JPS60190851A - Eddy current flaw detection test of steel pipe - Google Patents

Eddy current flaw detection test of steel pipe

Info

Publication number
JPS60190851A
JPS60190851A JP4617584A JP4617584A JPS60190851A JP S60190851 A JPS60190851 A JP S60190851A JP 4617584 A JP4617584 A JP 4617584A JP 4617584 A JP4617584 A JP 4617584A JP S60190851 A JPS60190851 A JP S60190851A
Authority
JP
Japan
Prior art keywords
steel pipe
flaw detection
current
detection test
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4617584A
Other languages
Japanese (ja)
Inventor
Nobuki Yabushita
薮下 延樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIHAKAI KENSA KK
Original Assignee
HIHAKAI KENSA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIHAKAI KENSA KK filed Critical HIHAKAI KENSA KK
Priority to JP4617584A priority Critical patent/JPS60190851A/en
Publication of JPS60190851A publication Critical patent/JPS60190851A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To efficiently and easily perform a flaw detection test with high accuracy, by magnetizing a steel pipe by directly supplying a current thereto from an external power source and scanning the flaw detection testing coil inserted into the steel pipe to perform flaw detection. CONSTITUTION:Electrode terminals 5 are contacted with a steel pipe 1 and a current is supplied to the steel pipe 1 from an external power source 3 to magnetize the same to obtain a magnetic saturation state. A current is blocked according to necessity to bring about a residual magnetization state. A flaw detection testing coil 2 is inserted into the steel pipe 1 held under the magnetic saturation or residual magnetization sate and scanned to perform a flaw detection test. When the steel pipe 1 has a crack or other flaws, change is generated in the eddy current flowed to the coil 2 and the impedance or induced voltage of the coil 2 changes to obtain an electric signal. This signal is guided to a flaw detector 6 and the presence or degree of a flaw part is judged from the amplitude and phase of the signal. By this method, the flaw detection test is efficiently and easily performed with high accuracy.

Description

【発明の詳細な説明】 本発明は、熱交換器その他に使用される強磁性体鋼管に
割れ、その他の欠陥がある場合に、この−欠j陥を検出
するために行なわれる鋼管の渦流探傷試験方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to eddy current flaw detection of steel pipes, which is carried out to detect cracks and other defects in ferromagnetic steel pipes used in heat exchangers and other applications. Concerning test methods.

従来、鋼管内面に探傷コイルを挿入して探傷試験を行な
うには、磁化コイル又は永久磁石を磁化器として使用し
、この磁化器と探傷コイルを一体のプローブとして鋼管
内面に挿入して引っ張り走査を行ない探傷する方法が行
なわれていた。
Conventionally, in order to perform a flaw detection test by inserting a flaw detection coil into the inner surface of a steel pipe, a magnetizing coil or a permanent magnet is used as a magnetizer, and the magnetizer and flaw detection coil are inserted into the inner surface of the steel pipe as an integrated probe to conduct a tensile scan. The method used was to conduct flaw detection.

しかし、磁化コイルを磁化器として使用する場合、探傷
コイルと磁化コイルが一体となっていること及び磁化コ
イルか発熱することなどで、磁化コイルには最大電流1
.5アンペア程度しか流すことができず鋼管の磁化を十
分性なうことができなかった。また永久磁石を磁化器と
して使用する場合も、磁化の程度はきわめて弱く、この
場合起磁力の減衰管理も必要であった。
However, when using the magnetizing coil as a magnetizer, the maximum current for the magnetizing coil is 1.
.. Only about 5 amperes could be passed, and the magnetization of the steel pipe could not be sufficiently maintained. Furthermore, even when a permanent magnet is used as a magnetizer, the degree of magnetization is extremely weak, and in this case, it is also necessary to manage the attenuation of the magnetomotive force.

