JPS60195009A - Production of block nitrides of titanium group - Google Patents

Production of block nitrides of titanium group

Info

Publication number
JPS60195009A
JPS60195009A JP59049474A JP4947484A JPS60195009A JP S60195009 A JPS60195009 A JP S60195009A JP 59049474 A JP59049474 A JP 59049474A JP 4947484 A JP4947484 A JP 4947484A JP S60195009 A JPS60195009 A JP S60195009A
Authority
JP
Japan
Prior art keywords
titanium
nitride
reaction
titanium group
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59049474A
Other languages
Japanese (ja)
Other versions
JPH0357044B2 (en
Inventor
Akira Iwata
岩田 昭
Masahiro Tamamaki
玉巻 雅弘
Yoshihiro Onoda
小野田 芳大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KENMAZAI KOGYO KK
Original Assignee
NIPPON KENMAZAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KENMAZAI KOGYO KK filed Critical NIPPON KENMAZAI KOGYO KK
Priority to JP59049474A priority Critical patent/JPS60195009A/en
Publication of JPS60195009A publication Critical patent/JPS60195009A/en
Publication of JPH0357044B2 publication Critical patent/JPH0357044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:A compound of an element in the Ti group or an elementary metal is melted and nitridized as a nitrogen-containing gas is fed, then cooled down to give homogeneous and blocky nitrided of Ti group element in high productivity. CONSTITUTION:An oxide, hydride or halide of an element in the Ti group or its elementary metal is combined with a reducing agent such as coke, or when necessary, along with a catalyst such as hydrogen, then they are melted in the furnace 1 by means of electrode 2 to effect reduction. A nitrogen-containing gas is fed from the furnace 4 into the melt 5 to effect nitridization and the melt is cooled down to give block of nitride of Ti group element. The process according to the present invention enables smooth nitridization and high-production of TiN blocks of desired size.

Description

【発明の詳細な説明】 この発明は塊状のチタン族元素窒化物、すなわち窒化チ
タン、窒化ジルコニウムあるいは窒化ハフニウムの製造
法に関りるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing bulk titanium group element nitrides, ie titanium nitride, zirconium nitride or hafnium nitride.

従来、窒化チタンの製造法としては、■粉末状金属チタ
ンを窒素あるいはアンモニア気流中で反応させて窒化チ
タンを得る固相−気相間反応竪よる方法や、■水素化チ
タンを熱分解し、しかる後窒素あるいはアンモニア気流
中で反応させて窒化手々′″、/を欝ス田相−値相開E
犬「上ス°h渓−または、■四塩化チタンを高温の気相
状態で水素および窒素の混合ガスやアンモニアガスと反
応させて窒化チタンを得る同相−気相間反応による方法
があった。
Conventionally, methods for producing titanium nitride include (1) a vertical solid-gas phase reaction method in which powdered titanium metal is reacted in a nitrogen or ammonia stream to obtain titanium nitride, and (2) a method in which titanium hydride is thermally decomposed to obtain titanium nitride. After that, the reaction is carried out in a nitrogen or ammonia gas stream to nitrate, / to reduce the temperature.
There was also a method of in-phase-gas phase reaction in which titanium tetrachloride was reacted with a mixed gas of hydrogen and nitrogen or ammonia gas in a high-temperature gas phase to obtain titanium nitride.

しかしながら■および■の方法では、粉末または繊維状
の窒化チタンが得られるものであり、■の方法では、主
に表面コーディング用の窒化チタンが得られるものであ
って、いずれも1μオーダーの粉粒状態で゛あり、直接
塊状の窒化チタンを得ることができないものであった。
However, methods (■) and (2) yield titanium nitride in the form of powder or fibers, and method (■) mainly yields titanium nitride for surface coating, both of which produce powder particles on the order of 1μ. Therefore, it was not possible to directly obtain bulk titanium nitride.

従って用途は従来においては主に粉末もしくはIIAI
Ill状等のいわゆる粉粒状態下で使用し得る用途に限
られているところが現状であり、塊状状態のものを反応
上ダイレクトに生成している例は見られなかった。
Therefore, in the past, it was mainly used as powder or IIAI.
At present, it is limited to applications where it can be used in a so-called powder state such as Ill form, and there have been no examples of directly producing a lump form by reaction.

