup. Next, in P2, the smoothing part basic pulse width Tpo is calculated according to the formula 0.

a T p o =      X K  ・・・・・・■
次いで、P3でTpoを加重平均して基本パルス幅Tp
を演算する。これにより、エアフロメタフの出力に基づ
く脈動が平滑化される。P4では次式■に従ってフラッ
ト修正基本パルス幅TrTpを求める。
a T p o = X K ・・・・・・■
Next, in P3, the basic pulse width Tp is obtained by weighted averaging of Tpo.
Calculate. As a result, pulsations based on the output of the airflow metaph are smoothed out. In P4, the flat correction basic pulse width TrTp is determined according to the following equation (2).

TrTp=TpxKflat  −・−−−−■■式に
おいて、KflatはフラットA/F補正係数であり、
回転数Nとα−N流量Qhoとにより割付けられたマツ
プから補間計算付きで求める。なお、α−N流量とは絞
弁開度TVOと回転数Nから空気量を求めるものであり
、既に公知のものである。
TrTp=TpxKflat −・---−■ In the formula, Kflat is a flat A/F correction coefficient,
It is calculated with interpolation from a map allocated by the rotational speed N and the α-N flow rate Qho. Note that the α-N flow rate is the amount of air determined from the throttle valve opening TVO and the rotational speed N, and is already known.

次いで、P5でTrTpを所定の最長リミット値T p
maxと比較し、Tr T p >Tpmaxのときは
P6でTrTpをTpmaxに制限してP7に進み、T
rTp≦TpmaxのときはP6をジャンプしてP7に
進む。P7ではα−N先取り補正パルス幅としての遅れ
修正パルス幅TH3TPを求める。これは、α−N流量
Qhoに基づき補間計算付きテーブルからルックアップ
した値TH3TPの10m5毎の変化量として求める。
Next, in P5, TrTp is set to a predetermined maximum limit value T p
max, and when Tr T p > Tpmax, limit TrTp to Tpmax in P6, proceed to P7, and set Tp.
When rTp≦Tpmax, jump to P6 and proceed to P7. In P7, the delay correction pulse width TH3TP is determined as the α-N prefetch correction pulse width. This is determined as the amount of change every 10 m5 in the value TH3TP looked up from the table with interpolation calculation based on the α-N flow rate Qho.

但し、該変化量が補正判定レベル以下であれば、TH3
TP=Oとし、変化量が負(減速)の場合は変化量に所
定の減速修正率を乗じて求める。TH3TPは絞弁8の
変化を先取りして噴射量を応答性良く補正する項である
。次いで、P8で次式■に従って平滑噴射量Avtp 
(平滑吸気量に対応)を求める。
However, if the amount of change is below the correction judgment level, TH3
If TP=O and the amount of change is negative (deceleration), the amount of change is multiplied by a predetermined deceleration correction rate. TH3TP is a term that anticipates changes in the throttle valve 8 and corrects the injection amount with good responsiveness. Next, in P8, the smooth injection amount Avtp is calculated according to the following formula (■).
(corresponding to smooth intake air volume).

Avtp=TrTpXFLOAD+Avtl)X (1
−FLOAD)+TH3TP ・・・・・・■ 0式において、FLOADは加重平均係数であり、FL
OAD=TFLOAD+に2D (減速のみ)によって
与えられる。TFLOADは吸気ボリウムのみの関数と
するため、絞弁8によって決まる流量面積AAと(排気
量×回転数)NVMとからマツプにより求める。したが
って、■式の第1項および2項はエアフロメータ7の出
力を脈動修正した値に基づいて演算されたフラット修正
基本パルス幅TrTpについて、FLOADを用いて加
重平均した値、言い換えればTrTpの一次遅れを計算
により (ソフトにより)算出する部分に相当する。ま
た、■式の第3項は絞弁開度TV○による先取り補正の
部分であり、この部分は先願には無く、本実施例で初め
て開示するものである。
Avtp=TrTpXFLOAD+Avtl)X (1
−FLOAD)+TH3TP ・・・・・・■ In formula 0, FLOAD is a weighted average coefficient, and FL
OAD=TFLOAD+ given by 2D (deceleration only). Since TFLOAD is a function only of the intake volume, it is determined by a map from the flow area AA determined by the throttle valve 8 and (displacement amount x rotational speed) NVM. Therefore, the first and second terms of equation (2) are the weighted average value using FLOAD of the flat corrected basic pulse width TrTp calculated based on the pulsation corrected value of the output of the airflow meter 7, in other words, the first order of TrTp. This corresponds to the part that calculates the delay by calculation (using software). Furthermore, the third term in equation (2) is a preemptive correction based on the throttle valve opening degree TV○, and this part is not found in the prior application and is disclosed for the first time in this embodiment.

