JPS60190572A - Formation of insulator covering film superior in punchability and weldability on electrical steel sheet - Google Patents

Formation of insulator covering film superior in punchability and weldability on electrical steel sheet

Info

Publication number
JPS60190572A
JPS60190572A JP4665584A JP4665584A JPS60190572A JP S60190572 A JPS60190572 A JP S60190572A JP 4665584 A JP4665584 A JP 4665584A JP 4665584 A JP4665584 A JP 4665584A JP S60190572 A JPS60190572 A JP S60190572A
Authority
JP
Japan
Prior art keywords
steel sheet
weldability
electrical steel
punchability
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4665584A
Other languages
Japanese (ja)
Other versions
JPS6225750B2 (en
Inventor
Tomoyuki Ichi
智之 市
Toshikuni Tanda
丹田 俊邦
Katsuro Yamaguchi
山口 勝郎
Yasuo Yokoyama
横山 靖雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4665584A priority Critical patent/JPS60190572A/en
Publication of JPS60190572A publication Critical patent/JPS60190572A/en
Publication of JPS6225750B2 publication Critical patent/JPS6225750B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Abstract

PURPOSE:To form an insulation coating film superior in punchability and weldability by coating a treating liquid in which a polyethylene resin powder suspension is combined with a mixed liquid of dichromate and organic resin emulsion to an electrical steel sheet, and baking said body under a specified condition. CONSTITUTION:Polyethylene powder resins having 5-80mum particle diameter are dispersed into water by using a surfactant. The suspension is combined with the mixed liquid of aqueous dichromate solution, organic resin emulsion of acryl- vinyl acetate, etc. and a reducing agent. The treating liquid is coated on the surface of the electrical steel sheet. In performing the baking successively, the temp. rising rate is controlled under the condition of 2-10 deg.C/s between 110- 150 deg.C steel sheet temp. The temp. is rised successively to finish the baking in 250-350 deg.C temp. range. By this method, insulation coating film superior in sticking property and satisfying both punchability and weldability can be formed on the electrical steel sheet.

Description

【発明の詳細な説明】 技 術 分 野 打抜性および溶接性の優れた電磁鋼板絶縁被膜の形成方
法に関して、この明細書で述べる技術内容は、電磁鋼板
の表面に、重クロム酸塩−有機樹脂系被膜を形成するに
際し、該被膜の表面あらざを適切な状態に保持するため
に配合されるポリエチレン粉末樹脂の分散性ならびに密
着性を改善することにより、該被膜の打抜性さらには浴
接性の・・向上を図ることに関連している。
[Detailed Description of the Invention] Technical Field The technical content described in this specification regarding a method for forming an insulating coating on an electrical steel sheet with excellent punchability and weldability is to apply a dichromate-organic coating on the surface of an electrical steel sheet. When forming a resin-based film, improving the dispersibility and adhesion of the polyethylene powder resin that is blended to maintain the surface roughness of the film in an appropriate state improves the punchability of the film as well as the bathing properties. It is related to improving communication skills.

従来技術とその問題点 さて電磁鋼板の絶縁被膜に要求される特性は、電気絶縁
性、密着性、打抜性、溶接性、耐熱性お□よび耐薬品性
など多枝にわたり、従来からこれらの緒特性を満たすべ
く数多くの研究が行われてきた。中でも打抜性に関して
は、有機樹脂の利用によって著しく向上することが知見
され、とくに最近では、重り四ム酸塩と有機樹脂との混
合液を処、理液として用い電磁鋼板の表面に塗布、焼付
ける、ことにより、従来の無機質被膜に比べて打抜き数
が80〜50倍にも達するほどの打抜性の向上が実現さ
れることが究明され、現在広く実用化されている。
Conventional technology and its problems The properties required for the insulation coating of electrical steel sheets include electrical insulation, adhesion, punchability, weldability, heat resistance, and chemical resistance. Numerous studies have been conducted to satisfy these characteristics. Among these, it has been found that the punchability is significantly improved by the use of organic resins, and in particular, recently, a mixed solution of weight tetramate and organic resin has been treated and applied as a processing solution to the surface of electrical steel sheets. It has been found that by baking, the punching performance is improved to the extent that the number of punches is 80 to 50 times that of conventional inorganic coatings, and it is now widely put into practical use.

しかしながらかような有機樹脂を含む絶縁被膜は、打抜
き加工後に鉄心板を積層して端面をTIG溶接した場合
、溶接熱で有機物が熱分解してガスを発生し、この発生
ガスに起因してピード部にブローホールが生じ、溶接性
を著しく劣化させるところに問題があった。
However, when an insulating film containing such an organic resin is laminated with iron core plates after punching and the end faces are TIG welded, the organic matter decomposes due to welding heat and generates gas, and this generated gas causes a speed increase. The problem was that blowholes formed in the parts, significantly deteriorating weldability.

