JPS60192870A - Exhaust-gas recirculation control in diesel engine - Google Patents

Exhaust-gas recirculation control in diesel engine

Info

Publication number
JPS60192870A
JPS60192870A JP59047696A JP4769684A JPS60192870A JP S60192870 A JPS60192870 A JP S60192870A JP 59047696 A JP59047696 A JP 59047696A JP 4769684 A JP4769684 A JP 4769684A JP S60192870 A JPS60192870 A JP S60192870A
Authority
JP
Japan
Prior art keywords
gas recirculation
exhaust gas
exhaust
flow rate
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59047696A
Other languages
Japanese (ja)
Inventor
Hideo Miyagi
宮城 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59047696A priority Critical patent/JPS60192870A/en
Publication of JPS60192870A publication Critical patent/JPS60192870A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To suppress the generation of smoke in exhaust gas during acceleration operation and reduce the concentration of NOX in exhaust gas by reducing the exhaust- gas recirculation flow-rate according to the flow rate corresponding to the acceleration speed in acceleration operation, in comparison with the case in ordinary operation. CONSTITUTION:When the temperature of cooling water which is detected by a water- temperature sensor 28 is over a prescribed value, in other words, after the completion of warming, the fundamental exhaust-gas recirculation flow rate Qb corresponding to the fuel injection amount and the number of revolution is read from a ROM53. Further, the increasing speed of the engine load is calculated from the increase rate with the passage of time of the fuel injection amount, and the amount reduction coefficient A in acceleration is determined. Then, the fundamental exhaust-gas recirculation flow rate Qb is multiplied by the inverse number of the amount reduction coefficient A in acceleration, and the optimum exhaust-gas recirculation flow rate Qr is determined. The pulse signal having the duty ratio corresponding to Qr is output into a driving circuit 57. In other words, as the acceleration speed is larger, exhaust recirculation is carried-out with the flow rate largely reduced from the fundamental exhaust-gas recirculation amount at that time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車等の車輌に用いら、れるディーゼル機
関の排気ガス再循環制御方法に係り、更に詳細にはスモ
ークの発生を回避するために加速運転時に排気ガス再循
環流量を減量補正り゛る排気ガス再循環制御方法に係る
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling exhaust gas recirculation of a diesel engine used in a vehicle such as an automobile, and more particularly relates to a method for controlling exhaust gas recirculation of a diesel engine used in a vehicle such as an automobile. The present invention relates to an exhaust gas recirculation control method for reducing and correcting the exhaust gas recirculation flow rate during operation.

発明の背景 排気ガス中のNoxtll度を低減するために行われる
ディーピル機関の排気ガス再循環は、機関燃焼室内に吸
入される吸入空気のうちの余剰分の一部を排気ガスにv
1換えるべり、機関負荷、即ちI幾関燃焼室内に供給さ
れる燃料量或いはアクセルペダルの踏込量と機関回転数
とに応じて行われればよく、このことに鑑みて機関負荷
の機関回転数とに応じて排気ガス再循環流量を制御する
排気ガス再循環制御方法が従来より梗々提案され、その
制御方法の実施に使用される排気ガス再循環制御装置が
特願昭55−10’2030号(特開昭57−2625
3号)、特願昭56 ’−40807号(特開昭57−
15704号)、特願昭58−2594号に於゛C既に
提案されている。
BACKGROUND OF THE INVENTION Exhaust gas recirculation of a deep-pill engine, which is performed to reduce the Noxtll degree in the exhaust gas, converts a portion of the excess intake air drawn into the engine combustion chamber into the exhaust gas.
1. It is only necessary to carry out the change depending on the engine load, that is, the amount of fuel supplied to the combustion chamber or the amount of depression of the accelerator pedal and the engine speed. Exhaust gas recirculation control methods for controlling the exhaust gas recirculation flow rate in accordance with (Unexamined Japanese Patent Publication No. 57-2625
3), Japanese Patent Application No. 1983-40807 (Japanese Patent Application No. 1983-
15704) and Japanese Patent Application No. 58-2594.

一般にディーゼル機関に於ては、機関燃焼室内に供給さ
れる燃料■が増大する加速運転時には、特に低負荷から
高負荷への加速運転時には前記燃料量が殆ど変化しない
定常運転時に比してスモークが発生し易く、このため加
速運転時にも定常運転時と同じ流量にて排気ガス再循環
が行われると、より一部スモークが発生し易くなる。
In general, in a diesel engine, during acceleration operation when the amount of fuel supplied into the engine combustion chamber increases, especially when accelerating from a low load to a high load, the amount of smoke increases compared to during steady operation when the amount of fuel does not change much. Therefore, if exhaust gas recirculation is performed at the same flow rate during acceleration operation as during steady operation, smoke is more likely to occur in some areas.

上述の如き不具合に鑑みて、加速運転時には排気ガス再
循環流量を低減或いは零、即ち排気ガス再循環を停止す
ることが特願昭56−40810号(特開昭57−15
7048号)、特願昭56−134511号(特開昭5
8−35255号)に於て提案されている。
In view of the above-mentioned problems, it is proposed in Japanese Patent Application No. 56-40810 (Japanese Unexamined Patent Publication No. 57-15) to reduce or eliminate the exhaust gas recirculation flow rate during acceleration operation, that is, to stop exhaust gas recirculation.
7048), Japanese Patent Application No. 134511 (Sho 56-134511)
No. 8-35255).