このような第3項のTH3TPを加えた効果は第4図の
ように示される。第4図において、あるタイミングで加
速した場合、絞弁変化にやや遅れて基本パルス幅Tpo
、Tpが変化し、Tpo、Tpを修正した波形はフラッ
ト修正基本パルス幅TrTpとして第4図のように変化
する。
The effect of adding the third term TH3TP is shown in FIG. In Figure 4, when accelerating at a certain timing, the basic pulse width Tpo is slightly delayed from the throttle valve change.
, Tp change, and the waveform obtained by correcting Tpo and Tp changes as a flat corrected basic pulse width TrTp as shown in FIG.

一方、α−N流量は絞弁8の開き具合に応じてステップ
的に変化しており、この開度変化量により遅れ修正パル
ス幅TH3TPが演算される。また、平滑噴射量Avt
pはTrTpの一次遅れで与えられ、TH3TPなしの
従来の位相制御の場合は図中の一点鎖線で示す変化とな
り、応答性に欠ける。このとき、吸入負圧は破線で示さ
れ、噴射弁部(インジェクタ4部)の空気流量に略等し
いが、これとて絞弁8の開度変化に遅れなく追随できる
ものではない。また、吸気ボリウムにより吸気管3の壁
面への燃焼付着量にも影響を与える。
On the other hand, the α-N flow rate changes stepwise according to the degree of opening of the throttle valve 8, and the delay correction pulse width TH3TP is calculated based on the amount of change in the degree of opening. In addition, the smooth injection amount Avt
p is given by the first-order delay of TrTp, and in the case of conventional phase control without TH3TP, the change is shown by the dashed line in the figure, resulting in lack of responsiveness. At this time, the suction negative pressure is shown by a broken line and is approximately equal to the air flow rate of the injection valve section (injector 4 section), but this cannot follow the change in the opening degree of the throttle valve 8 without delay. In addition, the amount of combustion adhering to the wall surface of the intake pipe 3 is also influenced by the intake volume.

これに対して、本実施例のAvtpは図中実線で示すよ
うに、TH3TPよりなる補正項がαNの先取り補正(
10m sの先取り補正)として加えられているから、
極めて応答性が良く、実際の空気流量変化にマツチした
ものとなる。なお、公知の例も図示している。
On the other hand, in Avtp of this embodiment, as shown by the solid line in the figure, the correction term consisting of TH3TP is αN preemptive correction (
Since it is added as a preemption correction of 10ms,
It has extremely good responsiveness and matches actual changes in air flow rate. Note that known examples are also illustrated.

第5図は気筒別壁流補正量(過渡修正量)Ch。FIG. 5 shows the wall flow correction amount (transient correction amount) Ch for each cylinder.

snを求めるプログラムを示すフローヂャートであり、
所定期間毎に実行される。まず、pHで次式〇に従って
平滑噴射量Aνtp  (平滑吸気量に対応)の変化量
ΔAvtpn (但し、nは気筒番号)を求める。ΔA
vtpnはエンジン負荷の変化量に対応する。
This is a flowchart showing a program to obtain sn.
It is executed every predetermined period. First, the amount of change ΔAvtpn (where n is the cylinder number) in the smooth injection amount Avtp (corresponding to the smooth intake air amount) is determined based on the pH according to the following equation. ΔA
vtpn corresponds to the amount of change in engine load.

