JPS60191207A - Optical waveguide element - Google Patents

Optical waveguide element

Info

Publication number
JPS60191207A
JPS60191207A JP4740484A JP4740484A JPS60191207A JP S60191207 A JPS60191207 A JP S60191207A JP 4740484 A JP4740484 A JP 4740484A JP 4740484 A JP4740484 A JP 4740484A JP S60191207 A JPS60191207 A JP S60191207A
Authority
JP
Japan
Prior art keywords
thin film
optical waveguide
crystal structure
waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4740484A
Other languages
Japanese (ja)
Inventor
Hideaki Adachi
秀明 足立
Takao Kawaguchi
隆夫 川口
Osamu Yamazaki
山崎 攻
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4740484A priority Critical patent/JPS60191207A/en
Publication of JPS60191207A publication Critical patent/JPS60191207A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Abstract

PURPOSE:To obtain an optical waveguide element having a good operating characteristic, less propagation loss of light and excellent practicability by constituting the optical waveguide element of a line waveguide part consisting of a specific crystal structure and an element waveguide part consisting of a thin film having the other specific crystal structure. CONSTITUTION:A powder mixture composed of the oxides of Pb, La, Zr and Ti is deposited by high-frequency sputtering on a quartz glass substrate 11 and is heat-treated to form a thin film 12 having a pyrochlore type crystal structure. Such film 12 is partially annealed by scanning of an IR laser 13 to form a thin film 14 having a perovskite type structure. A pattern 21 of a total reflection type switch waveguide is formed by etching on the thin film in such a way that the perovskite thin film part 14 serves as an element part to provided electrodes 22. Incident light 23 changes from transparent light 24 to reflected light 25 when a voltage is impressed between the electrodes 22. The optical waveguide element having a good operating characteristic, less propagation loss of light and excellent practicability is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光集積回路あるいは元情報処理等eこ応用され
る光導波路素子に関したものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical waveguide device applied to optical integrated circuits, original information processing, and the like.

従来例の構成とその問題点 オプトエレクトロニクスが高度情報社会の担い手として
期待されている中で光導波路素子の研究が行なわれてき
た。従来光導波路素子として利用されているものには主
に2つの構造がある。1つは、物理的光学作用を有する
誘電性バルクに任意の元素を拡散あるいは打ち込んで光
素子となる導波路を作製するもの。例えば電気光学結晶
であるL i N b Osにチタンを拡散して導波路
を形成する光導波路素子が、従来もっとも広く用いられ
てきだ。しかしこの鍾の構造のものは、拡散導波路の作
製が可能なバルクの材料が限られてお沙、物理的光学作
用、例えば電気光学効果の大きさが充分な材料を使用で
きないことに難点があり、素子動作の上で実用性に欠け
ていた。例えばチタン拡散のL I N b Osを用
いた全反射型光導波路素子では、動作電圧がeoV程度
であり、TTL等に直接接続できる実際的動作ができず
、動作電圧の低減化が望まれていた。
Conventional configurations and their problems Research on optical waveguide devices has been conducted as optoelectronics is expected to play a role in the advanced information society. There are two main types of structures conventionally used as optical waveguide devices. One is to create a waveguide that becomes an optical element by diffusing or implanting an arbitrary element into a dielectric bulk that has a physical optical effect. For example, an optical waveguide element in which a waveguide is formed by diffusing titanium into LiNbOs, which is an electro-optic crystal, has been most widely used. However, the problem with this cylindrical structure is that the bulk materials from which the diffusion waveguide can be fabricated are limited, and materials with sufficient physical optical effects, such as electro-optic effects, cannot be used. However, it lacked practicality in terms of device operation. For example, in a total reflection type optical waveguide device using titanium-diffused LINbOs, the operating voltage is around eoV, and practical operation that can be directly connected to TTL etc. is not possible, so there is a desire to reduce the operating voltage. Ta.

またもう一つの構造としては任意の基板上に物理的光学
作用を有する誘電性薄膜を育成させて光素子となる導波
路を作製するものがある。この場合誘電性薄膜として物
理的光学作用例えば電気光学効果の充分大きい材料を選
べば良好な素子動作を行なうことができる。この種の薄
膜材料で有力なものは、化学式ABO3で表わされるペ
ロブスカイト型結晶構造を有するものが従来から知られ
ている。ペロプスカイト型I旧は、その構造から物理的
光学作用、例えに、電気光学効果に優れているのか特徴
である。しかしこの種の材料の薄膜育成は容易でなく、
厳格な育成条件の設定が必要とされ、育成条件のずれに
より物理的光学作用を全く有しないパイロクロア型結晶
構造(化学式A2B206)のものが混入することがよ
くある。
Another structure is to grow a dielectric thin film having a physical optical effect on an arbitrary substrate to produce a waveguide that becomes an optical element. In this case, if a material with a sufficiently large physical optical effect, such as an electro-optical effect, is selected as the dielectric thin film, good device operation can be achieved. One of the most promising thin film materials of this type has been known to have a perovskite crystal structure represented by the chemical formula ABO3. Peropskite type I old is characterized by its superior physical optical effects, such as electro-optical effects, due to its structure. However, growing thin films of this kind of material is not easy;
It is necessary to set strict growth conditions, and deviations in the growth conditions often result in the contamination of crystals with a pyrochlore type crystal structure (chemical formula A2B206) that has no physical optical effect.