そこで、このような有機樹脂を含む絶縁被膜において相
反する性質とされていた打抜性と溶接性との双方法を同
時に満足させるべく種々研究が重ねられた結果、かよう
な要請を満足するものとして1、特公昭49−1907
8号公報において、絶縁被膜に2μH以上の表面あらさ
を付与し、積ax 層時に溶接によって発生したガスが溶接部周辺から逸散
され易いようなガス通過間隙を形成させることによって
、ビード部におけるブローホールの発生を回避した電磁
画板が提案された。
Therefore, as a result of repeated research in order to simultaneously satisfy both punchability and weldability, which were considered to be contradictory properties in insulating coatings containing organic resins, we have developed a material that satisfies these requirements. As 1, Special Public Service 1977-1907
In Publication No. 8, blowing at the bead portion is prevented by imparting a surface roughness of 2 μH or more to the insulating coating and forming a gas passage gap through which gas generated by welding during stacking is easily dissipated from the periphery of the welded portion. An electromagnetic drawing board that avoids the occurrence of holes has been proposed.

ところで上記公報においては、絶縁板膜に表面あらさを
付与する一方法として、粒径が約2μm以上の有機物粒
子を処理液に配合する方法が開示されているが、有機物
粒子を単に添加しただけでは、処理液中での分散性なら
びにm Jfj−への付ij性が十分とはいえないとこ
ろに問題があった。
By the way, the above-mentioned publication discloses a method of blending organic particles with a particle size of approximately 2 μm or more into the treatment liquid as a method for imparting surface roughness to the insulating plate film, but simply adding organic particles does not work. However, there were problems in that the dispersibility in the treatment liquid and the adhesion to mJfj- were not sufficient.

そこでさらにかかる問題を解決するものとして、有機樹
脂粒子を予めエマルジョン樹脂溶液に添加することによ
って、その分散性の改善を図った絶。
In order to further solve this problem, an attempt was made to improve the dispersibility of the emulsion resin solution by adding organic resin particles to the emulsion resin solution in advance.

縁被膜の形成方法が、特公昭55−21111号公報に
提案された。
A method for forming an edge coating was proposed in Japanese Patent Publication No. 55-21111.

しかしながら上記の方法において、エマルション樹脂溶
液中に有機樹脂粒子を添加するためには、攪拌が必要で
あるところ、攪拌が強すぎるとエマルション樹脂が破壊
されて樹脂が凝集するために良好な分散液とはなり得ず
、一方弱い攪拌であればエマルジョン村脂の破壊もなく
良好な分散液がt4)られるものの、均一分散までには
長時間を要するため不経済であるなど、樹脂粉末の取扱
いが煩、雑なところに問題を残していた。
However, in the above method, stirring is necessary in order to add organic resin particles into the emulsion resin solution, but if stirring is too strong, the emulsion resin will be destroyed and the resin will aggregate, resulting in a poor dispersion. On the other hand, weak stirring can produce a good dispersion without destroying the emulsion fat (t4), but it takes a long time to achieve uniform dispersion, which is uneconomical, and the handling of the resin powder is complicated. , leaving problems in the rough spots.

また上記の方法においては、しかるべく 214製した
処理液を電磁鋼板の表面に塗布したのち、400〜70
0°Cの範囲の温度にて焼付けを行うことにより、有機
樹脂粒子の一部を溶融させて鋼板への・付11力を向上
させるのであるが、かかる温度範囲の焼付は処]11t
においては、粒子の中心部から突佛が生じ、句着V子は
火山の噴火口の如き外輪山を形成することがあるところ
、かような突起部(外輪山)の強度は非常に弱いため、
スリット時のテ1゛ンションバットナどでのしめつけに
より、その一部がはく離し易いところにも問題を残して
いた。
In addition, in the above method, after applying a treatment solution made from 214 to the surface of an electrical steel sheet, a treatment solution made from 400 to 70
Baking at a temperature in the range of 0°C melts some of the organic resin particles and improves the adhesion to the steel plate.
In , a protrusion arises from the center of the particle, and the kujiku V-ko sometimes forms an outer rim like a volcanic crater, but the strength of such a protrusion (outer rim) is very weak.
There was also a problem in that part of the material was easily peeled off due to tightening with the tension buttner during slitting.