ΔAvtpn=Avtp −Avtpoin  −■但
し、Avtpoinは前回の燃料噴射時の値(Avtp
−+)のことであり、n番目の気筒に対応している。
ΔAvtpn=Avtp −Avtpoint −■ However, Avtpoint is the value at the time of previous fuel injection (Avtp
-+) and corresponds to the n-th cylinder.

次いで、P、□で噴射時期補正率Gzitを噴射タイミ
ングTをパラメータとする。テーブルからルックアップ
するこのGzitは後述する気筒別壁流補正量Chos
nおよび気筒別増量補正量E racinの演算に噴射
タイミングによる補正を行うためのものである。
Next, in P and □, the injection timing correction factor Gzit is set using the injection timing T as a parameter. This Gzit looked up from the table is the wall flow correction amount Chos for each cylinder, which will be described later.
This is to correct the calculation of n and the cylinder-specific increase correction amount E racin based on the injection timing.

次いで、PI3で変化量ΔAvtp>Qであるが否かを
判別する。ずなわち、△Avtpnの符号を判別するこ
とにより、エンジン1の加速状態又は減速状態を判断す
る。変化量が負(ΔAvtpn< O)のときは減速状
態であると判断し、PI4で次式〇に従って減速時の気
筒別壁流補正量(過渡修正量)量Chosnを求める。
Next, PI3 determines whether the amount of change ΔAvtp>Q. That is, by determining the sign of ΔAvtpn, the acceleration state or deceleration state of the engine 1 is determined. When the amount of change is negative (ΔAvtpn<O), it is determined that the system is in a deceleration state, and the cylinder-by-cylinder wall flow correction amount (transient correction amount) amount Chosn during deceleration is determined in accordance with the following equation 〇 in PI4.

Chosn−ΔAvtpnX GztwmX Gzit
 −■但し、Gztwn:減速時の水温補正係数次いで
、PI5で次式■に従って減速時の気筒別増量補正量(
過不足補正量) EriLmを求め、今回のルーチンを
終了する。
Chosn-ΔAvtpnX GztwmX Gzit
-■ However, Gztwn: Water temperature correction coefficient during deceleration. Next, in PI5, according to the following formula
Excess/deficiency correction amount) EriLm is calculated and the current routine ends.

Er1tn−ΔAvtpnX GztwmX (Gzi
t −E RA CP H) ・・=・・■但し、ER
ACPH:壁流高周波分捕正量基本値 一方、変化量が正(ΔAvtpn>O)のときは加速状
態にあると判断し、PI3で次式■に従って加速時の気
筒別壁流補正量(過渡修正量) Chosnを求める。
Er1tn−ΔAvtpnX GztwmX (Gzi
t -E RA CP H) ・・・=・・■However, ER
ACPH: Wall flow high frequency separation correction amount basic value On the other hand, when the amount of change is positive (ΔAvtpn>O), it is judged that the state is in acceleration, and PI3 calculates the wall flow correction amount for each cylinder during acceleration (transient Amount of correction) Find Chosn.

Chosn =ΔAvtpnX GztwpX (Gz
it −E RA CP H) −−■但し、Gztw
p:加速時の水温補正係数次いで、PI3で次式〇に従
って加速時の気筒別増量補正量(過不足補正量) Er
1tnを求め、今回のルーチンを終了する。
Chosn =ΔAvtpnX GztwpX (Gz
it -E RA CP H) --■ However, Gztw
p: Water temperature correction coefficient during acceleration Next, in PI3, according to the following formula 〇, increase correction amount for each cylinder during acceleration (excess/deficiency correction amount) Er
1tn is obtained and the current routine is ended.

Er1tn−ΔAvtpn X GztwpX (Gz
it−ERACPH)−・”■この場合G z twp
は割込噴射用の後述するGztwと同一でもよい。また
、急加速で割込み噴射によりややRichとしたければ
別テーブルから求めてもよい(重質ガソリンを考慮した
場合、ややRichとしたい事がある)。
Er1tn−ΔAvtpn X GztwpX (Gz
it-ERACPH)-・”■ In this case, G z twp
may be the same as Gztw, which will be described later, for interrupt injection. Also, if you want to make it slightly richer due to sudden acceleration and interrupt injection, you may want to find it from a separate table (if heavy gasoline is taken into account, you may want to make it slightly richer).