しかし、上述の如き先に提案されたものは、所定の加速
速度以上の加速運転時に一定の流量にて排気ガス再循環
流量を低減するか或いは全く排気ガス再循環を停止する
ものであり、このため加速速度によっては排気ガス再循
環流量の低減量が不足或いはこれとは反対に過剰になり
、排気ガス中のNoxal度の低減或いはスモークの低
減が十分には行われないことがある。
However, the previously proposed methods reduce the exhaust gas recirculation flow rate at a constant flow rate or completely stop exhaust gas recirculation during acceleration operation exceeding a predetermined acceleration speed. Therefore, depending on the acceleration speed, the amount of reduction in the exhaust gas recirculation flow rate may be insufficient or, on the contrary, may be excessive, and the reduction in the degree of Noxal or smoke in the exhaust gas may not be achieved sufficiently.

発明の目的 本発明は、加速運転時には定常運転時に比して加速速度
に応じた流量にて排気ガス再循環流量を低減することに
より加速運転時にill気ガス中にスモークが発生する
ことを回避した上で排気ガス中ののN0xl*を可能な
限り低減づるディーゼル機関の排気ガス再循環制御方法
を提供することを目的としている。
Purpose of the Invention The present invention avoids the generation of smoke in the exhaust gas during acceleration operation by reducing the exhaust gas recirculation flow rate at a flow rate corresponding to the acceleration speed during acceleration operation compared to during steady operation. The present invention aims to provide an exhaust gas recirculation control method for a diesel engine that reduces NOxl* in exhaust gas as much as possible.

発明の構成 上述の如き目的は、本発明によれば、ディーゼル機関の
負荷と前記負荷の増加速度と回転数とに応じて排気ガス
再循環流量を決定し、前記負荷の増加速度に応じて該増
加速度が大きい時はど前記排気ガス再循環流量を減少せ
しめるように前記排気ガス再循環流(6)を制御するデ
ィーゼル機関の排気ガス再循環制御方法によって達成さ
れる。
According to the present invention, an exhaust gas recirculation flow rate is determined according to the load of a diesel engine, the rate of increase in the load, and the rotational speed, and the flow rate is determined according to the rate of increase in the load. This is achieved by a diesel engine exhaust gas recirculation control method that controls the exhaust gas recirculation flow (6) so as to reduce the exhaust gas recirculation flow rate when the increase rate is large.

発明の効果 本発明による排気ガス再循環制御方法によれば、機関負
荷の増加速度、即ち加速速度に応じて該加速速度が大き
い時はど排気ガス再循環流量を減少せしめるように排気
ガス再循環流量が制御されることにより加速運転時の排
気ガス再循環流量の低減量が加速速度に応じて適切に設
定され、加速運転時にスモークが発生することを回避し
たうえで排気ガス中のNOx1度を可能な限り低減する
ことができるようになる。
Effects of the Invention According to the exhaust gas recirculation control method according to the present invention, the exhaust gas recirculation is performed in accordance with the increasing rate of engine load, that is, the acceleration rate, so that when the acceleration rate is large, the exhaust gas recirculation flow rate is reduced. By controlling the flow rate, the amount of reduction in the exhaust gas recirculation flow rate during acceleration operation can be set appropriately according to the acceleration speed, and the NOx in the exhaust gas can be reduced by 1 degree while avoiding smoke generation during acceleration operation. It will be possible to reduce it as much as possible.

実施例の説明 以下に添付の図を参照して本発明を実施例について詳細
に説明Jる。
DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to embodiments with reference to the accompanying drawings.

第1図は本発明による排気ガス再循環制御方法を実施す
る排気ガス再循環装置を備えたディーゼル機関の一つの
実施例を示している。図に於て、1はディーゼル機関本
体を示しており、該ディーゼル機関本体はシリンダボア
2を有し、該シリンダボア内にピストン3を摺動可能に
受入れ、ピストン3の上方に燃焼室4を郭定している。
FIG. 1 shows an embodiment of a diesel engine equipped with an exhaust gas recirculation device implementing the exhaust gas recirculation control method according to the present invention. In the figure, 1 indicates a diesel engine body, which has a cylinder bore 2, a piston 3 is slidably received in the cylinder bore, and a combustion chamber 4 is defined above the piston 3. are doing.

ディーゼル機関本体1は噴口5を経て燃焼室4に連通し
た渦流室6を有しており、該渦流室には燃料噴射ノズル
7よりディーゼル機関用の液体燃料が噴射供給されるよ
うになっている。
The diesel engine main body 1 has a swirl chamber 6 communicating with the combustion chamber 4 through a nozzle 5, and liquid fuel for the diesel engine is injected and supplied to the swirl chamber from a fuel injection nozzle 7. .