しかるに、例えば、研削材分野にあって、この物質が有
用であることが認められるものの、0.31オーダーの
砥粒を得ようとすれば、上記粉粒状態の窒化チタンを一
旦焼結させ、しかる後所定粒度に粉砕する工程を採用し
なければならず、特にこの焼結工程においては、窒化チ
タンの融点が3200℃を越える高位に位首するため、
生産性や経汎性並びに加J性に45いて条件的に厳しく
、実際上において実施困難であった。すなわち、反応上
にJ3いて、ダイレフ1〜に塊状物が得られないことか
ら、塊状物を得ようとすれば、一旦生成した粉粒状窒化
チタンを再度別工程として、生産性、経流性並びに加工
性に乏しい焼結工程を採用せざるを得ず、従って、−挙
的に塊状状態で窒化チタンが得られる方法が嘱望されて
いた。
However, although it is recognized that this substance is useful in the field of abrasive materials, for example, in order to obtain abrasive grains of the order of 0.31, it is necessary to first sinter the titanium nitride in the form of powder particles. After that, a process of pulverizing to a predetermined particle size must be adopted, and especially in this sintering process, since the melting point of titanium nitride is high, exceeding 3200°C,
The conditions were severe in terms of productivity, versatility, and adaptability, making it difficult to implement in practice. In other words, since no lumps were obtained during the reaction J3 and Dairef 1~, in order to obtain lumps, the once produced powdered titanium nitride would have to be reprocessed in a separate process to improve productivity, flowability, and A sintering process with poor workability has to be employed, and therefore, a method has been desired that would allow titanium nitride to be obtained in bulk.

そこでこの発明の目的と゛するところは、生産性や加工
性並びに経済性の点で、さらには別工程を採らざるを得
ない点で好ましくないいわゆる焼結方法等を採用ぜずし
て、反応上−挙的に生成し得るとともに、きわめて均質
な塊状の窒化チタン、さらには窒化ジルコニウムあるい
は窒化ハフニウム等のチタン族元素窒化物の製造法を1
;こ供するところにある。
Therefore, the purpose of this invention is to improve the reaction efficiency without using the so-called sintering method, which is undesirable in terms of productivity, processability, and economy, and also because it requires a separate process. - A method for producing titanium group element nitrides such as titanium nitride, which can be produced simultaneously, and is extremely homogeneous, as well as titanium group element nitrides such as zirconium nitride and hafnium nitride.
;It's there to offer.

上記目的達成のためこの発明は、チタン族元素の酸化物
、水素化物もしくはハ1」グン化物あるいは金属単体を
溶融し、必要に応じてコークス等の還元剤あるいは水素
等の触媒を加え、この溶融状態下において窒化反応を生
起させ、最終的に目的物賀たる塊状のチタン族元素窒化
物を得たものである。
In order to achieve the above object, the present invention melts an oxide, hydride or a metal of a titanium group element, adds a reducing agent such as coke or a catalyst such as hydrogen as necessary, and melts the A nitriding reaction is caused under these conditions, and the final target product, a lumpy titanium group element nitride, is obtained.

すなわち、従来は通常の窒化反応の条件温度に従って反
応を生起させていたものであるが、この発明は、反応条
件の設定基準としては、通常の条件温度を採用せず、特
に生成物質の生成状態を塊状とする見地から、溶融状態
の保持温度を基準に反応を生起させたものである。すな
わち生成物質であるチタン族元素窒化物が前述の通り、
きわめて高融点であるものの、これを生成し得る原料で
あるチタン族元素の酸化物、水素化物、ハロゲン化物に
ついては、融点が生成物質に比してきわめて低く、かつ
それらの窒化反応自体の条件温度はさらに一層低いこと
から、原料の融点自体は、同時に反応の条件温度を十分
溝たしており、従ってまず原料を溶融させておいて生成
物の碗状化を図り、この溶融状態下において窒化反応を
生起させたものである。
In other words, in the past, the reaction was caused according to the condition temperature of a normal nitriding reaction, but in this invention, the normal condition temperature is not adopted as the standard for setting the reaction conditions, but in particular the production state of the product substance is used. From the standpoint of turning the material into a lump, the reaction is caused based on the temperature at which it is maintained in a molten state. In other words, as mentioned above, the titanium group element nitride, which is a generated substance,
Although they have extremely high melting points, the oxides, hydrides, and halides of titanium group elements, which are the raw materials that can produce them, have extremely low melting points compared to the product materials, and the temperature conditions for their nitriding reactions themselves are extremely low. is even lower, and the melting point of the raw material itself is also sufficient to meet the temperature conditions for the reaction. Therefore, the raw material is first melted, the product is shaped into a bowl, and the nitriding process is carried out under this molten state. It is something that causes a reaction.