さらに、かような被膜はく離を起こし易い材料を打抜き
加工した場合には、打抜き金型にはく離粉が句着して金
ノ1gの焼付きを生じさせる原因となり、甚だしい場合
には金型の破損を招くおそれもあったのである。
Furthermore, when punching a material that is prone to film peeling, the peeling powder may stick to the punching die and cause the metal to seize, and in severe cases, the die may be damaged. There was also the risk of inviting

発明の目的 この発明は、上記の諸問題を有利に解決するものモ、重
クロム酸塩−有機樹脂糸の絶縁被膜のJlづ成に当って
、該被膜の表面あらさの調整のためGこ添加する有機樹
脂粒子の処理液中における均一分散を容易ならしめると
共に、被膜密着性の改善も併せて達成することにより、
打抜性のみならず溶接性にも優れた電磁鋼板絶縁被膜を
11づ成する方法を提案することを目的とする。
Purpose of the Invention The present invention advantageously solves the above-mentioned problems.In forming an insulating coating of dichromate-organic resin yarn, G is added to adjust the surface roughness of the coating. By making it easier to uniformly disperse the organic resin particles in the processing solution and also improving the adhesion of the film,
The purpose of the present invention is to propose a method for forming an insulating coating on an electrical steel sheet that has excellent not only punchability but also weldability.

発明の構成 すなわちこの発明は、電磁社く板の表面に、重クロム酸
塩−有機樹脂糸の絶縁板膜を形成するに当り、処理液と
して、重クロム酸塩水溶液と有機樹脂エマルジョンおよ
び還元剤との混合液に、粒子径が5〜80μmのポリエ
チレン粉末樹脂を界面活性剤を用いC予め水に分散させ
たのちOこ配合した懸濁液を用いるものとし、この処理
液を電磁a4板の表面に塗布したのち、該鋼板の板温が
110°Cから150°Cまでの間は昇温速度:2〜1
0°C/Sの条件下に昇温し、引続き250〜850℃
の瀉範囲で焼付けを完了することを特徴とする特許、お
よび溶接性に優れた電磁鋼板絶縁被膜の形成方法である
Components of the Invention In other words, this invention uses a dichromate aqueous solution, an organic resin emulsion, and a reducing agent as a treatment liquid when forming an insulating film of dichromate-organic resin threads on the surface of an electromagnetic board. A suspension is used in which polyethylene powder resin with a particle size of 5 to 80 μm is predispersed in water using a surfactant, and then mixed with a mixed solution of A4 electromagnetic plate. After coating the surface, when the temperature of the steel plate is from 110°C to 150°C, the heating rate is 2 to 1.
Raise the temperature under the condition of 0°C/S, then 250-850°C
This patent is characterized in that baking is completed within a heating range of

この発明において、得られる絶縁被膜の表面あらさは、
中心線平均あらさRaで、0.4〜1.5μm程度が好
適である。
In this invention, the surface roughness of the insulating film obtained is as follows:
The centerline average roughness Ra is preferably about 0.4 to 1.5 μm.

以下この発明を具体的に説明する。This invention will be explained in detail below.

まず、絶縁被膜を被成゛するための処理液についてJζ
;明する。
First, regarding the treatment solution for forming the insulating film,
;To clarify.

この発明において使用するポリエチレン粉末樹脂につい
ては、その粒子径を、5〜80μmの範・囲とする必要
かある。というのは粒径が5μm未満のjfi1合は、
塗布、焼付は処理後に表面あらさRa:0.4μm以上
のm6保が困難となるため良好な溶接性が得られず、一
方、粒子径が80μmを超えると、塗布、焼付は後の表
面あらさRaが1.5μmを超えることになって占積率
の低下を招くほか、塗布均一性も劣化するからである。
The particle size of the polyethylene powder resin used in this invention needs to be in the range of 5 to 80 μm. This is because if the particle size is less than 5 μm,
For coating and baking, it is difficult to maintain surface roughness Ra: m6 of 0.4 μm or more after treatment, making it difficult to obtain good weldability.On the other hand, when the particle size exceeds 80 μm, coating and baking become difficult to maintain surface roughness Ra: 0.4 μm or more. This is because not only does the space factor exceed 1.5 μm, resulting in a decrease in the space factor, but also the coating uniformity deteriorates.

ついでかかる5〜80μmの粒子径を有するポリエチレ
ン粉末W脂を、界面活性剤を用いて予め水分散液とした
のち、重クロム酸塩と有機樹脂エマルジョンとの混合液
に配合するのである。とい。
Next, the polyethylene powder W resin having a particle size of 5 to 80 μm is made into an aqueous dispersion using a surfactant, and then added to the mixture of dichromate and organic resin emulsion. Toi.

うのは粉末樹脂は、その表向か、活性剤によって覆われ
ることによって容易に重クロム酸塩と有(((1樹脂エ
マルジヨンとの混合液への配合ができるようになり、処
理液中における粉末樹脂の分散性が向上するからである
The surface of the powdered resin is coated with an activator, allowing it to be easily incorporated into a mixture with dichromate and a resin emulsion. This is because the dispersibility of the powder resin is improved.