第6図は同期噴射のプログラムを示すフローチャートで
あり、本プログラムはエンジン回転に同期して実行され
る。まず、P21で気筒を判別するが、これは各気筒に
設けられたクランク角センサ10から出力される気筒判
別信号を読み取ることで行われる。次いで、P2□で気
筒に応じた同期噴射量Tinを次式[相]に従って演算
し、I10ボート24から噴射信号Siをインジェクタ
4に出力する。
FIG. 6 is a flowchart showing a synchronous injection program, and this program is executed in synchronization with engine rotation. First, in P21, the cylinder is discriminated, and this is done by reading the cylinder discrimination signal output from the crank angle sensor 10 provided in each cylinder. Next, in P2□, the synchronous injection amount Tin corresponding to the cylinder is calculated according to the following equation [phase], and the injection signal Si is output from the I10 boat 24 to the injector 4.

Tin−(Avtp +Kathos)XTfbyaX
 (α−+−7m)+Chosn−旧Eracin→−
TS・・・・・・[相]但し、Kathos    :
比較的遅い時定数で変化(過渡補正量) する壁流補正
骨(低周波分)であり、正負の値を 有し、燃料の付着速度■ mf(ms)と補正率Ghf 〔%〕の関数で与えられ る。
Tin-(Avtp +Kathos)XTfbyaX
(α-+-7m)+Chosn-old Eracin→-
TS・・・・・・[phase] However, Kathos:
It is a wall flow correction bone (low frequency component) that changes with a relatively slow time constant (transient correction amount), has positive and negative values, and is a function of the fuel deposition speed mf (ms) and correction factor Ghf [%]. is given by

Tfbya:目標空燃比 α:酸素センサ12の出力に基づく空燃比のλ制御補正
係数である。
Tfbya: Target air-fuel ratio α: A λ control correction coefficient for the air-fuel ratio based on the output of the oxygen sensor 12.

αm=混合比学習制御補正係数 旧Eracin  :前回の気筒別増量補正量TS:イ
ンジェクタ4の無駄時間修正係数 次いで、PN2で噴射信号Siによってインジェクタ4
を所定時間駆動し、燃料を噴射する。次いで、PX3で
[相]式で用いられた今回の平滑噴射量Avtpiを前
回の平滑噴射量Avtpoinとして(Avtpi→A
vtpoin) RAM23にストアし、pzsで前記
PI5又はPI7で求めた気筒別増量補正量Er1tn
を次回の同期噴射量Tinを演算するときのE rac
inとしてRAM23にストアする。次いで、P26で
壁流量Mfを次式0に従って演算し、その値をRAM2
3にストアして今回のルーチンを終了する。
αm = Mixture ratio learning control correction coefficient Old Eracin: Previous increase correction amount for each cylinder TS: Dead time correction coefficient for injector 4 Then, at PN2, the injection signal Si causes injector 4 to
is driven for a predetermined period of time and fuel is injected. Next, the current smooth injection amount Avtpi used in the [phase] formula in PX3 is set as the previous smooth injection amount Avtpoin (Avtpi→A
vtpoint) Store in the RAM 23 and use pzs to obtain the cylinder-specific increase correction amount Er1tn obtained from the above PI5 or PI7.
E rac when calculating the next synchronous injection amount Tin
Store it in the RAM 23 as in. Next, in P26, the wall flow rate Mf is calculated according to the following equation 0, and the value is stored in RAM2.
3 and end this routine.

Mf−旧Mf+Vmf  ・・・・・・@但し、旧Mf
:前回の壁流演算値 Vmf:付着速度 付着速度Vmfは壁流に取られる 燃料の流量であり、1回転当た りの流量として求められる。
Mf - Old Mf + Vmf ...@However, old Mf
: Previous wall flow calculation value Vmf: Adhesion speed The adhesion speed Vmf is the flow rate of fuel taken up by the wall flow, and is determined as the flow rate per rotation.