なおもち論、窒化反応は通常の条件温度をはるかに越え
る高温度条件下で生起さぼることから、この点問題のあ
るころであるが、実際、この異常な条件下で窒化さ「て
も良好に反応は進行し、しか・も均質な塊状物を得るこ
とが認められたものである。
Of course, this is problematic because the nitriding reaction occurs under high temperature conditions that far exceed normal conditions, but in reality, nitriding occurs under these abnormal conditions. It was observed that the reaction proceeded and a homogeneous mass was obtained.

この種の原IIどしては、金属チタンを始めとして、例
えば酸化チタン、酸化ジルコニウム、酸化ハフニウム等
のチタン族元素の酸化物、水素化チタン、水素化ジルコ
ニウム、水素化ハフニウム等のチタン族元素の水素化物
、ハロゲン化チタン、ハロゲン化ジルコニウム、ハロゲ
ン化ハフニウム等のチタン族元素のハ【コグン化物が者
えられる。
Examples of this type of raw materials include titanium metal, oxides of titanium group elements such as titanium oxide, zirconium oxide, and hafnium oxide, and titanium group elements such as titanium hydride, zirconium hydride, and hafnium hydride. Cognides of titanium group elements such as hydrides, titanium halides, zirconium halides, and hafnium halides are included.

なおこの原料中には、電気炉中において先ずチタン族元
素の炭素化物を固相状態のまま酸化反応さゼて得られた
チタン族元素の酸化物をも含めることが出来るものであ
る。
This raw material may also contain an oxide of a titanium group element obtained by first subjecting a carbonized titanium group element to an oxidation reaction in a solid state in an electric furnace.

図面は、この種方法を使用するにあたり用いられる装置
の一例を示づ原理図であり、1は炉体、成からなる、い
わゆる電気炉を示している。4は電極2を貝通させて形
成した含窒素ガスの供給路であり、5は加熱された融体
である。
The drawing is a principle diagram showing an example of an apparatus used in this type of method, and numeral 1 indicates a so-called electric furnace consisting of a furnace body. 4 is a nitrogen-containing gas supply path formed by passing the electrode 2 through the shell, and 5 is a heated melt.

この方法に係る発明をこの装置を用いて説明づると、例
えば、あらかじめ空気雰囲気下において炉体1に原料及
び還元剤を加え、電極2により溶融させるとともに還元
させ、これに供給炉4より含窒素ガスを供給すれば、窒
化され、冷却の後、塊状物質が得られるものである。
To explain the invention related to this method using this device, for example, a raw material and a reducing agent are added to a furnace body 1 in advance in an air atmosphere, melted and reduced by an electrode 2, and nitrogen-containing If gas is supplied, nitridation occurs, and after cooling, a lump material is obtained.

また例えば、あらかじめ炉体1内を窒素雰囲気下にして
J3いて、これに原料等を加えて溶融、還元、窒化させ
てもよい。勿論この場合、原料の溶融状態到達前におい
ても若干の反応は生起しているものの、還元反応や昇温
速瓜等との関係で、経時的にみればほとんど全てが塊状
物となることが認められている。
Alternatively, for example, the inside of the furnace body 1 may be placed in a nitrogen atmosphere in advance, and raw materials etc. may be added thereto for melting, reduction, and nitriding. Of course, in this case, some reaction occurs even before the raw material reaches a molten state, but due to the reduction reaction and the rapid heating of the melon, it is recognized that almost all of it will turn into lumps over time. It is being

さらにまた例えば、窒素雰囲気下にあらかじめ溶融状態
にした原料を投入して、所望の大きさの塊状物を適宜得
る方法も考えられる。
Furthermore, for example, a method may be considered in which a raw material that has been molten in advance is introduced into a nitrogen atmosphere to appropriately obtain a lump of a desired size.

n5 f ス L−−1−々 ゝノ kl ;ン 書 
の 藺 イk 引−プレ 鷹と イト 伽 もしくはハ
ロゲン化物あるいは金属単体を溶融し、必要に応じて還
元剤や触媒を加え、この溶融状態下で窒化させる構成を
採用させる方法であれば適切である。
n5 f s L−−1−−ゝノkl;
Alternatively, any method that involves melting a halide or an elemental metal, adding a reducing agent or catalyst as necessary, and nitriding in this molten state is appropriate. .

以下この発明の実施例につき詳細に説明する。Embodiments of the present invention will be described in detail below.

なお製法と生成鉱物並びに分析結果は別表に欅めて示す
The manufacturing method, minerals produced, and analysis results are shown in a separate table.