1だペロブスカイト型構造の薄膜ができても、導波路素
子として用いるのに必要な透光性に優れたものを得るの
が難しい。これは理由は明らかでないがおそらく複雑な
結晶構造と複数成分の関係が原因ではないかと考えられ
る。結局ペロブスカイト構造の薄膜を用いた導波路素子
は、素子動作機能の点では優れるが光の伝搬損失が大き
い欠点があり、実用上の而で問題点となっていた。
Even if a thin film with a single perovskite structure could be made, it is difficult to obtain one with the excellent light transmittance necessary for use as a waveguide element. The reason for this is not clear, but it is probably due to the complex crystal structure and the relationship between multiple components. In the end, waveguide devices using thin films with a perovskite structure have excellent device operation functions, but have the disadvantage of large light propagation loss, which has been a problem in practical use.

発明の目的 従って本発明の目的は、動作特性が良くかつ光の伝搬損
失の少ない実用性に優れだ光導波路素子を提供すること
である。
OBJECTS OF THE INVENTION Accordingly, an object of the present invention is to provide an optical waveguide device which has good operating characteristics and low optical propagation loss, and is highly practical.

発明の構成 本発明の光導波路素子は、パイロクロア型結晶構造を有
する薄膜よりなる線路導波路部と、ペロブスカイト型結
晶構造を有する薄膜よりなる素子導波路部より構成され
る。従来、大きな物理的光学作用を有するペロブスカイ
ト材料を利用しプこ各種の薄膜素子は、厳格な育成条件
を設定してペロブスカイト構造の薄膜を得るか、あるい
は緩やかな条件のもとに育成されたパイロクロア構造の
薄膜をアニールによりペロブスカイト構造に変換して作
製された。このようにペロブスカイト構造の薄膜の育成
は条件が厳格なだめ、各々の条件の変動による膜質の安
定性が良くなく、特性の不均一性・非再現性をもたらす
とともに、元素子として重要な低伝搬損失が得難いもの
であった。丑だパイロクロア構造は、物理的光学作用を
全く持/ζないため、アニールを充分に行って極力薄膜
の結晶構造に残らないようにされていた。本発明者等は
、このパイロクロア構造薄膜の低伝搬損失と育成の容易
さに着眼を新だにし、この構造の薄膜を先導波路素子の
大部分を占める線路導波路部に用い、素子部のみをペロ
ブスカイト構造の薄膜で構成すれば、動作特性・伝搬損
失に優れた光導波路素子に最適な構成を与えるという発
見に基づき本発明を行なった。
Structure of the Invention The optical waveguide device of the present invention is composed of a line waveguide portion made of a thin film having a pyrochlore crystal structure and an element waveguide portion made of a thin film having a perovskite crystal structure. Conventionally, various thin film devices have been produced using perovskite materials that have a large physical optical effect. It was fabricated by converting a structured thin film into a perovskite structure by annealing. In this way, the conditions for growing a thin film with a perovskite structure are very strict, and the stability of the film quality is poor due to fluctuations in each condition, resulting in non-uniformity and non-reproducibility of properties, as well as low propagation loss, which is important for elements. was difficult to obtain. Since the pyrochlore structure has no physical optical effect at all, sufficient annealing is performed to prevent it from remaining in the crystal structure of the thin film as much as possible. The present inventors have focused on the low propagation loss and ease of growth of this pyrochlore structured thin film, and have used a thin film with this structure in the line waveguide section, which occupies most of the leading waveguide element. The present invention was made based on the discovery that an optical waveguide device having excellent operating characteristics and propagation loss can be optimally configured by using a thin film having a perovskite structure.