次に重クロム酸塩の水溶液としては、zn 、 caお
よびMgなどの2価の金属のうちから選ばれる何れか1
釉または2押以上を含むjRクロム酸驕あるいはこれに
若干の無水り四ム酸を加えた水溶液1・・が有利に適合
し、かかる水溶液は、上記した如き2価金属の酸化物、
水酸化物あるいは炭酸塩を無水クロム酸の水溶液に溶解
させることによって得ることができる。
Next, as the dichromate aqueous solution, any one selected from divalent metals such as zn, ca, and Mg.
A glaze or an aqueous solution of chromic acid containing 2 or more chromic acid or anhydrous tetramic acid 1... is advantageously suitable, and such an aqueous solution is suitable for oxidation of divalent metals such as those mentioned above,
It can be obtained by dissolving the hydroxide or carbonate in an aqueous solution of chromic anhydride.

また有機樹脂エマルジョンとしては、アクリル、酢酸ビ
ニルスチレン、ベオバおよびエチレンなどの単独または
2種以上の共重合物で、重クロム〆1し水溶液中の酸性
側で安定して相溶するものが好適である。さらにクロム
の還元剤としては、エチレングリコール、グリセリンお
よびショ糖などの多゛、価アルコール力〕がとりわけ有
利に適合する。
The organic resin emulsion is preferably a single or copolymer of two or more of acrylic, vinylstyrene acetate, beoba, and ethylene, which are stably compatible with dichromium 1 and the acidic side of an aqueous solution. be. Further, as reducing agents for chromium, polyhydric alcohols such as ethylene glycol, glycerin and sucrose are particularly advantageously suited.

次に、これら各成分の好適添加量について述べると、次
のとおりである。
Next, the preferred amounts of each of these components to be added are as follows.

まず有4af uJ脂エマルジョンとポリエチレン粉末
樹脂とを含めた有機樹脂固形分としCは、重クロム酸塩
水溶液中のC1r08: ’100重量部に対して、5
〜150重bt r’jls程度とするのが好ましい。
First, the organic resin solid content including the 4af uJ fat emulsion and the polyethylene powder resin, and C is 5 parts by weight relative to 100 parts by weight of C1r08 in the dichromate aqueous solution.
It is preferable to set it to about 150 to 150 bt r'jls.

というのは樹脂固形分が5重量部より少ないと、十分な
打抜性が得られず、一方、150重量部より多くなると
耐熱性が劣化するからである。そして全有機樹脂固形分
中におけるポリエチレン粉末樹脂の割合は、lθ〜60
%程度が好ましい。10%未満では焼付は後の破膜表面
のあらさにつき、Raで0.4μm以上の確保が困儲で
あるため良好な溶接性が得られず、一方60%より多く
なると被膜表面のあらさがRaで1.5μmを超えるこ
ととなって占積率が劣化するからである。
This is because if the resin solid content is less than 5 parts by weight, sufficient punchability cannot be obtained, whereas if it is more than 150 parts by weight, heat resistance deteriorates. The proportion of polyethylene powder resin in the total organic resin solid content is lθ~60
% is preferable. If it is less than 10%, good weldability cannot be obtained because it is difficult to secure an Ra of 0.4 μm or more because of the roughness of the surface of the film after the rupture, while if it exceeds 60%, the roughness of the film surface becomes rough. This is because the thickness exceeds 1.5 μm and the space factor deteriorates.

次に、クロムの還元剤としての多価アルコールの添加量
については、重り四ム酸塩水溶液中のcro、 z o
 o fflDt部に対して10〜60重■部程・度が
好ましい。10重量部より少ないと、破膜の耐水性が劣
化し、一方60重爪部より多いと、処理液中で還元反応
が進行し、処理液がゲル化する不利が生じるからである
Next, regarding the amount of polyhydric alcohol added as a chromium reducing agent, cro, z o in the weight tetramate aqueous solution
It is preferably about 10 to 60 parts by weight based on parts of fflDt. If it is less than 10 parts by weight, the water resistance of the ruptured membrane will deteriorate, while if it is more than 60 parts by weight, a reduction reaction will proceed in the treatment liquid, resulting in the disadvantage that the treatment liquid will gel.

なおこの発明においては、上記した成分のほか被膜の耐
熱性を一層向上させるためにほう酸を配合することもで
きる。この場合、(コう酸の配合1’lFは0r081
00重■部に対し、20〜45重jF< tsi5の範
囲とすることがより効果的である。
In the present invention, in addition to the above-mentioned components, boric acid may be added to further improve the heat resistance of the coating. In this case, (the composition of cholic acid 1'IF is 0r081
It is more effective to set the range of 20 to 45 weight jF<tsi5 for 00 weight parts.

ついで上述した如き配合割合になる処理液を、電磁鋼板
の表面に均一に塗布するわけであるが、かかる塗布方法
としては、ロールコータ−法ヤ浸漬法など従来公知のい
ずれの方法をも使用することができる。
Next, a treatment liquid having the above-mentioned mixing ratio is uniformly applied to the surface of the electrical steel sheet, and any conventionally known method such as a roll coater method or a dipping method can be used for this application method. be able to.