このように磁化が弱いと鋼管の磁性にムラを生じ、この
磁気ムラは弱い磁化の下で行なイつれる探傷コイルの管
内走査時のガタにより一層増幅されることとなる。この
結果、探傷試験時に磁気ムラによる大きな雑音を生じ探
傷試験か困diとなり、さらにまた、鋼管の磁化と探傷
を同時に行なうので、磁化器と探傷コイルか一体となっ
た特殊なプローブを必要とするたりてなく、作業能率も
悪いという欠点があった。
Such weak magnetization causes unevenness in the magnetic properties of the steel pipe, and this magnetic unevenness is further amplified by backlash when the flaw detection coil scans inside the pipe under weak magnetization. As a result, large noise due to magnetic unevenness occurs during the flaw detection test, making the flaw detection difficult.Furthermore, since the steel pipe is magnetized and flaw detected at the same time, a special probe that combines a magnetizer and a flaw detection coil is required. The disadvantage was that it was not very efficient and the work efficiency was poor.

本発明は上記従来の諸欠点を解消したものであって、従
来の磁化器を使用せず、鋼管を強力な磁化状態にして、
探傷試験コイルのみを鋼管内部に挿入して探傷を行なう
鋼管の渦流探傷試験方法を提供することを目的とするも
のである。
The present invention solves the above-mentioned conventional drawbacks, and instead of using a conventional magnetizer, the steel pipe is made into a strong magnetized state.
The object of the present invention is to provide an eddy current flaw detection test method for steel pipes in which flaw detection is performed by inserting only a flaw detection test coil inside the steel pipe.

即ち、本第1発明は、外部電源から鋼管に直接通電する
ことにより鋼管を磁化状態にして、鋼管内部に挿入した
探傷試験コイルを走査して探傷を行なう鋼管の渦流探傷
試験方法、をその要旨とするものである。
That is, the first invention provides an eddy current flaw detection testing method for steel pipes, in which the steel pipe is magnetized by directly applying electricity to the steel pipe from an external power source, and flaw detection is performed by scanning a flaw detection test coil inserted inside the steel pipe. That is.

また本第2発明は、鋼似内部を貫通する導線に通電する
ことにより鋼管を磁気飽和させた後、残留磁化の状態に
おいて鋼管内部に挿入した探傷試験コイルを走査]〜て
探傷を行なう鋼管の渦流探傷試験方法、をその要旨とす
るものである。
The second invention also provides a method for detecting flaws in a steel pipe by magnetically saturating the steel pipe by energizing a conducting wire penetrating the inside of the steel pipe, and then scanning a flaw detection test coil inserted inside the steel pipe in a state of residual magnetization. The gist is the eddy current testing method.

本第1発明に係る鋼管の渦流探傷試験方法の具体的態様
を図面に基いて更に詳説すれは、第1図において、(1
)は熱交換器なとに使用されている鋼管であり、(2)
は鋼管(1)の内部に挿入し、走査することにより探傷
を行なう探傷試験コイルである。
The specific aspects of the eddy current testing method for steel pipes according to the first invention will be explained in more detail based on the drawings.
) are steel pipes used in heat exchangers, (2)
is a flaw detection test coil that is inserted into the inside of a steel pipe (1) and performs flaw detection by scanning.

(3)は鋼管(1)を磁化飽和させるための外部電源で
あり、該外部電源(3)から正電荷・負電荷の送電線(
4)を設け、該送電線(4)の端末には、鋼管(1)に
接当するための電極端子(5)が設けられている。前記
探傷試験コイル+21からの信号は、信号線(6)を通
じて探傷器(4)に送られる。該探傷器(A)は、発振
器、交流ブリッジ、増幅検波器、移相器、増幅フィルタ
及び記録計により構成されるか、探傷器(A)の構成は
具体的にこれらに限定されるものでな(、必要に応じて
その構成を変えるものである。
(3) is an external power source for magnetizing and saturating the steel pipe (1), and the positive and negative charge transmission lines (
4), and an electrode terminal (5) for contacting the steel pipe (1) is provided at the end of the power transmission line (4). The signal from the flaw detection test coil +21 is sent to the flaw detector (4) through a signal line (6). The flaw detector (A) is composed of an oscillator, an AC bridge, an amplified detector, a phase shifter, an amplified filter, and a recorder, or the configuration of the flaw detector (A) is specifically limited to these. (The structure can be changed as necessary.