燃料噴射ノズル7は、燃料導管46によって電磁制御式
の燃料噴射ポンプ45に連通接続され、該燃料噴射ポン
プより液体燃料を圧送されるようになっている。燃料噴
射ポンプ45は該ポンプが内蔵している図示されていな
いスピルリングの位置に応じて燃料噴射101量する分
配型のものであり、前記スピルリングはりニアソレノイ
ド24により駆動され、リニアソレノイド24に与えら
れる電流に応じ−Cスピル位置を制御され、燃料噴射量
を制御Jるようになっている。
The fuel injection nozzle 7 is connected to an electromagnetically controlled fuel injection pump 45 through a fuel conduit 46, and liquid fuel is pumped through the fuel injection pump. The fuel injection pump 45 is of a distribution type that injects fuel 101 according to the position of a spill ring (not shown) built into the pump, and the spill ring is driven by the linear solenoid 24. The -C spill position is controlled according to the applied current, and the fuel injection amount is controlled.

ディーゼル機関本体1は、吸気マニホールド8を経て図
示されていない吸気ボートより燃焼室4内に空気を吸入
し、燃焼室4より排気ボート10を経て排気マニホール
ド11へ排気ガスを排出するようになっている。吸気ボ
ート及び排気ボート10は各々ポペット弁により開閉さ
れるようになってJ3す、図に於ては符号12によって
排気用のポペット弁のみが示されている。
The diesel engine main body 1 takes air into a combustion chamber 4 from an intake boat (not shown) via an intake manifold 8, and exhausts exhaust gas from the combustion chamber 4 via an exhaust boat 10 to an exhaust manifold 11. There is. The intake boat and the exhaust boat 10 are each opened and closed by poppet valves, and only the exhaust poppet valve 12 is shown in the figure.

排気マニホールド11には排気ガス取入ボート31が、
吸気マニホールド8には排気ガス注入ボート32が各々
設けられており、排気ガス取入ボート31は、導管33
、排気ガス再循環制御弁34、vI管35を経て排気ガ
ス注入ポート32に連通接続されている。
The exhaust manifold 11 includes an exhaust gas intake boat 31.
Each intake manifold 8 is provided with an exhaust gas injection boat 32, and the exhaust gas intake boat 31 is connected to a conduit 33.
, an exhaust gas recirculation control valve 34, and a vI pipe 35 to communicate with the exhaust gas injection port 32.

排気ガス再循環制御弁34は弁ボート36を開閉する弁
要素37を含み、該弁要素は、弁ロッド38によってダ
イヤフラム装置39に駆動連帖され、ダイヤフラム40
の一方の側に設けられたダイヤフラム室41に所定値よ
り大きい負圧が導入されていない時には圧縮コイルばね
42のばね力により押し下げられて弁ボート36を閉じ
、これに対しダイヤフラム室41に所定値より大きい負
圧が導入されている時には圧縮コイルばね42のばね力
に抗して持ち上げられ、弁ポート36をその負圧の大き
さに応じて開くようになっている。
The exhaust gas recirculation control valve 34 includes a valve element 37 that opens and closes a valve boat 36 and is in drive communication with a diaphragm device 39 by a valve rod 38 and a diaphragm 40
When a negative pressure greater than a predetermined value is not introduced into the diaphragm chamber 41 provided on one side of the When a larger negative pressure is introduced, it is lifted against the spring force of the compression coil spring 42, and the valve port 36 is opened according to the magnitude of the negative pressure.

ダイヤフラム装置41には、負圧調整弁43より負圧が
供給されるようになっている。負圧調整弁43は負圧ポ
ンプの如き負圧供給装置23より負圧を供給され、該負
圧を負圧調整弁43に与えられる電流信号に応じて調整
し、これをダイヤフラム室41へ供給するようになって
いる。負圧調整弁43に与えられる電流値と負圧調整弁
43の出力負圧との関係は第2図に示されており、負圧
調整弁43の出力負圧は電流値の増大にほぼ比例して増
大づる。
Negative pressure is supplied to the diaphragm device 41 from a negative pressure regulating valve 43. The negative pressure regulating valve 43 is supplied with negative pressure from a negative pressure supply device 23 such as a negative pressure pump, adjusts the negative pressure according to a current signal given to the negative pressure regulating valve 43, and supplies this to the diaphragm chamber 41. It is supposed to be done. The relationship between the current value given to the negative pressure regulating valve 43 and the output negative pressure of the negative pressure regulating valve 43 is shown in FIG. 2, and the output negative pressure of the negative pressure regulating valve 43 is almost proportional to the increase in the current value. and increase.

次に第3図を参照して制m装置25について説明する。Next, the m control device 25 will be explained with reference to FIG.

制御装置25は、マイクロコンピュータ50を含んでお
り、マイクロコンピュータ50は、入力ボートし置51
と、ランダムアクセスメモリ(RAM)52と、リード
オンリメモリ(ROM)53と、中央処理ユニット(C
PU)54と、出力ポート装置55とを有する一般的な
ものであり、回転数セン4J26より機関回転数に関す
る情報を、水温センサ28より機関冷却水温度に関する
情報を、アクはルセンサ29よりアクセルペダル17の
踏込量に関する情報を各々人ノjポート装置51に与え
られ、これら情報をRAM52及びCPU54に取込み
、ROM53に記憶されたプログラム及データに基いて
出力ポート装置55よりリニアソレノイド24と負圧調
整弁43の各々の駆動回路56.57へ制御悟りを出力
づ−るようになっている。
The control device 25 includes a microcomputer 50, and the microcomputer 50 has an input port 51.
, a random access memory (RAM) 52, a read-only memory (ROM) 53, and a central processing unit (C
PU) 54 and an output port device 55, information regarding the engine speed is sent from the rotation speed sensor 4J26, information about the engine cooling water temperature is sent from the water temperature sensor 28, and information about the engine cooling water temperature is sent from the accelerator sensor 29 to the accelerator pedal. Information regarding the amount of depression of each of the 17 is given to the input port device 51, this information is taken into the RAM 52 and the CPU 54, and based on the program and data stored in the ROM 53, the output port device 55 adjusts the negative pressure with the linear solenoid 24. Control signals are output to drive circuits 56 and 57 of each of the valves 43.