上記各プログラムの実行による実際の作動は第7図のタ
イミングチャートのように示される。第7図はエンジン
1が緩加速した場合の特定気筒の同期噴射パルスの変化
を示した例である。エンシフ ン1が緩加速状態に移行した直後の初回の同期噴射1i
Tinは気筒別壁流補正量Chosnによって増量補正
され、次回のTinはChosnによる増量分(過不足
分)が気筒別増量補正量Eracinにより補正される
。その後、壁流量の増加に伴って吸気行程で燃焼室内に
持ち去られる燃料量も増加するため、これに応じて補正
量も減量される。
The actual operation by executing each of the above programs is shown in the timing chart of FIG. FIG. 7 is an example showing a change in the synchronous injection pulse of a specific cylinder when the engine 1 is slowly accelerated. The first synchronous injection 1i immediately after Ensifun 1 transitions to a slow acceleration state
Tin is increased by the cylinder-specific wall flow correction amount Chosn, and the next Tin is corrected by the amount of increase (excess or deficiency) due to Chosn by the cylinder-specific increase correction amount Eracin. Thereafter, as the wall flow rate increases, the amount of fuel carried away into the combustion chamber during the intake stroke also increases, so the correction amount is reduced accordingly.

したがって、第8図に従来と本実施例の空気量、噴射量
および空燃比の挙動を示すように、空気量のステップ的
な変化に対して従来の噴射量の補正方法では壁流の低周
波分K a thosで実行噴射時間TAU−Tpを補
正していたため、噴射量が斜線部分のように補正され、
空気量のピーク値に対して制御遅れとなり、また、壁流
となる燃料も多くなって空燃比が大きくリーン側に変動
していた。
Therefore, as shown in FIG. 8, which shows the behavior of the air amount, injection amount, and air-fuel ratio in the conventional case and this embodiment, the conventional method for correcting the injection amount in response to stepwise changes in the air amount Since the effective injection time TAU-Tp was corrected in minutes K a thos, the injection amount was corrected as shown in the shaded area,
There was a delay in control with respect to the peak value of the air amount, and more fuel was flowing into the wall, causing the air-fuel ratio to fluctuate significantly toward the lean side.

これに対し、本実施例では空気量変化直後の噴射量がK
 a Lhosに加えて噴射時期補正率Gzitで補正
された気筒別壁流補正量Chosnおよび気筒別増量補
正量Eracinで補正されるため、制御応答性が改善
され、空気量のピーク値に合わせて噴射量が増量補正さ
れるとともに、増量補正後のリンチ化も抑えられる。そ
の結果、図の破線のように過渡時の空燃比変動が極めて
少なくなり、はとんどフラツトなものとなる。これによ
り、エミッション特性を向上させることができる。 ま
た、減速時の場合は、減速状態に移行直後の同期噴射量
は空気変化量に応じて減量され、減量後は増量補正され
て減量補正後のリーン化が抑えられ、同様の効果が得ら
れることは勿論である。
On the other hand, in this embodiment, the injection amount immediately after the air amount change is K.
In addition to a Lhos, the cylinder-specific wall flow correction amount Chosn and the cylinder-specific increase correction amount Eracin are corrected by the injection timing correction factor Gzit, so control responsiveness is improved and injection is performed in accordance with the peak value of the air amount. The amount is corrected to increase, and lynching after the amount is corrected is also suppressed. As a result, as shown by the broken line in the figure, air-fuel ratio fluctuations during transient times are extremely small and become almost flat. Thereby, emission characteristics can be improved. In addition, during deceleration, the synchronous injection amount immediately after the transition to the deceleration state is reduced according to the amount of air change, and after the reduction is corrected, the amount is increased, suppressing lean after correction, and the same effect is obtained. Of course.

なお、本実施例では同期噴射について述べたが、これに
限らず再始動後の加速時等の割込み噴射が必要となった
場合には、次式〇および0に従って割込み噴射量1nj
stenおよび気筒別増量補正量Eracinを演算す
れば同様の効果が得られる。
Although synchronous injection has been described in this embodiment, if interrupt injection is required such as during acceleration after restart, the interrupt injection amount 1nj is determined according to the following formulas 〇 and 0.
A similar effect can be obtained by calculating sten and the cylinder-specific increase correction amount Eracin.