1だ本発明の光導波路素子は、ペロブスカイト型結晶構
造の薄膜の素子導波路部が、はじめに基板上の全面に育
成されたパイロクロア型結晶構造の薄膜の一部をアニー
ルして得られる。パイロクロア型薄膜は前述のよう(・
て非常に育成し易すいため、上記構成の光導波路素子を
イー!Jるには初めにパイロクロア型薄膜を基板の全面
に付け、部分的にアニールしてペロブスカイト型薄膜を
得る方法が最も容易であることを本発明者等は確認した
。この場合アニールの方法としては、赤外線ランプ・赤
外線レーザー等の加熱光線を、例えば金属マスクを用い
て薄膜の一部に照射する方法が簡単である0 実施例の説明 本発明の内容のより深い理解のために以下具体的な実施
例により本発明を説明する。鉛、ランタン、ジルコ/、
チタンの酸化物粉末を、各々のモル比率が鉛(pb)対
ランタン(La)対ジルコン(Zr )対チタy(Ti
)が9:1 :5:3としたものをターゲットとし、高
周波スパッタ法により石英ガラス基板上に薄膜を育成す
る。基板温度400℃、育成速度60人/分の条件のも
とてパイロクロア型結晶構造の多結晶薄膜を4,000
人付けだ。
1) In the optical waveguide device of the present invention, a device waveguide portion of a thin film having a perovskite crystal structure is obtained by first annealing a part of a thin film having a pyrochlore crystal structure grown on the entire surface of a substrate. As mentioned above, the pyrochlore type thin film is
Since it is very easy to grow, the optical waveguide device with the above configuration can be easily grown. The present inventors have confirmed that the easiest method is to first apply a pyrochlore type thin film to the entire surface of the substrate and then partially anneal it to obtain a perovskite type thin film. In this case, a simple method for annealing is to irradiate a part of the thin film with heating light from an infrared lamp or infrared laser using, for example, a metal mask. For this purpose, the present invention will be explained below with reference to specific examples. Lead, lantern, zirco/,
Titanium oxide powder was prepared in a molar ratio of lead (pb) to lanthanum (La) to zircon (Zr) to titanium (Ti).
) with a ratio of 9:1:5:3 as a target, a thin film is grown on a quartz glass substrate by high-frequency sputtering. 4,000 polycrystalline thin films with a pyrochlore type crystal structure were grown under conditions of a substrate temperature of 400°C and a growth rate of 60 people/min.
It's a personal thing.

結晶構造はX線回折により確認され、また−気光学効果
は認められず、光の伝搬損失はQ、633/Jmの波長
に対し1 dB/cn+以下であった。第1図は石英ガ
ラス11上のパイロクロア薄膜12を、赤外線レーザー
光13の走査により部分的アニールを行ない、ペロブス
カイト型構造の素子部14を得だものである。この微少
部分のX線回折像はペロブスカイト構造を示し、電気光
学効果はKerr定数R= I X 1.0 ”、 6
(m/V)と見積もられた。
The crystal structure was confirmed by X-ray diffraction, and no optical effect was observed, and the optical propagation loss was less than 1 dB/cn+ for a wavelength of Q, 633/Jm. In FIG. 1, a pyrochlore thin film 12 on a quartz glass 11 is partially annealed by scanning with an infrared laser beam 13 to obtain an element portion 14 having a perovskite structure. The X-ray diffraction image of this minute part shows a perovskite structure, and the electro-optic effect has a Kerr constant R = I x 1.0'', 6
(m/V).

この薄膜上に、第2図の如く全反射型スイッチ導波路パ
ターン21を、ペロブスカイト薄膜部14が素子部とな
るように合わせてエンチングにより形成し、電極22を
イIJけた。電極22間の電圧の印加により入射光23
は透過光24から反射光25に切り換わるという全反射
型光スイッチ素子が実現できた。動作電圧は、大きな電
気光学効果により3■と従来の全反射型スイッチに比べ
て極端に低く、光の損失も素子部でわずかに認められる
だけで、全体として2dBという小さいものであった。
As shown in FIG. 2, a total reflection type switch waveguide pattern 21 was formed on this thin film by etching so that the perovskite thin film portion 14 would become an element portion, and an electrode 22 was formed. By applying a voltage between the electrodes 22, the incident light 23
A total internal reflection type optical switch element that switches from transmitted light 24 to reflected light 25 was realized. The operating voltage was 3 dB due to the large electro-optic effect, which is extremely low compared to conventional total reflection switches, and the optical loss was only slightly observed in the element section, and was as small as 2 dB overall.

寸だ線路部と素子部の導波路の境は、第2図のようにテ
ーパー状になっていると、境界反射による損失が少ない
ことも確認された。
It was also confirmed that if the boundary between the waveguide between the line section and the element section is tapered as shown in FIG. 2, loss due to boundary reflection is reduced.