マイクロコンピュータ50はCPU54にてアクセルセ
ンサ29により検出されたアクセルペダル踏込量と回転
数センサ26により検出された機関回転数とに応じて基
本燃料噴射量を篩出或いはROM53のデータメモリよ
り読出して決定し、該基本燃料噴射■を水温センサ28
により検出された機関冷却水湿度に応じて演算補正し、
この演算結果に暴く燃料噴射量信号を出力ポート装置5
5より駆動回路56へ出力するようになっている。
The microcomputer 50 uses the CPU 54 to determine the basic fuel injection amount by screening or reading from the data memory of the ROM 53 according to the accelerator pedal depression amount detected by the accelerator sensor 29 and the engine rotation speed detected by the rotation speed sensor 26. Then, the water temperature sensor 28
The calculation is corrected according to the engine cooling water humidity detected by
A port device 5 outputs a fuel injection amount signal that is revealed based on this calculation result.
5 to the drive circuit 56.

駆動回路56は、サーボアン゛プ回路を含んでおり、ス
ピル位置センサ44より燃料噴射ポンプ45のスピルリ
ングの位置に関する情報を入力され、マイクロコンピュ
ータ50よりの前記燃料噴射量信号、即ち制御目標スピ
ル位置信号とスピル位置センサ44よりのスピル位置信
号とを比較し、この比較結果に繕いてスピルリングの実
際の位置が制御目標位置になるようにリニアソレノイド
24へ制御指令信号を出力するようになっている。これ
により燃料噴射ポンプ45のスピルリングはりニアソレ
ノイド24によって駆動されてその位置をフィードバッ
ク制御され、燃料噴射ポンプ45は前記燃料噴射量に応
じた流量の液体燃料を燃料噴射ノズル7へ圧送するよう
になる。
The drive circuit 56 includes a servo amplifier circuit, receives information regarding the position of the spill ring of the fuel injection pump 45 from the spill position sensor 44, and receives the fuel injection amount signal from the microcomputer 50, that is, the control target spill position. The signal is compared with the spill position signal from the spill position sensor 44, and based on the comparison result, a control command signal is output to the linear solenoid 24 so that the actual position of the spill ring becomes the control target position. There is. As a result, the spill ring beam of the fuel injection pump 45 is driven by the near solenoid 24 and its position is feedback-controlled, so that the fuel injection pump 45 pumps liquid fuel at a flow rate corresponding to the fuel injection amount to the fuel injection nozzle 7. Become.

マイクロコンピュータ500ROM53は燃料噴射量と
機関回転数とを変数とした二次元マツプとして燃料噴射
量と機関回転数とに応じた基本排気ガス再循環流量を予
め記憶しており、CPU54は、水温センサ28により
検出された冷却水の温度が所定値以上である時、即ち暖
機完了後に於ては、該CPUにて決定した前記燃料噴射
量と回転数センサ26により検出された機関回転数とに
塞いでその二つの制御変数に応じた基本排気ガス再循環
流量のデータ値をROM53より続出し、該データ値を
前記燃料噴射量の経蒔゛的増加率より見出される機関負
荷の増加速麿に応じ’r−該増加増加速度きい時はど大
きい低減率にて演算補正し、この演算結果に基くデータ
値に応じたデユーティ比のパルス信号を出力ポート装置
55より駆動回路57へ出力し、これに対し水温センサ
28により検出された冷却水の温度が所定値以上でない
暖機過程時に於ては、オフ信号を出力ポート装置55よ
り駆動回路57へ出力するようになっている。
The microcomputer 500ROM 53 stores in advance the basic exhaust gas recirculation flow rate according to the fuel injection amount and the engine speed as a two-dimensional map with the fuel injection amount and the engine speed as variables, and the CPU 54 stores the basic exhaust gas recirculation flow rate according to the fuel injection amount and the engine speed. When the temperature of the cooling water detected by the CPU is equal to or higher than a predetermined value, that is, after warm-up is completed, the fuel injection amount determined by the CPU and the engine rotation speed detected by the rotation speed sensor 26 are different from each other. The data values of the basic exhaust gas recirculation flow rate corresponding to the two control variables are successively output from the ROM 53, and the data values are changed according to the rate of increase in the engine load found from the rate of increase over time of the fuel injection amount. 'r-When the increase rate is reached, the calculation is corrected at a large reduction rate, and a pulse signal with a duty ratio corresponding to the data value based on the calculation result is output from the output port device 55 to the drive circuit 57. On the other hand, during the warm-up process when the temperature of the cooling water detected by the water temperature sensor 28 is not higher than a predetermined value, an off signal is output from the output port device 55 to the drive circuit 57.