」二記の構成に於いて、鋼管(1)の渦流探傷試験を行
jSうに際して、まずWl管(1)を磁化状態にする。
In the configuration described in Section 2 above, when performing an eddy current flaw detection test on the steel pipe (1), first the Wl pipe (1) is brought into a magnetized state.

そのため電極端子(5)を網幅(1)に接当し、外部電
源(3)から鋼管(1)に電流を流す。この場合、鋼慎
(1)の適宜個所に電極端子(5)を接当することによ
り直接通電する方法(プロット法)と、鋼管(1)の両
端部に電極端子(5)を接当することにより鋼管(1)
の軸方向に直接通電する方法(+Ijl+、1ffiT
法〕のように、電極端子(5)の鋼@(j)への接当及
び通電には、2通りの方法がある。
Therefore, the electrode terminal (5) is brought into contact with the mesh width (1), and a current is passed through the steel pipe (1) from the external power source (3). In this case, there are two methods: directly applying electricity by contacting the electrode terminals (5) to appropriate locations on the steel pipe (1) (plot method), and contacting the electrode terminals (5) to both ends of the steel pipe (1). Possibly steel pipe (1)
A method of directly applying current in the axial direction (+Ijl+, 1ffiT
There are two methods for bringing the electrode terminal (5) into contact with the steel @(j) and energizing it.

このようにして、通電された鋼’5’ fllは、電流
により磁場が発生腰磁気飽和の状態となる。この状態で
は透磁率が小さく、磁化状態は非常に安定したものであ
り、また非常に強力な磁化状態とな−)でいる。このよ
うにして一旦磁気飽和された鋼’rH]、)には、電極
端子(5)を鋼管(1)から取り外し電流を遮断しても
、残留磁気が残る。この残留磁化の状態であっても、磁
気飽和の状態と同じく透磁率!j小さく、安定した磁化
状態であり、磁束密度が幾分小さくなる程度である。
In this way, the energized steel plate '5' becomes in a state of magnetic saturation where a magnetic field is generated by the current. In this state, the magnetic permeability is low, the magnetization state is very stable, and the magnetization state is very strong. In the steel 'rH], which has been magnetically saturated in this way, residual magnetism remains even if the electrode terminal (5) is removed from the steel pipe (1) and the current is cut off. Even in this state of residual magnetization, the magnetic permeability is the same as in the state of magnetic saturation! j is a small and stable magnetization state, and the magnetic flux density is somewhat small.

本第1発明で、鋼管(1)の渦流探・腐試験を行なうに
際して(才、鋼管(1)を磁気飽和の状態で行なう場合
(連続法)と、鋼管(1)を残留磁化の状態で行なつ場
合(残留法9とがある。
In the first invention, when performing an eddy current detection/corrosion test on the steel pipe (1), there are two cases in which the steel pipe (1) is subjected to magnetic saturation (continuous method) and a case in which the steel pipe (1) is subjected to a residual magnetization state. (There is a residual method 9.

また、ここで使用される磁化するための電流の大きさは
、次のようにして法定される。導体全流れる電流値を1
アンペア(A)、導体の中心かラノ半径rセンチメー 
トル(cm )の円周にの磁場の強さをnエルステッド
(Oe)とするき、JJ=i15・r の関係式か得られ、磁場の大きさは電流に正比例し、半
径に反比例する。そこで、電流Iは、に5・r−H となり、鋼の磁気飽和に要する磁場の強さは、通常H=
100エルステッド(oe)以上であり、ここで、鋼管
++、+の半径r = 1.27センチメー トル(c
m)とすると、 に635 (A) となる。すなわち電流を635アンペア(A) o上流
せは、鋼管(1)は磁気飽和の状態となる。また鋼管(
11へは、最大電流3000アンペア(A)の通電が可
能であることから、@管filは容易に磁気飽和の状態
にすることができる。
Further, the magnitude of the current for magnetization used here is determined as follows. The current value flowing through the entire conductor is 1
Ampere (A), radius r cm from center of conductor
When the strength of the magnetic field around the circumference of Torr (cm 2 ) is n Oersted (Oe), the relational expression JJ=i15·r is obtained, and the magnitude of the magnetic field is directly proportional to the current and inversely proportional to the radius. Therefore, the current I is 5·rH, and the strength of the magnetic field required for magnetic saturation of steel is usually H=
100 oersteds (oe) or more, where the radius of the steel pipe ++, + is r = 1.27 cm (c
m), it becomes 635 (A). That is, when the current is passed up to 635 amperes (A), the steel pipe (1) becomes magnetically saturated. Also, steel pipes (
Since a maximum current of 3000 amperes (A) can be applied to 11, the @tube fil can be easily brought into a state of magnetic saturation.