Injstcn−ΔAvtpion X Gztw X
 Gzcyn 4−1” s・・・・・@ 但し・ΔAvtpoin :前回の値 Gztw  :気筒別非同期噴射の水温補正率Gzcy
n :非同期時の噴射時期補正率E racin  =
 E racin  ’ +ΔAvtpoinX Gz
twX  (G zcyn −E racp)  −−
@但し、Eracin  ’ :前回の値E racp
:非同期噴射移行化基準補正率これら@、0式を用いる
ごとにより、非同期噴射時の空燃比のフラット性を高め
られる。
Injstcn-ΔAvtpion X Gztw
Gzcyn 4-1”s...@ However, ΔAvtpoin: Previous value Gztw: Water temperature correction factor for cylinder-specific asynchronous injection Gzcy
n: Injection timing correction factor during non-synchronization E racin =
E racin' +ΔAvtpoinX Gz
twX (G zcyn -E racp) --
@However, Eracin': Previous value Eracp
: Asynchronous injection transition standard correction factor By using these @ and 0 formulas, the flatness of the air-fuel ratio during asynchronous injection can be improved.

(発明の効果) 本発明によれば、エンジンが所定の過渡状態に移行した
とき、過渡補正量に加えて過渡修正量および過不足補正
量によって同期噴射量を補正しているので、過渡時の同
期噴射量を適切なものとして空燃比のフラット性を高め
ることができ、エミッション特性を向上させることがで
きる。
(Effects of the Invention) According to the present invention, when the engine shifts to a predetermined transient state, the synchronous injection amount is corrected by the transient correction amount and the excess/deficiency correction amount in addition to the transient correction amount. By setting an appropriate amount of synchronous injection, it is possible to improve the flatness of the air-fuel ratio and improve the emission characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜8図は本発明に係
る内燃機関の燃料噴射制御装置の一実施例を示す図であ
り、第2図はその全体構成図、第3図はその平滑噴射量
を演算するザブルーチンを示すフローチャー1−1第4
図はその平滑噴射量に基づく作用を説明するタイミング
チャート、第5図はその気筒別壁流補正量を求めるプロ
グラムを示すフローチャート、第6図はその同期噴射の
プログラムを示すフローチャート、第7図はその同期噴
射パルスのタイミングチャート、第8図はその同期噴射
の作用を説明するタイミングチャートである。 1・・・・・・エンジン、 4・・・・・・インジェクタ(燃料噴射手段)、14・
・・・・・運転状態検出手段、 20・・・・・・コントロールユニット(過渡判別手段
、同期噴射量演算手段、過渡補正量演算 手段、修正量演算手段、過不足補正量 演算手段)。
FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 to 8 are diagrams showing an embodiment of a fuel injection control device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. Flowchart 1-1 4th shows the subroutine that calculates the smooth injection amount.
The figure is a timing chart explaining the effect based on the smooth injection amount, FIG. 5 is a flowchart showing the program for calculating wall flow correction amount for each cylinder, FIG. 6 is a flowchart showing the synchronous injection program, and FIG. The timing chart of the synchronous injection pulse, FIG. 8, is a timing chart explaining the action of the synchronous injection. 1...Engine, 4...Injector (fuel injection means), 14.
... Operating state detection means, 20 ... Control unit (transient discrimination means, synchronous injection amount calculation means, transient correction amount calculation means, correction amount calculation means, excess/deficiency correction amount calculation means).