駆動回路57は第4図によく示されている如く、D/A
変換器60と、増幅器61と、発振器62と、比較器6
3と、トランジスタ64とを有しており、マイクロコン
ピュータ50より与えられるデユーディ比のパルス信号
をそのデユーディ比に比例した電流値の直流電流に変換
し、該直流電流を負圧調整弁43の図には示されていな
い電磁コイルへ供給するようになっている。
As shown in FIG. 4, the drive circuit 57 is a D/A
converter 60, amplifier 61, oscillator 62, comparator 6
3 and a transistor 64, which converts the pulse signal of the duty ratio given by the microcomputer 50 into a direct current with a current value proportional to the duty ratio, and converts the direct current into a direct current with a current value proportional to the duty ratio. It is designed to supply an electromagnetic coil that is not shown.

次に第5図に示されたフローチャートを参照して本発明
による排気ガス再循環制御方法の実施要領について説明
づる。
Next, with reference to the flowchart shown in FIG. 5, the implementation procedure of the exhaust gas recirculation control method according to the present invention will be explained.

最初のステップ1に於ては、各種センサよりの情報の入
力が行われる。ステップ10次はステップ2へ進む。
In the first step 1, information is input from various sensors. Step 10 Next, proceed to step 2.

ステップ2に於ては、水温センサ28により検出された
冷却水の温度が所定値以上であるか否かの判別が行われ
る。冷却水温度が所定値以上である時にはステップ3へ
進み、これに対し冷却水温度が所定値以上でない時には
ステップ7へ進む。
In step 2, it is determined whether the temperature of the cooling water detected by the water temperature sensor 28 is equal to or higher than a predetermined value. When the cooling water temperature is above the predetermined value, the process proceeds to step 3, whereas when the coolant temperature is not above the predetermined value, the process proceeds to step 7.

ステップ3に於ては、燃料噴射量と回転数とに応じてR
OM53より基本排気ガス再循環流量のデータ値の読出
しが行われ、基本排気ガス再循環流ff1Qbが決定き
れる。ステップ30次はステップ4へ進む。
In step 3, the R
The data value of the basic exhaust gas recirculation flow rate is read from the OM 53, and the basic exhaust gas recirculation flow ff1Qb can be determined. Step 30 Next, proceed to step 4.

ステップ4に於ては、前記燃料噴tJJfi)の経時的
増加率より機関負荷の増加速度が演算され、この演算結
果に基いて加速時減量係数Aの決定が行われる。加速時
減量係数Aは、機関負荷の増加速度に応じ“C予め定め
られており、その−例が第6図に示されている。第6図
に示された例に於ては、加速時減(イ)係数Aは、機関
負荷の増加速度が所定値v1以下である時には1であり
、機関負荷の増加速度が所定値■1どこれより大きい所
定値V2の間に於てはその増加速度の増加に比例して増
大し、所定値v2にて最大値A maxとなり、機関負
荷の増加速度が所定1a V e以上である時にはその
最大値A maxを保つようになっている。ステップ4
の次はステップ5へ進む。
In step 4, the rate of increase in engine load is calculated from the rate of increase over time of the fuel injection tJJfi), and the acceleration reduction coefficient A is determined based on the calculation result. The acceleration weight loss coefficient A is predetermined according to the rate of increase in engine load, an example of which is shown in Fig. 6. The reduction (a) coefficient A is 1 when the rate of increase in the engine load is less than or equal to the predetermined value v1, and the increase is between the rate of increase in the engine load between the predetermined value 1 and the predetermined value V2, which is greater than the predetermined value V2. It increases in proportion to the increase in speed, reaches the maximum value A max at a predetermined value v2, and is maintained at the maximum value A max when the rate of increase in the engine load is equal to or higher than the predetermined value 1aVe.Step 4
Next, proceed to step 5.

ステップ5に於ては、ステップ3に於て決定された基本
排気ガス再循環流IQbにステップ4に於て決定された
加速時減量係数への逆数1/Aを乗葬する加速時減量演
算が行われ、最適排気ガス再循環流ff1Qrが決定さ
れる。ステップ5の次は食生り ステップ6へ進む。
In step 5, an acceleration weight loss calculation is performed in which the basic exhaust gas recirculation flow IQb determined in step 3 is multiplied by the reciprocal 1/A of the acceleration weight loss coefficient determined in step 4. The optimum exhaust gas recirculation flow ff1Qr is determined. After step 5, proceed to step 6.

ステップ6に於ては、ステップ5に於て決定された最適
排気ガス再循環流量Qrに応じたデユーディ比のバルス
イa@の出力が行われる。
In step 6, a valve switch a@ having a duty ratio corresponding to the optimum exhaust gas recirculation flow rate Qr determined in step 5 is output.

ステップ7に於ては、デユーティ比がOのパルス信号、
即ちオフ信号の出力が行われる。
In step 7, a pulse signal with a duty ratio of O,
That is, an off signal is output.