また電流の種類は、直流、脈流及び衝′Iビ電流のいづ
れであっても良い。
Further, the type of current may be any of direct current, pulsating current, and impulse current.

磁気飽和或は残留磁化の状態とな−、た鋼管(1)の内
部に探傷試験コイル(2)を挿入し、これを走査して探
傷試験を行なう。この探傷試験コイル(2)の走査は、
図示しないかIn:類で引動するか、若しくは自走式と
する。鋼管(])に割れ、その他の欠陥がある場合にけ
、探傷試験コイル(2)を流れる渦電流に変化が起こり
、探傷試験コイル(2)のインピーダンス又は、誘起さ
れる電圧に変化が生じ゛C電気的信号か得られる。この
信号を信号線(6)を通じて探傷器稈〕に導き、信号の
振幅及び位相なとから鋼管(1)の欠陥部分の存在とそ
の程度か判断される。その結果は記録計なとで記録して
も良い。以−Lのように鋼管の渦流探傷試験が行なわれ
る。
A flaw detection test coil (2) is inserted into the steel pipe (1) which is in a state of magnetic saturation or residual magnetization, and the flaw detection test is performed by scanning the coil. The scanning of this flaw detection test coil (2) is as follows:
It is not shown in the figure.It is either movable or self-propelled. When the steel pipe () has cracks or other defects, a change occurs in the eddy current flowing through the flaw detection test coil (2), causing a change in the impedance of the flaw detection test coil (2) or the induced voltage. C electrical signals are obtained. This signal is led to the flaw detector culm through the signal line (6), and the presence and extent of a defect in the steel pipe (1) is determined from the amplitude and phase of the signal. The results may be recorded with a recorder. An eddy current flaw detection test on steel pipes is conducted as shown below.

次に本第2発明に係る鋼管の渦流探傷試験方法の具体的
態様を図面に基いて史に詳説すれは、第2図において、
第1発明と同様、(1)はRLi Wであり、(3)は
外部′覗諒である。(7)は環線であり、鋼管(」)内
部を111!Iして設けられ、外部電源(3)から通電
されるように構成されている。(電流狽通法)上記の構
成に於いて、通電された導線(7)の磁場により、鋼管
(1)を磁気飽和の状態にした後、通電を遮断し導線(
7)を取り除く。この磁気飽和にするための電流の大き
さは、本第1発明によるものと同じで良い。鋼管(1)
は残留磁化の状態になる。この状態において第3図に示
すように本第1発明において開示した方法と同様の方法
で鋼管(1)の渦流探傷試験を行なうものである。
Next, specific aspects of the eddy current testing method for steel pipes according to the second invention will be explained in detail based on drawings.
Similar to the first invention, (1) is RLi W, and (3) is the external view. (7) is a ring line, and the inside of the steel pipe ('') is 111! It is configured to be powered by an external power source (3). (Current passing method) In the above configuration, after the steel pipe (1) is brought into a state of magnetic saturation by the magnetic field of the energized conductor (7), the current is cut off and the conductor (
7) Remove. The magnitude of the current for achieving this magnetic saturation may be the same as that according to the first invention. Steel pipe (1)
becomes a state of residual magnetization. In this state, as shown in FIG. 3, the steel pipe (1) is subjected to an eddy current flaw detection test using the same method as disclosed in the first invention.