発明の効果 以上のよう(て、高効率動作特性と光の低損失を実現し
た本発明の光導波路素子は、従来の問題を解決した実用
性に優れたものであり、本発明の工業的価値は高い。
Effects of the Invention As described above, the optical waveguide device of the present invention, which has achieved high efficiency operating characteristics and low optical loss, is excellent in practicality and solves the conventional problems, and the industrial value of the present invention is is expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光導波路素子の素子
部を得る様子を示す図、第2図は本発明の一実施例の全
反射型光導波路素子の4゛[視図である。 1つ・・・・石英ガラス基板、12・−・)々イロクロ
ア型構造の薄膜、13・・・・赤外線レーザー光線、1
4 ・・ペロブスカイト型構造の薄膜、21導波路パタ
ーン、22 ・・・電極、23 入射光、24 ・−・
透過光、25 ・・反射光。
FIG. 1 is a diagram showing how an element part of an optical waveguide device according to an embodiment of the present invention is obtained, and FIG. 2 is a 4° view of a total reflection type optical waveguide device according to an embodiment of the present invention. 1... quartz glass substrate, 12...) Thin film with Irochlore type structure, 13... infrared laser beam, 1
4... thin film with perovskite structure, 21 waveguide pattern, 22... electrode, 23 incident light, 24...
Transmitted light, 25...Reflected light.

Claims (2)

【特許請求の範囲】[Claims] (1)パイロクロア型結晶構造を有する薄膜よシなる線
路導波路部と、ペロブスカイト型結晶構造を有する薄膜
よシなる素子導波路部から構成されることを特徴とする
光導波路素子。
(1) An optical waveguide device comprising a line waveguide portion made of a thin film having a pyrochlore crystal structure and an element waveguide portion made of a thin film having a perovskite crystal structure.
(2)ペロブスカイト型結晶構造の薄膜よりなる素子導
波路部が、はじめに基板上の全面に育成されたパイロク
ロア型結晶構造の薄膜の一部を、アニールして得られる
ことを特徴とする特許請求の範囲第1項記載の光導波路
素子。
(2) The device waveguide section made of a thin film having a perovskite crystal structure is obtained by annealing a part of a thin film having a pyrochlore crystal structure that is first grown on the entire surface of a substrate. The optical waveguide device according to scope 1.
JP4740484A 1984-03-12 1984-03-12 Optical waveguide element Pending JPS60191207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4740484A JPS60191207A (en) 1984-03-12 1984-03-12 Optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4740484A JPS60191207A (en) 1984-03-12 1984-03-12 Optical waveguide element

Publications (1)

Publication Number Publication Date
JPS60191207A true JPS60191207A (en) 1985-09-28

Family

ID=12774176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4740484A Pending JPS60191207A (en) 1984-03-12 1984-03-12 Optical waveguide element

Country Status (1)

Country Link
JP (1) JPS60191207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245205A (en) * 1986-04-17 1987-10-26 Nec Corp Thin film optical waveguide and its production
JPH0657412A (en) * 1992-03-30 1994-03-01 Anelva Corp Production of pzt thin film and sputtering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245205A (en) * 1986-04-17 1987-10-26 Nec Corp Thin film optical waveguide and its production
JPH0657412A (en) * 1992-03-30 1994-03-01 Anelva Corp Production of pzt thin film and sputtering device

Similar Documents

Publication Publication Date Title
JP4204108B2 (en) Optical waveguide device and manufacturing method thereof
JPH06244407A (en) Multilayer structural body with (111) orientation buffer layer
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
Uhlmann et al. Sol-gel synthesis of optical thin films and coatings
US5371812A (en) Waveguide type optical directional coupler
US5824419A (en) Thin film of potassium niobate, process for producing the thin film, and optical device using the thin film
JP2000352700A (en) Optical waveguide device
JPS60191207A (en) Optical waveguide element
DE69919624T2 (en) Process for producing a monocrystalline layer
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP2009288806A (en) Production method for light modulating film
JPS6241311B2 (en)
JP2556206B2 (en) Method for manufacturing dielectric thin film
JPH06305888A (en) Thin-film waveguide crystal and its production
JPS5917510A (en) Optical waveguide
JPS61240222A (en) Optical shutter
JPH0648895A (en) Production of oxide ferroelectric thin film and oxide ferroelectric material
JPH05254994A (en) Ferroelectric thin film
JPH0588125A (en) Optical waveguide and its manufacture
KR960006246B1 (en) Process for the preparation of plzt thin film using seed layer
JPH02146504A (en) Production of nonlinear light guide
Young Lead-lanthanum-zirconium-titanate heterostructures as transverse optical modulators
JPH05139895A (en) Production of oxide ferroelectric thin film
JPH09100125A (en) Thin film of potassium niobate, its production and optical element using the same thin film
JPH0990447A (en) Nonlinear optical material and its production