駆動回路57は入力されるパルス信号のデユーディ比が
大きいほど大きい電流を発生してこれを負圧調整弁43
に与え、負圧調整弁43は通電電流値が大きいほど大き
い出力負圧を発生し、排気ガス再循環制御弁34は負圧
調整弁43よりのガルが大きい時はど開弁mを増大して
排気ガス再循環流量を増大する。従って、上述の如く制
W装置25によって負圧調整弁43に対する制御信号が
制御されることにより、冷却水温度が所定値以下の暖機
過程時に於ては排気ガス再循環が全く行われず、冷却水
温度が所定値以上の暖機完了後に於ては、機関負荷の増
加速度が所定値V+以下の定常運転時或いは減速運転時
はその時のgJII3g負荷と機関回転数とに応じた基
本排気ガス再循環流■にて排気ガス再循環が行われ、機
関負荷の増加速度が所定1fi V H以上の加速運転
時にはその時の機関負荷の増加速度、換言すれば加速速
度に応じてその加速速度が大きい時はどその時の基本排
気ガス再循環流量より人きく減量された流量にて排気ガ
ス再循環が行われる。
The drive circuit 57 generates a larger current as the duty ratio of the input pulse signal becomes larger, and supplies this to the negative pressure regulating valve 43.
The negative pressure regulating valve 43 generates a larger output negative pressure as the energized current value increases, and the exhaust gas recirculation control valve 34 increases the valve opening m when the gal from the negative pressure regulating valve 43 is large. to increase the exhaust gas recirculation flow rate. Therefore, by controlling the control signal to the negative pressure regulating valve 43 by the W control device 25 as described above, no exhaust gas recirculation is performed during the warm-up process when the cooling water temperature is below a predetermined value, and the cooling After warm-up is completed when the water temperature is above the predetermined value, during steady operation or deceleration operation when the rate of increase in engine load is below the predetermined value V+, basic exhaust gas regeneration is performed according to the gJII3g load and engine speed at that time. Exhaust gas recirculation is performed in the circulation flow ■, and when the engine load is increasing at a predetermined rate of 1fi V H or more during acceleration operation, the rate of increase in the engine load at that time, in other words, when the acceleration rate is large according to the acceleration speed. Exhaust gas recirculation is performed at a flow rate that is significantly reduced from the basic exhaust gas recirculation flow rate at that time.

上述の如く排気ガス再循環流量の制御が行われることに
より、加速運転時にスモークが発生することがない最大
流量にて排気ガス再循環が行われ、スモークの発生を回
避したうえで排気ガス中のNoxill度が可能な限り
低減、される。
By controlling the exhaust gas recirculation flow rate as described above, exhaust gas recirculation is performed at the maximum flow rate that does not generate smoke during acceleration operation, and the exhaust gas is recirculated while avoiding the generation of smoke. Noxill degree is reduced as much as possible.

尚、上述した実施例に於ては、一つの二次元マツプとし
て燃料噴射量と機関回転数とに応じて予め定められてい
る基本排気ガス再循環流量を加速時減量係数に応じて修
正演韓することにより最適排気ガス再循環流量の決定が
行われたが、本発明は、これに限定されるものではなく
、減速及び定常運転時用の一つの蓼本排気ガス再循環流
量二次元マツプと緩加速、中加速、急加速の如さ・加速
速度に応じた加速運転時用の複数個の排気ガス再循還流
量二次元マツプを用い、加速速度に応じて上述の複数個
の排気ガス再循環流量二次元マツプより一つの排気ガス
再循環流量二次元マツプを選び出してこの二次元マツプ
に記憶されている燃料噴射量と機関回転数とに応じた排
気ガス再循環流量にて排気ガス再循環が行われるように
構成されていてもよい。
In the above-mentioned embodiment, the basic exhaust gas recirculation flow rate, which is predetermined according to the fuel injection amount and engine speed, is modified as a two-dimensional map according to the acceleration reduction coefficient. Although the optimum exhaust gas recirculation flow rate was determined by the above method, the present invention is not limited to this, but the present invention is based on a two-dimensional exhaust gas recirculation flow rate map for deceleration and steady operation. Using a two-dimensional map of multiple exhaust gas recirculation flow rates during acceleration operation depending on the degree and acceleration speed of slow, medium, and sudden acceleration, One exhaust gas recirculation flow rate two-dimensional map is selected from the two-dimensional circulation flow rate map, and the exhaust gas is recirculated at the exhaust gas recirculation flow rate according to the fuel injection amount and engine speed stored in this two-dimensional map. may be configured so that

第7図はこの二次元マツプ選択方式の実施例のフローチ
ャートを示している。
FIG. 7 shows a flowchart of an embodiment of this two-dimensional map selection method.

尚、上述した実施例に於ては、マイクロコンピュータ5
0によって計算された燃料噴射量の増加速度によってデ
ィーゼル機関の加速速度の検出が行われたが、この加速
速度の検出は機械式の燃料噴射ポンプの場合にはそれの
ポンプレバー回路の変化速度によって、或いはアクセル
ペダルの踏込量の変化速度によって行われてもよい。
Incidentally, in the embodiment described above, the microcomputer 5
The acceleration speed of the diesel engine was detected based on the rate of increase in the fuel injection amount calculated by Alternatively, the change rate may be determined by the rate of change in the amount of depression of the accelerator pedal.