かくして処理液を均一に塗布した電磁鋼板に、ぢ[続い
て焼付は処理を施すわけであるか、この焼付は工程にお
いて、ポリエチレン粉末の軟化点(約120°C)近傍
の温度領域すなわち鋼板の板温が110°Cから150
℃までの間の昇温速度を2〜lO°C/Sに制御するこ
とが肝要である。
The electromagnetic steel sheet that has been uniformly coated with the treatment solution is then subjected to baking, which is done in the temperature range near the softening point of the polyethylene powder (approximately 120°C), that is, the temperature of the steel sheet. Board temperature from 110°C to 150°C
It is important to control the temperature increase rate to 2 to 10°C/S.

昇温速度が10℃/Sを超えると、ポリエチレン粉末樹
脂の中心部から突沸が起って、付着粒子は火山の噴火口
の如き外輪山を形成し、スリット時のテンションバット
などでのしめつけによって一部がはく雛するおそれが大
きく、一方2°C/Sに満たないと長時間を要し経済的
でないからである。
When the temperature increase rate exceeds 10°C/S, bumping occurs from the center of the polyethylene powder resin, and the adhered particles form an outer ring like a volcanic crater, which is then tightened with a tension butt during slitting. This is because there is a great possibility that the chicks will peel off, and on the other hand, if the temperature is less than 2°C/S, it will take a long time and is not economical.

ついで引続いて昇温させ、板温が250〜850°Cの
温度範囲で焼付けを完了させることにより、目的とする
良好な絶縁被膜が形成されるのである8焼付は完了温度
が250°Cに満たないと、被膜に吸湿性が残るため耐
食性が悪化し、一方350°Cを超えると密着性が劣化
するので、焼付は完了温度は250〜350℃の範囲と
する必要がある。
Then, by raising the temperature and completing the baking at a temperature range of 250 to 850°C, the desired good insulation coating is formed. 8 Baking is completed at a temperature of 250°C. If the temperature is lower than 350°C, the corrosion resistance will deteriorate because the film remains hygroscopic, while if it exceeds 350°C, the adhesion will deteriorate, so the baking completion temperature needs to be in the range of 250 to 350°C.

なお焼硝は後の被膜付着量が、−0’ 4 ’/m ”
より丈・少ないと良好な打抜性が得難く、一方69/m
”よりも多いと被膜の密着性が劣化するため、被膜付着
量は0.4〜6り/m2程度とするのが好ましい。
In addition, the amount of film deposited on the baked glass is -0'4'/m''
If the length is shorter or shorter, it is difficult to obtain good punching properties, while 69/m
Since the adhesion of the film deteriorates if the amount is more than 1.0, the adhesion of the film is preferably about 0.4 to 6 l/m2.

実 施 例 〔実施例1〕 板厚:0.5間、板幅:98omのo、a%si含有電
磁鋼板の表面に、下記の成分からなる処理液Aをゴムロ
ールで塗布したのち、焼付過程において、板温が110
”Cから150’Cまでのあいたを5°C/秒の昇温速
度で÷昏→→昇温し、引続き板温が800℃になるまで
焼付けて、該鋼板表面に被膜付着量が8.89 / m
2の被膜を形成した。
Example [Example 1] After coating the surface of an O, A% Si-containing electrical steel sheet with a plate thickness of 0.5 mm and a plate width of 98 om with a rubber roll, a baking process was performed. , the board temperature was 110
The temperature was increased from 150°C to 150°C at a heating rate of 5°C/sec, and then baked until the plate temperature reached 800°C, and the amount of film deposited on the surface of the steel plate was 8.5°C. 89/m
2 coatings were formed.

〔処理液A〕[Processing liquid A]

■の分散液を■の混合液に添加する。 Add the dispersion of (2) to the mixture of (2).

得られた被膜の断面形状は、第1図に示したと1おり凸
部を有するものであり、その表面粗度Haは0.77μ
mであった。
The cross-sectional shape of the obtained coating has convex portions as shown in Fig. 1, and its surface roughness Ha is 0.77μ.
It was m.

なお図中番号lが地鉄、2が被膜であり、8は表面保護
のためのAl箔である。
In the figure, number 1 is the base metal, 2 is the coating, and 8 is the Al foil for surface protection.

得られた絶縁被膜付き電磁鋼板を、スリッターラインに
てg1mm幅にスリットしたが、がかるスリット処理に
おいてテンションパッドによる被膜剥離もなく、密着性
は良好であった。
The obtained electrical steel sheet with an insulating coating was slit into a width of 1 mm using a slitter line. During the slitting process, there was no peeling of the coating due to the tension pad, and the adhesion was good.