実施例1 ルチルナンド10kgとコークス3.0kgとをよく混
合する。これを図面に示すような電気炉内に投入して交
流電圧120Vで通電し、溶融体を生成する。次にこの
溶融体にN2ガスとN1−13ガスとの混合ガス雰囲気
下で窒化して塊状物を6.4に9 得た。なお、反応途
中の中間生成物として、T’ Oz T i C。
Example 1 10 kg of rutile Nando and 3.0 kg of coke are thoroughly mixed. This is placed in an electric furnace as shown in the drawing and energized with an AC voltage of 120 V to produce a molten material. Next, this melt was nitrided in a mixed gas atmosphere of N2 gas and N1-13 gas to obtain a lump of 6.4%. Note that T'OzT i C is an intermediate product during the reaction.

(T’i (Cx Ny ) 、 x 41 =1 )
、(Ti (Cx Oz )、x +z =1 )、(
Ti (Ny Oz ) 、y +z =1 )、(T
i (Cx NV Oz 、 x +y +z =1 
)の内の1種又は2種以」二が得られることが認められ
たが、この中間生成物はいずれも再度、窒素ガスなどの
含窒素ガス雰囲気の電気炉を用いて溶融し、還元し、窒
化を行なえば、塊状の王iNが生成しくqることが認め
られた。
(T'i (Cx Ny), x41 = 1)
, (Ti (Cx Oz), x + z = 1), (
Ti (NyOz), y +z = 1), (T
i (Cx NV Oz, x +y +z = 1
), but these intermediate products were again melted and reduced using an electric furnace in a nitrogen-containing gas atmosphere such as nitrogen gas. It was found that if nitriding is carried out, bulky iN is less likely to be produced.

実施例2 炭化チタン10kgを上記実施例と同じく電気炉内に投
入し、前反応としてN2ガスとCOガスとの混合ガスを
加えて酸化チタンを生成さけた。
Example 2 10 kg of titanium carbide was placed in an electric furnace in the same manner as in the above example, and a mixed gas of N2 gas and CO gas was added as a pre-reaction to avoid producing titanium oxide.

この際反応は酸化チタンが生成するに従い、固相状態か
ら溶融状態へと変化していった。これに続いて次にNZ
ガスとN ’H3ガスとの混合ガス雰囲気下にし、ガス
流量を59/minに調整して上記実施例のごとく通電
した。この結果、塊状の窒化チタンを8.1kgを得た
At this time, the reaction changed from a solid state to a molten state as titanium oxide was produced. This was followed by NZ
A mixed gas atmosphere of gas and N'H3 gas was created, the gas flow rate was adjusted to 59/min, and electricity was applied as in the above example. As a result, 8.1 kg of bulk titanium nitride was obtained.

実施例3 水素化チタン10kgを同電気炉に投入し、ガス流15
A/minでNZガス雰囲気下にして通電した。この結
果、塊状窒化チタン9.6kgを得た。
Example 3 10 kg of titanium hydride was put into the same electric furnace, and the gas flow was 15 kg.
Electricity was applied at A/min under an NZ gas atmosphere. As a result, 9.6 kg of bulk titanium nitride was obtained.

実施例4 四塩化チタン10kQを電気炉に投入し、ガス流量を5
L/mi++に調整したNZガスとN1」3ガスとの混
合ガス雰囲気下にし−C通電し、塊状窒化チタン6 k
Oを19だ。
Example 4 10kQ of titanium tetrachloride was put into an electric furnace, and the gas flow rate was set to 5.
Under a mixed gas atmosphere of NZ gas adjusted to L/mi++ and N1''3 gas, -C current was applied, and bulk titanium nitride 6k was applied.
O is 19.

(以下次頁) 化学分析値衣 [1 ( 【 − し く注) * 元素分析法による ** X線回折法による同定 以上のごとくこの発明は、チタン族元素窒化物を塊状状
態として一挙的にかつ均質状態で1qられる方法を提供
したものであるので、例えば研削材分野にd5いて、こ
の種物質を砥粒として用いる際にも、わざわざ別工程と
して焼結方法を採用する必要がなくなり1=ものであり
、生産性、加工性並びに軽済性の面で活目すべき顕著な
効果を発揮し得1cものである。なJ3勿論この種用途
に限らず、塊状とするために別途焼結方法等を採用せざ
るを19ない他用途に対しても適用し1qるもので、広
範囲の利用分野に対し資するところぎわめで大きいもの
がある。
(Next page below) Chemical analysis value [1 ([-] Note) * By elemental analysis ** Identification by X-ray diffraction method As described above, this invention can identify titanium group element nitrides in a bulk state and Since it provides a method for 1q in a homogeneous state, for example, when using this type of material as abrasive grains in the field of abrasive materials, there is no need to take the trouble of adopting a sintering method as a separate process. It is a 1c product that can exhibit remarkable effects in terms of productivity, processability, and cost saving. J3 Of course, it can be applied not only to this type of use, but also to other uses where a separate sintering method is required to make it into a lump, and it is extremely useful for a wide range of fields of use. There is something big.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明に係る方法の一例を実施する際に用いら
れる装置の一例を示す原理図である。 代理人1.弁理士 大島泰甫
The drawing is a principle diagram showing an example of an apparatus used when carrying out an example of the method according to the present invention. Agent 1. Patent attorney Taiho Oshima