本第1発明及び第2発明は斜上の構成を備えているので
、下記の如く優れた諸効果を顕著に発揮するものである
Since the first and second inventions have a diagonal configuration, they significantly exhibit various excellent effects as described below.

a)外部電源から鋼管に直接通電することにより鋼管を
磁化状態にするが、或いi、を鋼管内部を用通ずる導線
に通電することにより磁気飽和させるものであるから、
鋼管への通電は、通常850アンペア(A)程度は容易
に可能であ弘最犬電流3000アンペア(A、)の通電
まで可能であることから、鋼管の強力な磁気飽和を達成
することができる。
a) The steel pipe is magnetized by directly energizing the steel pipe from an external power source, or magnetically saturated by energizing the conductor that runs inside the steel pipe.
Normally, it is possible to easily energize the steel pipe at around 850 amperes (A), and it is possible to energize up to 3,000 amperes (A), making it possible to achieve strong magnetic saturation of the steel pipe. .

b)本第1発明及び本第2発明の磁「L方法によれば、
磁束は閉磁路をとるために、磁気の減衰が非常に小さく
、磁化後1箇月程度では実用上再磁化を行なう必要がな
く、探傷試験操作を極めて能率的に行なうことができる
b) According to the magnetic method “L” of the first invention and the second invention,
Since the magnetic flux takes a closed magnetic path, the magnetic attenuation is very small, and there is no need for practical remagnetization for about one month after magnetization, allowing flaw detection testing operations to be performed extremely efficiently.

C)磁化装置と探傷試験コイルが分離しているので、従
来の方法のように磁化器の層内走査を行なわないので、
磁化器の管内走査に伴うガタによる磁化ムラの発生もな
く、その結果、探傷試験の1祭に磁気ムラによる雑音を
生ずるおそれがなく、探傷精度も著しく向−1ニさせる
ことかできる。さらに探傷試験コイルの走査に労力を要
せず、特別な試験条件も必要とされないので探傷操作は
極めて容易に行なうことかできる。
C) Since the magnetization device and the flaw detection test coil are separated, there is no intralayer scanning of the magnetizer as in conventional methods.
There is no occurrence of magnetization unevenness due to backlash caused by the scanning of the magnetizer inside the tube, and as a result, there is no risk of noise caused by magnetic unevenness during the first flaw detection test, and the flaw detection accuracy can be significantly improved. Furthermore, scanning the flaw detection test coil does not require any effort and no special test conditions are required, so the flaw detection operation can be performed extremely easily.

d)本第1発明及び第2発明の磁化装置(は、従来の磁
粉探傷試験用の磁化装置をそのまま転用し゛C使用する
ことができ、さらに磁化装置は、磁気飽和域で使用され
るから、出力′市原や電圧のバラツキも極めて少なく探
傷精度の低下のおそれかなく、探傷走斤部も従来の探傷
試験コイルを使用するのみで、特別の探傷器を必要とぜ
ず、また特別の冶具なとを用いる必要もない。
d) The magnetization devices of the first and second inventions can be used by converting conventional magnetization devices for magnetic particle testing as they are, and furthermore, since the magnetization devices are used in the magnetic saturation region, Variations in output power and voltage are extremely small, so there is no risk of deterioration in flaw detection accuracy, and the flaw detection section only uses a conventional flaw detection test coil, eliminating the need for special flaw detectors and special jigs. There is no need to use