以上に於ては、本発明を特定の実施例について詳細に説
明したが、本発明は、これらに限定されるものではなく
、本発明の範囲内にて種々の実施例が可能であることは
当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to these, and it is understood that various embodiments can be made within the scope of the present invention. It will be clear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による排気ガス再循環制御方法を実施す
る排気ガス再循環制御装置を備えたディーゼル機関の一
つの実施例を示す概略構成図、第2図は負圧調整弁の電
流値と出力負圧との関係を示Jグラフ、第3図は第1図
に示されたディーじル機関の制御装置を示ず制御回路図
、第4図は排気ガス再循環制御装置の駆動回路を示づブ
ロック線図、第5図は本発明による排気ガス再循環制御
方法の一つの実施要領を示す70−チレート、第6図は
加速時減量係数と機関負荷の増加速度との関係を示ずグ
ラフ、第7図は本発明による排気ガス再循環制御方法の
他の一つの実施要領を示すフ[1−チャートである。 1・・・ディーゼル機関本体、2・・・シリンダボア。 3・・・ピストン、4・・・燃焼室、5・・・噴口、6
・・・渦流室、7・・・燃料噴射ノズル、8・・・吸気
マニホールド。 10・・・排気ポート、11・・・排気マニホールド、
12・・・ポペット弁、23・・・負圧供給装置、24
・・・リニアソレノイド、25・・・制御@W1.26
・・・回転数センサ、28・・・水温センサ、29・・
・アクセルセンサ、31・・・排気ガス取入れポート、
32・・・排気ガス注入ポート、33・・・導管、34
・・・排気ガス再循環制御弁、35・・・導管、36・
・・弁ポート、37・・・弁要素、38・・・弁ロッド
、39・・・ダイヤフラム装置、40・・・ダイヤフラ
ム、41・・・ダイヤフラム室。 42・・・圧縮コイルばね、43・・・負圧調整弁、4
4・・・スピル位置センサ、45・・・燃料噴射ポンプ
、46・・・導管、50・・・マイクロコンピュータ、
51・・・入力ボート装置、52・・・ランダムアクセ
スメモリ。 53・・・リードオンリメモリ、54・・・中央処理ユ
ニット、55・・・出力ボート装置、56.57・・・
駆動回路、60・・・D/A変換器、61・・・増幅器
、62・・・発振器、63・・・比較器、64・・・ト
ランジスタ特許出願人 トヨタ自動車株式会社 代 理 人 弁理士 明石 昌毅 第 1 図 4
Fig. 1 is a schematic configuration diagram showing one embodiment of a diesel engine equipped with an exhaust gas recirculation control device that implements the exhaust gas recirculation control method according to the present invention, and Fig. 2 shows the current value of the negative pressure regulating valve and the Figure 3 shows the control circuit diagram of the diesel engine shown in Figure 1 without showing the relationship with the output negative pressure. Figure 4 shows the drive circuit of the exhaust gas recirculation control system. Figure 5 is a block diagram showing one implementation of the exhaust gas recirculation control method according to the present invention, Figure 6 is a block diagram showing the relationship between the weight loss coefficient during acceleration and the rate of increase in engine load. FIG. 7 is a flowchart showing another embodiment of the exhaust gas recirculation control method according to the present invention. 1... Diesel engine body, 2... Cylinder bore. 3... Piston, 4... Combustion chamber, 5... Nozzle, 6
... Vortex chamber, 7... Fuel injection nozzle, 8... Intake manifold. 10...Exhaust port, 11...Exhaust manifold,
12... Poppet valve, 23... Negative pressure supply device, 24
...Linear solenoid, 25...Control @W1.26
...Rotation speed sensor, 28...Water temperature sensor, 29...
・Accelerator sensor, 31...exhaust gas intake port,
32... Exhaust gas injection port, 33... Conduit, 34
...Exhaust gas recirculation control valve, 35...Conduit, 36.
... Valve port, 37... Valve element, 38... Valve rod, 39... Diaphragm device, 40... Diaphragm, 41... Diaphragm chamber. 42... Compression coil spring, 43... Negative pressure regulating valve, 4
4... Spill position sensor, 45... Fuel injection pump, 46... Conduit, 50... Microcomputer,
51... Input boat device, 52... Random access memory. 53... Read only memory, 54... Central processing unit, 55... Output boat device, 56.57...
Drive circuit, 60... D/A converter, 61... Amplifier, 62... Oscillator, 63... Comparator, 64... Transistor patent applicant Toyota Motor Corporation Representative Patent attorney Akashi Shoki No. 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ディーゼル機関の負荷と前記負荷の増加速度と回転数と
に応じて排気ガス再循環流量を決定し、前記負荷の増加
速度に応じて該増加速度が大きい時はど前記排気ガス再
循環流量を減少せしめるように前記排気ガス再循環流量
を制御するディーゼル機関の排気ガス再循環制御方法。
Determine the exhaust gas recirculation flow rate according to the load of the diesel engine, the speed of increase in the load, and the rotational speed, and reduce the exhaust gas recirculation flow rate when the speed of increase is large according to the speed of increase in the load. An exhaust gas recirculation control method for a diesel engine, which controls the exhaust gas recirculation flow rate so as to increase the exhaust gas recirculation flow rate.
JP59047696A 1984-03-13 1984-03-13 Exhaust-gas recirculation control in diesel engine Pending JPS60192870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59047696A JPS60192870A (en) 1984-03-13 1984-03-13 Exhaust-gas recirculation control in diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59047696A JPS60192870A (en) 1984-03-13 1984-03-13 Exhaust-gas recirculation control in diesel engine

Publications (1)

Publication Number Publication Date
JPS60192870A true JPS60192870A (en) 1985-10-01

Family

ID=12782441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59047696A Pending JPS60192870A (en) 1984-03-13 1984-03-13 Exhaust-gas recirculation control in diesel engine

Country Status (1)

Country Link
JP (1) JPS60192870A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394036A (en) * 1986-10-08 1988-04-25 Toyota Motor Corp Exhaust recirculation control device for diesel-engine
JPS63143343A (en) * 1986-12-05 1988-06-15 Nippon Denso Co Ltd Control device for diesel engine
US5682864A (en) * 1995-08-01 1997-11-04 Nissan Motor Co., Ltd. Controller for internal combustion engines
WO1999010644A1 (en) * 1997-08-22 1999-03-04 Deutz Aktiengesellschaft Method for controlling exhaust gas recirculation in an internal combustion engine
FR2769044A1 (en) * 1997-09-29 1999-04-02 Siemens Ag METHOD FOR CONTROLLING THE RECYCLING OF EXHAUST GASES IN AN INTERNAL COMBUSTION ENGINE
EP0892165A3 (en) * 1997-07-17 2000-10-25 Mazda Motor Corporation Exhaust gas recirculation system for turbo-charged, fuel direct injection engine
EP1559893A1 (en) * 2004-01-30 2005-08-03 Nissan Motor Co., Ltd. Control apparatus and process for internal combustion engine
EP1604101A2 (en) * 2003-03-17 2005-12-14 International Engine Intellectual Property Company, LLC Method and apparatus for determining a valve operator position
JP2017141793A (en) * 2016-02-12 2017-08-17 マツダ株式会社 Control device for engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394036A (en) * 1986-10-08 1988-04-25 Toyota Motor Corp Exhaust recirculation control device for diesel-engine
JPS63143343A (en) * 1986-12-05 1988-06-15 Nippon Denso Co Ltd Control device for diesel engine
US5682864A (en) * 1995-08-01 1997-11-04 Nissan Motor Co., Ltd. Controller for internal combustion engines
EP0892165A3 (en) * 1997-07-17 2000-10-25 Mazda Motor Corporation Exhaust gas recirculation system for turbo-charged, fuel direct injection engine
WO1999010644A1 (en) * 1997-08-22 1999-03-04 Deutz Aktiengesellschaft Method for controlling exhaust gas recirculation in an internal combustion engine
US6283101B1 (en) 1997-08-22 2001-09-04 Deutz Ag Method of controlling exhaust recycling in an internal combustion engine
FR2769044A1 (en) * 1997-09-29 1999-04-02 Siemens Ag METHOD FOR CONTROLLING THE RECYCLING OF EXHAUST GASES IN AN INTERNAL COMBUSTION ENGINE
EP1604101A2 (en) * 2003-03-17 2005-12-14 International Engine Intellectual Property Company, LLC Method and apparatus for determining a valve operator position
EP1604101A4 (en) * 2003-03-17 2007-02-28 Int Engine Intellectual Prop Method and apparatus for determining a valve operator position
EP1559893A1 (en) * 2004-01-30 2005-08-03 Nissan Motor Co., Ltd. Control apparatus and process for internal combustion engine
US7356403B2 (en) 2004-01-30 2008-04-08 Nissan Motor Co., Ltd. Control apparatus and process for internal combustion engine
JP2017141793A (en) * 2016-02-12 2017-08-17 マツダ株式会社 Control device for engine

Similar Documents

Publication Publication Date Title
US6000221A (en) System for controlling a variable geometry turbocharger
US6502563B2 (en) Diesel engine control
US4399789A (en) Warm up control system for an internal combustion engine
US6625985B2 (en) Control of turbocharger
US6390081B1 (en) Method and device for determining temperature values in a combustion engine
JPS60192870A (en) Exhaust-gas recirculation control in diesel engine
JP2550545B2 (en) Diesel engine controller
JP3496396B2 (en) Control unit for diesel engine
US5052357A (en) Intake air mount control system for internal combustion engines
US5161502A (en) Method and arrangement for setting an idle air actuator
US6125829A (en) Method of controlling exhaust gas recirculation in an internal combustion engine
JPS59128963A (en) Exhaust gas recirculation control method of diesel engine
JPS60128966A (en) Recirculation controlling method of exhaust gas in diesel engine
JPS61101629A (en) Method of controlling relationship between suction throttle and egr of diesel engine
JPS60156962A (en) Method of recirculating exhaust gas in diesel-engine
JPH0411737B2 (en)
JPS58117348A (en) Method for controlling recirculation of exhaust gas of diesel engine
JPS59120771A (en) Exhaust gas recirculation control method of diesel engine
JPS62165565A (en) Exhaust gas recirculation control method for diesel engine
JPH05332202A (en) Exhaust gas reflux device of engine
JPS59215954A (en) Exhaust recirculation controlling method in diesel engine
JPH0477143B2 (en)
JPS59120772A (en) Exhaust gas recirculation control method of diesel engine
JPH0972248A (en) Exhaust gas recirculation controller for internal combustion engine
JPS61138871A (en) Control method of exhaust gas recirculation in diesel engine