Claims (1)

【特許請求の範囲】[Claims] (1) チタン族元素の酸化物、水素化物もしくはハロ
ゲン化物あるいは金属中休を溶融し、必要に応じてコー
クス等の還元剤あるいは水素等の触媒を加え、この溶融
状態下にJ3いて窒化さμることを特徴とする塊状のチ
タン族元素窒化物のM造法。
(1) Melt oxides, hydrides, or halides of titanium group elements, or metal particles, add a reducing agent such as coke or a catalyst such as hydrogen as necessary, and nitride the oxides, hydrides, or halides of titanium group elements, add a reducing agent such as coke or a catalyst such as hydrogen, and nitride the oxide, hydride, or halide of a titanium group element. A method for producing bulk titanium group element nitrides.
JP59049474A 1984-03-14 1984-03-14 Production of block nitrides of titanium group Granted JPS60195009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049474A JPS60195009A (en) 1984-03-14 1984-03-14 Production of block nitrides of titanium group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049474A JPS60195009A (en) 1984-03-14 1984-03-14 Production of block nitrides of titanium group

Publications (2)

Publication Number Publication Date
JPS60195009A true JPS60195009A (en) 1985-10-03
JPH0357044B2 JPH0357044B2 (en) 1991-08-30

Family

ID=12832146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049474A Granted JPS60195009A (en) 1984-03-14 1984-03-14 Production of block nitrides of titanium group

Country Status (1)

Country Link
JP (1) JPS60195009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336543A (en) * 2021-06-09 2021-09-03 Oppo广东移动通信有限公司 Electronic equipment and shell thereof, and preparation method of zirconia ceramic coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880102A (en) * 1972-02-01 1973-10-26
JPS56155007A (en) * 1980-04-25 1981-12-01 Toyo Soda Mfg Co Ltd Preparation of titanium nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880102A (en) * 1972-02-01 1973-10-26
JPS56155007A (en) * 1980-04-25 1981-12-01 Toyo Soda Mfg Co Ltd Preparation of titanium nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336543A (en) * 2021-06-09 2021-09-03 Oppo广东移动通信有限公司 Electronic equipment and shell thereof, and preparation method of zirconia ceramic coating

Also Published As

Publication number Publication date
JPH0357044B2 (en) 1991-08-30

Similar Documents

Publication Publication Date Title
US3379503A (en) Process for preparing tungsten monocarbide
US2745735A (en) Method of producing titanium
DE69123461T2 (en) Process for the production of aluminum nitride by controlled nitridation combustion
JPH03208811A (en) Superfine wc powder and production thereof
EP0620803A1 (en) Process for preparing ultrafine aluminum nitride powder
JPS60195009A (en) Production of block nitrides of titanium group
US2730441A (en) Process of reducing iron formate
JPH021761B2 (en)
JPS63288914A (en) Production of globular zinc oxide
JPS6183608A (en) Production of aluminum nitride
US3979336A (en) Catalyst for dissociation of ammonia and method of preparing same
JPS616109A (en) Manufacture of sic
JPH035310A (en) Method and continuous furnace for production of aluminium nitride
US2912319A (en) Method for desulphurizing iron
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
US3051549A (en) Continuous manufacture of calcium cyanamide
JPS6256310A (en) Production of aluminum nitride
JPS58213854A (en) Manufacture of ferrovanadium
JPS5997527A (en) Manufacture of high purity alumina particle
JPS63128127A (en) Manufacture of sintered ore
JPH0327481B2 (en)
JPH066754B2 (en) Sintering method of iron ore
JPS58133331A (en) Preparation of sintered ore
JPH0323205A (en) Production of aluminum nitride powder
US3150927A (en) Production of basic lead carbonate