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(J、本第1発明の一実力■百りjを示リーブ[
コック図、第2図は、本第2発明の一実施例を示す縦断
面図、第3図は、本第2発明の一実施例を示すブロック
図である。 (1)は鋼管、(2)は探・陽試験コイル、(3)は外
部電源(4)は送電線、(5)は電極端子、(6)は信
号線、(7)は心線、(A)は深(易器である。 特許出願人 非破壊検査株式会社 第1図 第2図 第3図
Figure 1 (J, one of the strengths of the first invention
The cock diagram and FIG. 2 are longitudinal sectional views showing one embodiment of the second invention, and FIG. 3 is a block diagram showing one embodiment of the second invention. (1) is a steel pipe, (2) is a probe/positive test coil, (3) is an external power source, (4) is a power transmission line, (5) is an electrode terminal, (6) is a signal wire, (7) is a core wire, (A) is deep (easy). Patent applicant: Nondestructive Inspection Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、外部電源から81管に直接通電することにより鋼管
を磁化状態にして、鋼管内部に挿入した探傷試験コイル
を走査して探傷を行なうことを特徴とする鋼管の渦流探
傷試験方法。 2、前記磁化状態が磁気飽和の状態である特許請求の範
囲第1項記載の鋼管の渦流探傷試験方法。 3 前記磁化状態が残留磁化の状態である特許請求の範
囲第1項記載の鋼管の渦流探傷試験方法。 4、鋼管内部を貫通する導線に通電することにより鋼管
を磁気飽和させた後、残留磁化の状態において鋼管内部
に挿入した探傷試験コイルを走査して探傷を行なうこと
を特徴とする鋼管の渦流探傷試験方法。
[Claims] 1. Eddy current flaw detection for steel pipes, characterized in that the steel pipe is magnetized by directly applying electricity to the 81 pipe from an external power source, and flaw detection is performed by scanning a flaw detection test coil inserted inside the steel pipe. Test method. 2. The eddy current testing method for steel pipes according to claim 1, wherein the magnetization state is a state of magnetic saturation. 3. The eddy current testing method for steel pipes according to claim 1, wherein the magnetization state is a residual magnetization state. 4. Eddy current flaw detection of steel pipes, which involves magnetically saturating the steel pipe by energizing a conductor that penetrates the inside of the steel pipe, and then performing flaw detection by scanning a test coil inserted into the steel pipe in a state of residual magnetization. Test method.
JP4617584A 1984-03-10 1984-03-10 Eddy current flaw detection test of steel pipe Pending JPS60190851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4617584A JPS60190851A (en) 1984-03-10 1984-03-10 Eddy current flaw detection test of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4617584A JPS60190851A (en) 1984-03-10 1984-03-10 Eddy current flaw detection test of steel pipe

Publications (1)

Publication Number Publication Date
JPS60190851A true JPS60190851A (en) 1985-09-28

Family

ID=12739686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4617584A Pending JPS60190851A (en) 1984-03-10 1984-03-10 Eddy current flaw detection test of steel pipe

Country Status (1)

Country Link
JP (1) JPS60190851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031042A1 (en) * 2016-08-12 2018-02-15 Halliburton Energy Services, Inc. Elimination of residual magnetism effect in eddy current based inspection of pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031042A1 (en) * 2016-08-12 2018-02-15 Halliburton Energy Services, Inc. Elimination of residual magnetism effect in eddy current based inspection of pipes

Similar Documents

Publication Publication Date Title
JP2639264B2 (en) Steel body inspection equipment
JPS60190851A (en) Eddy current flaw detection test of steel pipe
RU2133032C1 (en) Process of magnetic field testing and device to implement it
JP2666301B2 (en) Magnetic flaw detection
JPH08136509A (en) Eddy current flaw detection method and apparatus for inner surface layer of pipe
US2098064A (en) Magnetic testing device
Atherton Stress-shadow magnetic inspection technique for far-side anomalies in steel pipe
Krause et al. Variation of the stress dependent magnetic flux leakage signal with defect depth and flux density
US3829762A (en) Method and device for magnetographic inspection
JPH0827260B2 (en) Eddy current flaw detection method and eddy current flaw detection probe
JPH04296648A (en) Method and device for magnetic crack detection
JPS6315153A (en) Magnetizing device for magnetically recording and inspectingarticle
Crouch et al. In-line stress measurement by the continuous Barkhausen method
JP2697467B2 (en) Leakage magnetic flux detection method
JPS55129747A (en) Damage detection and measuring method for terminal part of steel wire
JPH07113788A (en) Probe coil for eddy current flaw detection
SU1188627A1 (en) Method of magnetic-tape inspection of lengthwise joints of ferromagnetic tubes
JP2959395B2 (en) Metal residue detection method in metal tube
JPH0534319A (en) Detection head for flaw detection of eddy current
Wang et al. A Large Lift-off Nondestructive Testing Method Based on the Interaction between AC Magnetic Field and MFL Field
JPH0439031B2 (en)
CA1203008A (en) Eddy current flaw detector
JPS59217160A (en) Eddy current flaw detecting probe
JPS59160750A (en) Magnetic flaw detecting coil of strip
JPS6366457A (en) Eddy current flaw detection test for steel pipe