Claims (1)

【特許請求の範囲】 a)エンジンの運転状態を検出する運転状態検出手段と
、 b)エンジンの運転状態からエンジン負荷の変化量を求
め、該エンジン負荷の変化量に基づいてエンジンが所定
の過渡状態にあることを判別する過渡判別手段と、 c)エンジンの運転状態に基づいて回転毎の同期噴射量
を演算し、所定の過渡状態に移行すると、該同期噴射量
を過渡補正量に応じて補正するとともに、過渡修正量で
修正し、かつ該修正に伴う過不足分を過不足補正量で補
正する同期噴射量演算手段と、 d)エンジンが所定の過渡状態に移行したとき、前記エ
ンジン負荷の変化量に基づいて前記過渡補正量を演算す
る過渡補正量演算手段と、 e)エンジンが所定の過渡状態に移行したとき、同期噴
射のタイミングに基づいて前記過渡修正量を演算する修
正量演算手段と、 f)前回の同期噴射における過渡修正量に基づいて今回
の前記過不足補正量を演算する過不足補正量演算手段と
、 g)同期噴射量演算手段の出力に基づいて燃料を噴射す
る燃料噴射手段と、 を備えたことを特徴とする内燃機関の燃料噴射制御装置
[Scope of Claims] a) Operating state detection means for detecting the operating state of the engine; b) Determining the amount of change in engine load from the operating state of the engine, and based on the amount of change in engine load, the engine detects a predetermined transient state. c) calculates a synchronous injection amount for each rotation based on the operating state of the engine, and when a transition to a predetermined transient state occurs, calculates the synchronous injection amount according to the transient correction amount; d) when the engine shifts to a predetermined transient state, the engine load e) a correction amount calculation unit that calculates the transient correction amount based on the timing of synchronous injection when the engine shifts to a predetermined transient state; means; f) excess/deficiency correction amount calculation means for calculating the current excess/deficiency correction amount based on the transient correction amount in the previous synchronous injection; and g) injecting fuel based on the output of the synchronous injection amount calculation means. A fuel injection control device for an internal combustion engine, comprising: a fuel injection means;
JP16290988A 1988-06-03 1988-06-29 Fuel injection control device for internal combustion engine Expired - Fee Related JP2505540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16290988A JP2505540B2 (en) 1988-06-29 1988-06-29 Fuel injection control device for internal combustion engine
US07/360,813 US4922877A (en) 1988-06-03 1989-06-02 System and method for controlling fuel injection quantity for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16290988A JP2505540B2 (en) 1988-06-29 1988-06-29 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0211839A true JPH0211839A (en) 1990-01-16
JP2505540B2 JP2505540B2 (en) 1996-06-12

Family

ID=15763533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16290988A Expired - Fee Related JP2505540B2 (en) 1988-06-03 1988-06-29 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2505540B2 (en)

Also Published As

Publication number Publication date
JP2505540B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JP4134910B2 (en) Fuel injection control device for internal combustion engine
EP1079089B1 (en) Control apparatus for internal combustion engine and method of controlling internal combustion engine
JPH0121337B2 (en)
US4922877A (en) System and method for controlling fuel injection quantity for internal combustion engine
JP3971004B2 (en) Combustion switching control device for internal combustion engine
JP3654010B2 (en) Control device for internal combustion engine
US6568371B2 (en) Fuel injection control for internal combustion engine
JPH0452855B2 (en)
JPS63167049A (en) After-starting fuel supply control method for internal combustion engine
US4753210A (en) Fuel injection control method for internal combustion engines at acceleration
US6481405B2 (en) Fuel supply control system for internal combustion engine
US6571775B2 (en) Fuel injection control for start-up of internal combustion engine
JP2591069B2 (en) Fuel injection control device for internal combustion engine
US5634449A (en) Engine air-fuel ratio controller
JP2000008911A (en) Fuel injection amount control device for engine
JPH0211839A (en) Fuel injection controller for internal combustion engine
JP2760175B2 (en) Evaporative fuel treatment system for internal combustion engines
JP2004124899A (en) Engine control equipment
JPH0623554B2 (en) Engine throttle control device
JP3775100B2 (en) Engine control device
JP4529306B2 (en) Engine actual torque calculation device
EP0391385A2 (en) Method and apparatus for controlling supply of fuel in internal combustion engine
JP2005069045A (en) Fuel injection control device for internal combustion engine
JP2710808B2 (en) Engine fuel injection device
JP3692629B2 (en) Engine air-fuel ratio control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees