JPS60194514A - Method of producing polarized electrode - Google Patents
Method of producing polarized electrodeInfo
- Publication number
- JPS60194514A JPS60194514A JP59051465A JP5146584A JPS60194514A JP S60194514 A JPS60194514 A JP S60194514A JP 59051465 A JP59051465 A JP 59051465A JP 5146584 A JP5146584 A JP 5146584A JP S60194514 A JPS60194514 A JP S60194514A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- polarizable electrode
- producing
- activated carbon
- cloth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、キャパシタ、電池などに用いる活性炭分極性
電極の製造方法に関し、この方法により得ら扛た高織密
度の高比表面積活性炭を分極性電極として用いた電気二
重層キャノクシタや化学電池は、小型高容量、高出力で
ある。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing polarizable activated carbon electrodes for use in capacitors, batteries, etc. The electric double layer capacitor and chemical battery used as a battery are small, high capacity, and high output.
従来例の構成とその問題点
炭素繊維もしくは活性炭繊維を分極性電極として用いる
キャパシタ、電池の代表例は次の2つのものである。す
なわち、第1図に示すように、活性炭繊維布よりなる一
対の分極性電極1と、分極性電極の片面に形成されたア
ルミニウムのような金属集電極2、セパレータ3とから
基本的に構成されるキャパシタであり、分極性電極1に
は適当な電解液が注入さnている。4,6はそnぞれ正
。Conventional Structures and Problems There are two typical examples of capacitors and batteries that use carbon fibers or activated carbon fibers as polarizable electrodes. That is, as shown in FIG. 1, it basically consists of a pair of polarizable electrodes 1 made of activated carbon fiber cloth, a metal collecting electrode 2 such as aluminum formed on one side of the polarizable electrode, and a separator 3. The polarizable electrode 1 is injected with an appropriate electrolyte. 4 and 6 are both correct.
負極のケース″′Cあり、6は絶縁ガスケットである。There is a negative electrode case ''C, and 6 is an insulating gasket.
第2図は活性炭繊維より成る織布10i負極に、多孔性
酸化ニッケル板11を正極に用いた電池であり、電解液
12としてKOH水溶液を用いた電池である。FIG. 2 shows a battery using a woven fabric 10i made of activated carbon fibers as a negative electrode, a porous nickel oxide plate 11 as a positive electrode, and a KOH aqueous solution as the electrolyte 12.
第1図のキャパシタでは、活性炭分極性電極1と電解液
との界面に形成される電気二重層に電気容量が蓄積され
、蓄積される容量2c、電気二重層の辱さを2、電解液
の誘電率をε、活性炭分極性電極の表面積をSとすると
、式1で示す電極容と
量が蓄積されることになる。In the capacitor shown in Fig. 1, electric capacitance is accumulated in the electric double layer formed at the interface between the activated carbon polarizable electrode 1 and the electrolyte. Assuming that the dielectric constant is ε and the surface area of the activated carbon polarizable electrode is S, the electrode capacity and amount shown in equation 1 will be accumulated.
また第2図の電池の場合においても、負極上での酸化速
反応式2の積分値が出力を支配することから、活性炭分
極性電極の表面積の太きなほど電池の出力が大きくなる
。Also in the case of the battery shown in FIG. 2, since the integral value of oxidation rate reaction equation 2 on the negative electrode governs the output, the larger the surface area of the activated carbon polarizable electrode, the greater the output of the battery.
Km@C,K(m、 )Cn+ K + 9 ・・川・
(2)このように、活性炭を分極性電極として用いるキ
ャパシタ、電池は、いずれも体積あたりの出力容量、エ
ネルギー密度を増すためには、比表面積(重量あたりの
表面積)のより大きな活性炭を必要とする。Km@C,K(m, )Cn+K+9...River...
(2) In this way, both capacitors and batteries that use activated carbon as a polarizable electrode require activated carbon with a larger specific surface area (surface area per weight) in order to increase the output capacity per volume and energy density. do.
一般に繊維を炭化、賦活して活性炭繊維をつくる場合は
、複数の繊維を撚り合わせた糸を用いて構成された織布
、不織布などを高温下、不活性ガス雰囲気に保ち炭化す
るとともに、繊維の表面に水蒸気、炭酸ガス、酸化性炭
化水素ガスなどの賦活ガスを接触させ、繊維の表面に細
孔を生成させる。すなわち式3で示す炭素の酸化反応を
進行させる。Generally, when carbonizing and activating fibers to make activated carbon fibers, woven or nonwoven fabrics made of threads made by twisting multiple fibers are carbonized by keeping them in an inert gas atmosphere at high temperatures. An activating gas such as water vapor, carbon dioxide gas, or oxidizing hydrocarbon gas is brought into contact with the surface of the fiber to generate pores on the surface of the fiber. That is, the oxidation reaction of carbon shown in Formula 3 is allowed to proceed.
Cn+H2o−4Cn−1+CO+H2・・(3)比表
面積の大きな活性炭繊維とは、基本的には、この細孔を
多く有する活性炭繊維であり、これを得るためには、式
3の反応を繊維全体の表面で均一に速やかに進めねばな
らない。換言すれば、水蒸気などの賦活ガスを均一に繊
維の表面と接触させる必要がある。Cn+H2o-4Cn-1+CO+H2...(3) Activated carbon fibers with a large specific surface area are basically activated carbon fibers that have many pores. It must proceed uniformly and quickly over the surface. In other words, it is necessary to uniformly bring the activating gas such as water vapor into contact with the surface of the fibers.
ところで第3図は、複数の繊維20より成る糸21の拡
大模式図である。一般に繊維2oはその太さが数μmか
ら数10 /lrnであり、これより成る糸21の太さ
は数百μmから数M・である。すなわち、数10本から
数100本の繊維が細く撚られて糸が構成さ扛ているこ
とになる。第4図は、上記の糸21を用いて平織りに織
った織布22の拡大図であるが、織布の場合は、数μm
から数10μmの径の繊維2oが、この図のように狭い
部分に集合することになる。By the way, FIG. 3 is an enlarged schematic diagram of a thread 21 made of a plurality of fibers 20. In general, the fiber 2o has a thickness of several micrometers to several tens of micrometers/lrn, and the thickness of the thread 21 made of the same fibers has a thickness of several hundred micrometers to several megameters. In other words, the thread is made up of several tens to hundreds of fibers twisted finely. FIG. 4 is an enlarged view of a woven fabric 22 woven in a plain weave using the above-mentioned thread 21.
The fibers 2o having a diameter of several tens of micrometers are gathered in a narrow area as shown in this figure.
ところで、先に述べたように活性炭の細孔を形成する賦
活反応は、賦活ガスと、繊維の表面との接触反応が律速
になる。繊維を強い力で撚り合わせてつくった太さの細
い糸の場合は、繊維同志が密に接触しており、賦活ガス
が糸の外部の繊維には接しやすいが、糸の内部の繊維と
は接しにくい。By the way, as mentioned above, the rate of the activation reaction that forms the pores of activated carbon is determined by the contact reaction between the activation gas and the surface of the fibers. In the case of thin threads made by twisting fibers together with strong force, the fibers are in close contact with each other, and the activating gas easily comes into contact with the fibers on the outside of the thread, but it does not touch the fibers inside the thread. Difficult to approach.
この結果、単位糸重量あたりの細孔表面積の大きなもの
を得ることは難しい。一方、繊維を比較的弱い力で撚り
合わせてつくった太さの太い糸の場合は、繊維同志が粗
に接触しており、賦活ガスが糸の内部にまで入り込みや
すく、単位糸重量あたりの細孔表面積は大きくなる。As a result, it is difficult to obtain a yarn with a large pore surface area per unit yarn weight. On the other hand, in the case of thick yarn made by twisting fibers together with a relatively weak force, the fibers are in rough contact with each other, making it easy for the activating gas to penetrate into the inside of the yarn. The pore surface area becomes larger.
ところで、既述のように、例えば単位体積あたり大容量
のキャパシタを得るためには、小さな体積空間に、比表
面積の大きな活性炭繊維をより多く存在させることが必
要であり、前述の繊維密度の高い糸を、第4図のような
織り方でより織密度をあげることが要求される。この場
合、繊維表面と、賦活ガスとの接触チャンスがより少な
くなり、比表aIJ積の小さな活性炭繊維しか得られず
、結局、これを用いたキャパシタの容量は小さくなる。By the way, as mentioned above, in order to obtain a capacitor with a large capacity per unit volume, for example, it is necessary to have more activated carbon fibers with a large specific surface area in a small volume space. It is necessary to increase the weave density of the yarn by weaving it as shown in Figure 4. In this case, there is less chance of contact between the fiber surface and the activating gas, and only activated carbon fibers with a small specific table aIJ product can be obtained, resulting in a capacitance of a capacitor using the same.
発明の目的
本発明は、撚密度の高い糸や、織り密度の高い布の賦活
を有効に進め、高容量のキャパシタや電池を与える分極
性電極を得ることを目的とする。OBJECTS OF THE INVENTION The object of the present invention is to obtain a polarizable electrode that effectively activates yarns with a high twist density or cloth with a high weave density and provides a high capacity capacitor or battery.
発明の構成
本発明は、繊維から成る織布、不織布1紙、フェルトな
どをあらかじめ膨潤処理し、次に炭化もしくは炭化賦活
することを特徴とする。Structure of the Invention The present invention is characterized in that a woven fabric, nonwoven fabric, paper, felt, etc. made of fibers is previously subjected to swelling treatment, and then carbonized or carbonized activated.
本発明によれば、原料糸や、原料布の単位面積あたりの
繊維密度が大きく、通常の状態では賦活ガスが充分均一
に繊維表面と接触しないような糸。According to the present invention, the fiber density per unit area of the raw material yarn or raw material fabric is high, and the activating gas does not contact the fiber surface sufficiently uniformly under normal conditions.
織布においても、あらかじめ界面活性剤などで処理し、
糸、布などをかさ高くしておくことによって、続く炭化
賦活反応において賦活ガスが充分に糸、布の内部の繊維
Sまで浸入していく。この結果、比表面積の大きな繊維
で、なおかつこの繊維の織密度の大きな布が得られ、こ
れを分極性電極として用いたキャパシタ、電池の出力容
量は非常に大きなものになる。Woven fabrics are also treated with surfactants etc. in advance.
By making the yarn, cloth, etc. bulky, the activation gas can sufficiently penetrate into the fibers S inside the yarn or cloth in the subsequent carbonization activation reaction. As a result, a cloth made of fibers with a large specific surface area and a high weave density can be obtained, and the output capacity of capacitors and batteries using this fiber as a polarizable electrode will be extremely large.
本発明では、高繊維密度糸、布の構成繊維を、より賦活
ガスと接触し易くするように賦活に先がけて繊維を膨潤
処理するものであり、これには大別して次の4種類の方
法がある。In the present invention, the fibers are subjected to swelling treatment prior to activation so that the constituent fibers of the high fiber density yarn and cloth can more easily come into contact with the activation gas. be.
(1)界面活性剤により処理する方法
カチオン系、ア/オン系、非イオン系2両性非水系、水
系など処理する繊維の種類に応じて界面活性剤を用いて
繊維同志の接触をより粗にし、繊維と賦活ガスとの接触
をより均一にする方法である。エチレングリコールのよ
うな多価アルコール類や高級アルコール類を共存させて
も良い。(1) Method of treatment with a surfactant Depending on the type of fiber to be treated, such as cationic, a/ionic, nonionic, amphoteric, nonaqueous, or aqueous, use a surfactant to make the contact between fibers rougher. This is a method for making the contact between the fibers and the activating gas more uniform. Polyhydric alcohols and higher alcohols such as ethylene glycol may also be present.
(2)高温高湿下で処理する方法
繊維から成る糸、布を例えば85°C190%RHのよ
うな高温高湿下で充分に水蒸気でぬらせる方法である。(2) Method of treatment under high temperature and high humidity This is a method in which threads or cloth made of fibers are sufficiently wetted with steam at a high temperature and high humidity such as 85° C. and 190% RH.
(3)高温高湿加圧下で処理する方法
繊維から成る糸、布を例えばオートクレーブのような加
圧釜の中で水蒸気を共存させ、120°C11,5気圧
のような高温高圧下で処理する方法である。加圧水蒸気
のため、繊維同志の接触がより粗になる。(3) Method of processing under high temperature, high humidity, and pressure A method of processing yarn or cloth made of fibers in a pressure vessel such as an autoclave in the coexistence of water vapor under high temperature and high pressure such as 120°C and 11.5 atmospheres. It is. Due to the pressurized steam, the contact between the fibers becomes rougher.
(4) 凍結法
繊維に水を含ませ、一度これを凍結させた後、氷を融解
する方法である。水の密度が4°Cで最大になることか
ら、凍結した氷は体積膨張し、繊維間の間隙を拡大し、
これを融解した後も、繊維間の粗な接触が保たれる。(4) Freezing method This is a method in which fibers are impregnated with water, once frozen, and then the ice is thawed. Since the density of water reaches its maximum at 4°C, frozen ice expands in volume and expands the gaps between fibers.
Even after this is melted, rough contact between the fibers is maintained.
以上の4種類の処理は、こnに続いて乾燥処理を施して
も良い。The above four types of treatments may be followed by drying treatment.
実施例の説明
実施例1
フェノール樹脂系繊維(日本カイノール(株)製太さ1
0μm)で構成される糸(20番手)を用いて朱子織り
に編んだ布(目付200gΔy?)の群に次の8種の処
理を施す。Description of Examples Example 1 Phenol resin fiber (manufactured by Nippon Kynol Co., Ltd., thickness 1
The following 8 types of treatments were applied to a group of cloths (weighing 200gΔy?) knitted in a satin weave using yarn (number 20) composed of 0μm).
(A) 非イオン系界面活性剤(グリセリンモノステア
レー))2eswt%と高級アルコール76wt%との
混合溶液に上記布((2時間浸漬する。(A) The above fabric was immersed in a mixed solution of 2 eswt% of nonionic surfactant (glycerin monostearate) and 76 wt% of higher alcohol.
(B)85°C190%R)lの恒温槽中で、」二記布
を2時間保持する。(B) Hold the cloth for 2 hours in a constant temperature bath at 85°C and 190% R).
(q 底に水を入nたオートクレーブの上部空間に上記
布を入扛、密閉後、120°Cで2時間保持する。(q) Put the above cloth into the upper space of an autoclave with water in the bottom, seal it, and keep it at 120°C for 2 hours.
p)上記布に充分水を含捷せ、これを−2o0の冷凍庫
の中に1時間保持する。つづいて冷凍庫より取出し、室
温で放置し氷を徐々に融解させる。p) Sufficiently soak the cloth with water and keep it in a -2o0 freezer for 1 hour. Next, take it out of the freezer and leave it at room temperature to gradually melt the ice.
(a)〜(d)二以上(A) −(D)の処理の後に8
5°Cで1時間乾燥処理を施す。(a) to (d) Two or more (A) - (D) after processing 8
Dry at 5°C for 1 hour.
これら8種の布を窒素ガスにより不活性雰囲気にした9
60°Cの′電気炉中に保ち、窒素ガスをキャリアにし
た水蒸気を送ることにより炭化賦活処理し活性炭布を得
る。These 8 types of cloth were made into an inert atmosphere with nitrogen gas9
The material is maintained in an electric furnace at 60° C., and carbonization activation treatment is performed by sending water vapor using nitrogen gas as a carrier to obtain an activated carbon cloth.
つづいて得られた活性炭布の片面にプラズマ溶射法によ
りアルミニウム金属層(厚さ200μm)を形成し、直
径12M1の円板状に打抜く。この電極と、セパレータ
、ガスケットリング、ケースとを第1図に示すように構
成し、コイン型キャパシタを得る。なお、電解液として
は、テトラエチルアンモニウムバークロレートヲフロビ
レンカーボネートに溶かした液を用いた。このようにし
て得られたキャパシタの緒特性を表に示す0同表に、同
じ繊維を用いて」二記処理を全く施さないで炭化賦活し
た布を用いたキャパシタの特性も示す。さらに同表に、
直径12語の円板状布の累積BET表向積も併記する。Subsequently, an aluminum metal layer (thickness: 200 μm) was formed on one side of the obtained activated carbon cloth by plasma spraying, and the cloth was punched out into a disk shape with a diameter of 12M1. This electrode, separator, gasket ring, and case are constructed as shown in FIG. 1 to obtain a coin-shaped capacitor. As the electrolytic solution, a solution of tetraethylammonium verchlorate dissolved in fluorobylene carbonate was used. The characteristics of the capacitor thus obtained are shown in Table 1. The same table also shows the characteristics of a capacitor using the same fibers but carbonized without any of the above treatments. Furthermore, in the same table,
The cumulative BET surface area of a disk-like cloth with a diameter of 12 words is also shown.
実施例2
実施例1で用いた布A 、 aおよび従来の無処理品を
炭化賦活処理後50MX50Mの角型に切る。Example 2 Cloths A and a used in Example 1 and the conventional untreated product were cut into square shapes of 50 MX 50 M after carbonization activation treatment.
これを負極に、正極には焼結型多孔性酸化ニッケル極を
用い、電解液はKOHの20重量%水溶液を用いて第2
図に示す電池を構成した。第6図はこれら3棟類の電池
の放電特性を示すものである。This was used as the negative electrode, a sintered porous nickel oxide electrode was used as the positive electrode, and a 20% by weight aqueous solution of KOH was used as the electrolyte.
The battery shown in the figure was constructed. FIG. 6 shows the discharge characteristics of these three types of batteries.
発明の効果
以上のように、本発明の製造方法によれば、高撚り密度
、高織り密度の糸、布においても賦活ガスが充分中心部
の構成繊維に1で浸透していくため、賦活が面全体に均
一に完全にいきわたり、従来の賦活法に比較すると単位
布面積あたり非常に大きな容量、出力が得られる。また
この方法を用いると、かなり高織密度の布まで均一に賦
活することが可能になり、より小型で大容量のキャパシ
タ、電池を得ることができる。Effects of the Invention As described above, according to the manufacturing method of the present invention, even in yarns and fabrics with high twist density and high weave density, the activation gas sufficiently penetrates into the constituent fibers in the center, so that the activation can be improved. It is completely and uniformly distributed over the entire surface, and compared to conventional activation methods, a much larger capacity and output can be obtained per unit cloth area. Furthermore, by using this method, it is possible to uniformly activate even fabrics with a fairly high weave density, making it possible to obtain smaller capacitors and batteries with larger capacities.
第1図は活性炭繊維を分極性電極に用いたキャパシタの
縦断面図、第2図は電池の縦断面図、第3図は、繊維と
糸の関係を示す図、第4図は繊維と糸、糸と布との関係
を示す模式図、第5図は活性炭繊維分極性電極を用いた
電池の特性を示す図である。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓
1 図
第2図
第3図
第4図Figure 1 is a longitudinal sectional view of a capacitor using activated carbon fibers as polarizable electrodes, Figure 2 is a longitudinal sectional view of a battery, Figure 3 is a diagram showing the relationship between fibers and threads, and Figure 4 is a diagram showing the relationship between fibers and threads. FIG. 5 is a schematic diagram showing the relationship between yarn and cloth, and FIG. 5 is a diagram showing the characteristics of a battery using an activated carbon fiber polarizable electrode. Name of agent: Patent attorney Toshio Nakao and one other name
1 Figure 2 Figure 3 Figure 4
Claims (4)
あらかじめ膨潤処理し、次に炭化もしくは炭化賦活する
ことを特徴とする分極性電極の製造法。(1) A method for producing a polarizable electrode, which is characterized by subjecting a woven or nonwoven fabric made of fibers, paper, or felt to a swelling treatment in advance, and then carbonizing or activating carbonization.
請求の範囲第1項記載の分極性電極の製造法。(2) The method for producing a polarizable electrode according to claim 1, wherein the swelling treatment is performed using a surfactant.
特許請求の範囲第1項記載の分極性電極の製造法。(3) The method for producing a polarizable electrode according to claim 1, wherein the Mi swelling treatment is performed in a high temperature and high humidity atmosphere.
範囲第3項記載の分極性電極の製造法0(5)前記膨潤
処理が水を含ませ、これを凍結させた後再び融解処理す
ることからなる特許請求の範囲第1項記載の分極性電極
の製造法。(4) The method for producing a polarizable electrode according to claim 3, wherein the swelling treatment is carried out under a pressurized atmosphere. (5) The swelling treatment impregnates water, freezes it, and then melts it again. A method for producing a polarizable electrode according to claim 1, which comprises treating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59051465A JPS60194514A (en) | 1984-03-16 | 1984-03-16 | Method of producing polarized electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59051465A JPS60194514A (en) | 1984-03-16 | 1984-03-16 | Method of producing polarized electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60194514A true JPS60194514A (en) | 1985-10-03 |
JPH0414488B2 JPH0414488B2 (en) | 1992-03-13 |
Family
ID=12887687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59051465A Granted JPS60194514A (en) | 1984-03-16 | 1984-03-16 | Method of producing polarized electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60194514A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002240146A (en) * | 2001-02-19 | 2002-08-28 | Kuraray Co Ltd | Inflation film forming method and apparatus therefor |
-
1984
- 1984-03-16 JP JP59051465A patent/JPS60194514A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002240146A (en) * | 2001-02-19 | 2002-08-28 | Kuraray Co Ltd | Inflation film forming method and apparatus therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH0414488B2 (en) | 1992-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6905798B2 (en) | Separator for electrochemical device and method for producing the same | |
US2627531A (en) | Porous electrode | |
CA2453968A1 (en) | Activated carbon material, and production method and use thereof | |
CN115341407A (en) | Carbon fiber paper for gas diffusion layer of fuel cell and preparation method and application thereof | |
JPS60189162A (en) | Manufacture of polarization electrode | |
JPS60194514A (en) | Method of producing polarized electrode | |
CN109279592B (en) | Stacked porous nitrogen-doped carbon nanosheet electrode material and preparation method thereof | |
JPH05258996A (en) | Electrode of electrical double-layer capacitor | |
KR100647010B1 (en) | Preparation method of short response time carbon electrode of supercapacitor | |
KR100515501B1 (en) | Manufacturing Method of Activated Carbon Fiber for Supercapacitor electrode from Polyacrilonitrile Fiber | |
US3433673A (en) | Battery electrode having thin deposit of meta-dinitrobenzene on graphite fabric and a method for making it | |
JP2001055666A (en) | Surface-processing method for polyphenylene sulfide fiber and polysulfone fiber | |
JPH01132044A (en) | Separator for battery | |
KR100715873B1 (en) | Increasing method of meso porous amount activated carbon for supercapacitor electrode | |
US1484927A (en) | Storage-battery separator and process of making the same | |
JPH04338623A (en) | Electric double layer capacitor | |
US3533842A (en) | Process for impregnating sintered nickel plaques | |
JPS6064422A (en) | Electric double layer capacitor and method of producing same | |
KR100715872B1 (en) | Preparation method of meso porous activated carbon by KOH for supercapacitor electrode | |
JPS6390114A (en) | Manufacture of polarizing electrode | |
JPH0449248B2 (en) | ||
JPH0256805B2 (en) | ||
JPS63278215A (en) | Manufacture of polarizable electrode | |
JPH01319251A (en) | Separator for alkaline cell | |
CN115101771A (en) | Fuel cell gas diffusion layer, preparation method thereof and fuel cell membrane electrode |