次にこの材料を、打抜金型として5kD−1、また打抜
力J1として軽油を用い、aOO回/分の打抜速度下に
連続打抜きを行った。100万回打抜いた後のかえり筒
さは42μmであった。
Next, this material was continuously punched at a punching speed of aOO times/minute using a punching die of 5 kD-1 and a punching force J1 of light oil. The burr diameter after punching 1 million times was 42 μm.

ついで打抜かれた材料を積層したのち、電極2.4 m
myl Th −W + it流120A、アルゴン流
坦61/分、および締付圧100 kg/ciの条件下
にTIG溶接を施したところ、120cm/分の溶接速
度−もブローホールの発生は認められなかった。
Then, after laminating the punched materials, an electrode of 2.4 m
When TIG welding was carried out under the conditions of myl Th -W+IT flow of 120 A, argon flow rate of 61/min, and clamping pressure of 100 kg/ci, no blowholes were observed even at a welding speed of 120 cm/min. There wasn't.

その他の被膜緒特性は表1に示したとおりであった。Other film characteristics were as shown in Table 1.

、〔比較例1〕 実施例1と同様にして処理液Aを塗布し、焼付過程にお
いて、板温が110℃から150°Cのあいだを13°
C/秒の昇温速度で昇温し、引続き板温が300°Cに
なるまで焼付けて、該鋼板表面に被膜付着fi : L
4り7m の被膜を形成した。
, [Comparative Example 1] Treatment liquid A was applied in the same manner as in Example 1, and during the baking process, the plate temperature was 13° between 110°C and 150°C.
The temperature was raised at a temperature increase rate of C/sec, and the steel plate was baked until the temperature reached 300°C, and a film was attached to the surface of the steel plate.
A coating of 4 x 7 m was formed.

得られた被膜の断面形状は、第2図に示したとおりであ
って火山の噴火口の如き、外輪山を呈していた。また表
面粗度Raは0.14μmであった。
The cross-sectional shape of the obtained coating was as shown in FIG. 2, and had a outer ring shape similar to a volcanic crater. Moreover, the surface roughness Ra was 0.14 μm.

この材料をスリッターラインにて9i馴幅にスリ1□゛
ツトシたが、テンションパッド部において被膜剥離が認
められた。
This material was slit 1□ to a 9i width on a slitter line, but peeling of the film was observed at the tension pad portion.

ついで実施例1と同様にして打抜性を調べたが、58万
回打抜いたとき、金型に刃かけが起こったため打抜きを
中止した。刃かけの原因は被膜剥離□1力の金型への焼
付きと考えられる。
Then, the punching property was examined in the same manner as in Example 1, but when the die was punched 580,000 times, the die was cut, so the punching was stopped. The cause of the chipping is thought to be the peeling of the film and the seizure of the mold by □1 force.

さらに、実施例1と同様にT’IG溶接を施したところ
、120cm/分の高速溶接でもプローホールの発生は
認められなかった。
Furthermore, when T'IG welding was performed in the same manner as in Example 1, no plowholes were observed even at high speed welding of 120 cm/min.

その他の被膜諸特性について調べた結果を表1・に併記
した。
The results of investigating other film properties are also listed in Table 1.

〔比較例2〕 下記の成分からなる処理液Bを、実施例1と同様にして
塗布、焼付けて電磁鋼板の表面に絶縁破膜を被成した。
[Comparative Example 2] Treatment liquid B consisting of the following components was applied and baked in the same manner as in Example 1 to form a broken insulation film on the surface of an electrical steel sheet.

焼付は後の破膜付着+i(は3.79/m2であり、表
面粗度Haは0.16μmであった0〔処理液B〕 この材料をスリッターラインにて91 m4iにスリッ
トしたが、被膜剥離は認められなかった。
Baking occurred after membrane rupture adhesion +i (was 3.79/m2, and surface roughness Ha was 0.16 μm. No peeling was observed.

次に、実施例1と同じ条件において、打抜性お□よび溶
接性について調べた。100万回打抜き後のかえり高さ
は42μmであり打抜性は良好であった。また溶接性に
ついては、20Crn/分の溶接速度でもブローホール
が発生し、著しく劣ることがわかった。
Next, under the same conditions as in Example 1, punchability and weldability were examined. The burr height after punching 1 million times was 42 μm, and the punching performance was good. Regarding weldability, blowholes occurred even at a welding speed of 20 Crn/min, and it was found that the weldability was extremely poor.

その他の被膜諸特性は表1に示したとおりであする。Other coating properties are as shown in Table 1.

〔実施例2〕 板厚: Q、5 M 、板幅H94Qsmの3.g q
y si含有1(L磁i板の表面に、下記の成分からな
る処理液C全ゴムロールで碩布したのち、焼付過程にお
いて板温が110’から150°Cのあいだを8°C/
秒の昇温速度で昇温し、引続き板温が310°Cになる
まで焼付けて、該鋼板表面に鼓膜付N量が4.8り7m
2の被膜を形成した。
[Example 2] Plate thickness: Q, 5 M, plate width H94Qsm, 3. gq
After coating the surface of a y Si-containing 1 (L magnetic i plate with a treatment liquid C all-rubber roll consisting of the following components, the plate temperature was heated between 110' and 150°C at 8°C/8°C during the baking process.
The temperature was raised at a temperature increase rate of 2 seconds, and the steel plate was baked until the temperature reached 310°C.
2 coatings were formed.

〔処理液C〕[Processing liquid C]

■の分散液をHの混合液に添加する。 Add the dispersion (2) to the mixture (H).

°樽られた被膜の表面粗度Raは1.21μmあった。The surface roughness Ra of the rolled coating was 1.21 μm.

・これをスリッターで450 m、m@ Gこスリ゛ン
トシタ力)テンションパットへの付着はなく密着性&1
良々J゛であった。
・This was 450 m with a slitter.
It was a good J゛.

次にこの材料を連続打抜機で50μmの力)えりが発生
するまで打抜いたところ、約60万「Jl(”r抜けた
。ついで積層後、T工G溶接を施したところ、120C
rnZ分の高速溶接でもブローホールG1−4トせず溶
接性は良好であった0 さらにJIS第2法で絶縁抵抗を測定したとこ□ろ20
0Ω−cJ/枚と艮好な絶縁性力;刊トら第1た。
Next, this material was punched with a continuous punching machine until a 50 μm force) burr was generated, resulting in approximately 600,000 Jl ("r). Then, after lamination, T welding was performed, and the result was 120C
Even during high-speed welding of rnZ, there was no blowhole G1-4 and the weldability was good. Furthermore, the insulation resistance was measured using JIS method 2.
Excellent insulation strength of 0Ω-cJ/sheet;

〔比較例8〕 下記の成分からなる処理液りを実施例2と1用4町遍に
して電磁鋼板の表面に塗布、焼付番すて該臼−]板表面
に絶縁被膜を被成した。
[Comparative Example 8] A treatment liquid consisting of the following components was applied to the surface of an electromagnetic steel sheet in four areas as in Examples 2 and 1, and baked to form an insulating coating on the surface of the sheet.

〔処理液D〕[Processing liquid D]

Iの分散液を■の混合液に添加する。 Add the dispersion of I to the mixture of (2).

焼付は後の被膜付着量は5.117/m であり、表面
粗度Raは1.62μmであった。この拐料をスリッタ
ーラインにて460酩幅にスリットしたところ、テンシ
ョンバッド部において付着した粒子の一部が剥離した。
The coating weight after baking was 5.117/m 2 and the surface roughness Ra was 1.62 μm. When this coating material was slit into 460 mm widths using a slitter line, some of the particles adhering to the tension pad part were peeled off.

また占積率も95.8%とこの発明の実施例に比べて劣
っていた。
Furthermore, the space factor was 95.8%, which was inferior to the examples of the present invention.

発明の効果 かくしてこの発明によれば、電磁鋼板の表面に爪りロム
酸塩−存機樹脂系被膜を形成するに際し1ミ処理液中に
おけるポリエチレン粉末樹脂の均一分散性ざらには該被
膜の鋼板への密着性を向上させることができ、従ってか
かる絶縁被膜において従来相反する性質とされた打抜性
と溶接性との双方を同時に満足させることができる。
Effects of the Invention Thus, according to the present invention, when forming a romate-based resin coating on the surface of an electrical steel sheet, the uniform dispersion of the polyethylene powder resin in the treatment solution is improved. Therefore, it is possible to simultaneously satisfy both punchability and weldability, which have conventionally been considered contradictory properties in such an insulating coating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従って得られた絶縁被膜付き電磁
鋼板の断面組織のスケッチ図、第2図は従来法によって
得られた絶縁被膜付き電磁鋼板の断面組織のスケッチ図
である。 特許出願人 川崎製鉄株式会社
FIG. 1 is a sketch diagram of a cross-sectional structure of an electrical steel sheet with an insulating coating obtained according to the present invention, and FIG. 2 is a sketch diagram of a cross-sectional structure of an electrical steel sheet with an insulating coating obtained by a conventional method. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 t 電磁鋼板の表面に、重クロム酸塩−有機値゛脂系の
絶縁被膜を形成するに当り、処理液として、FRクロム
酸塩水溶液と有機樹脂エマルジョンおよび還元剤との混
合液に、粒子径が5〜80μmのポリエチレン粉末樹脂
を界面活性剤を用いて予め水に分散させたのちに配”合
した懸濁液を用いるものとし、この処理液を電磁画板の
表面に塗布したのち、該鋼板の板温か110℃から15
0°Cまでの間は昇温速度:2〜b 続き250〜850℃の温度範囲で焼付けを゛完了する
ことを特徴とする打抜性および溶接性の優れた電ri1
鋼板絶縁被膜の形成方法。
[Claims] t. When forming a dichromate-organic resin-based insulating film on the surface of an electrical steel sheet, a treatment solution consisting of an FR chromate aqueous solution, an organic resin emulsion, and a reducing agent is used. A suspension of polyethylene powder resin with a particle size of 5 to 80 μm is dispersed in water using a surfactant and then mixed into the mixed solution, and this treatment solution is applied to the surface of the electromagnetic drawing board. After coating, the temperature of the steel plate was increased from 110℃ to 15℃.
Temperature increase rate up to 0°C: 2-b Continuing Electrical Ri1 with excellent punchability and weldability, characterized by completing baking in the temperature range of 250-850°C
A method of forming an insulating coating on a steel plate.
JP4665584A 1984-03-12 1984-03-12 Formation of insulator covering film superior in punchability and weldability on electrical steel sheet Granted JPS60190572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4665584A JPS60190572A (en) 1984-03-12 1984-03-12 Formation of insulator covering film superior in punchability and weldability on electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4665584A JPS60190572A (en) 1984-03-12 1984-03-12 Formation of insulator covering film superior in punchability and weldability on electrical steel sheet

Publications (2)

Publication Number Publication Date
JPS60190572A true JPS60190572A (en) 1985-09-28
JPS6225750B2 JPS6225750B2 (en) 1987-06-04

Family

ID=12753333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4665584A Granted JPS60190572A (en) 1984-03-12 1984-03-12 Formation of insulator covering film superior in punchability and weldability on electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS60190572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238581A (en) * 1988-07-28 1990-02-07 Kobe Steel Ltd Production of electrical steel sheet with insulating coating film having superior coatability
JPH04346673A (en) * 1991-05-24 1992-12-02 Nippon Steel Corp Electric steel sheet having electrical insulating film which is excellent in weldability, adhesion and heat resistance and treatment thereof
US8709550B2 (en) 2002-01-28 2014-04-29 Jfe Steel Corporation Method for producing coated steel sheet
CN108447670A (en) * 2018-01-12 2018-08-24 浙江鑫盛永磁科技有限公司 A kind of preparation method of used in high-speed motor permanent magnet ndfeb composite magnetic steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238581A (en) * 1988-07-28 1990-02-07 Kobe Steel Ltd Production of electrical steel sheet with insulating coating film having superior coatability
JPH04346673A (en) * 1991-05-24 1992-12-02 Nippon Steel Corp Electric steel sheet having electrical insulating film which is excellent in weldability, adhesion and heat resistance and treatment thereof
US8709550B2 (en) 2002-01-28 2014-04-29 Jfe Steel Corporation Method for producing coated steel sheet
CN108447670A (en) * 2018-01-12 2018-08-24 浙江鑫盛永磁科技有限公司 A kind of preparation method of used in high-speed motor permanent magnet ndfeb composite magnetic steel

Also Published As

Publication number Publication date
JPS6225750B2 (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US4618377A (en) Method for surface treatment of electrical steel sheet
CA1231884A (en) Biaxially oriented polypropylene film construction for special lamination
DE2853173C2 (en)
DE2440964B2 (en) METHOD OF APPLYING A LAYER OF PLASTIC-COATED PARTICLES OF INORGANIC MATERIAL
US6713166B2 (en) Laminating film and laminate
US2301332A (en) Aluminum clad magnesium and method of making same
US5985080A (en) Process for producing a resin-metal laminate
JPS60190572A (en) Formation of insulator covering film superior in punchability and weldability on electrical steel sheet
EP4067529A1 (en) High-performance thermoformed component provided with coating, and manufacturing method therefor
JPS6320960B2 (en)
EP0841159B1 (en) Process for producing a resin-metal laminate
JPS6112516B2 (en)
JPS58208364A (en) Preparation of pressure-sensitive adhesive film
JPH0239781Y2 (en)
JPH0527547B2 (en)
JPH02148703A (en) Electromagnetic steel plate having insulating film
JPH0911413A (en) Co-extruded multilayer film for deep draw forming
JP2606289B2 (en) Method of manufacturing seamless belt for electrostatic recording
JPH03240970A (en) Production of nonoriented silicon steel sheet excellent in film characteristic after stress relief annealing and surface treating agent therefor
JP2548805B2 (en) Manufacturing method of non-oriented electrical steel sheet excellent in magnetic properties, weldability and space factor
KR100226889B1 (en) The coating method and solution of insulation coating
JPH01116085A (en) Formation of insulating coat having superior suitability to blanking and welding on electrical steel sheet
JP3006052B2 (en) Method of forming insulating film for electrical steel sheet
JPS594903A (en) Production of steel plate coated with self-fluxing alloy
JPH0339483A (en) Silicon steel sheet with dissimilar insulation coatings