JPS60190444A - Hydrophilic-hydrophobic thermally reversible material - Google Patents

Hydrophilic-hydrophobic thermally reversible material

Info

Publication number
JPS60190444A
JPS60190444A JP4672684A JP4672684A JPS60190444A JP S60190444 A JPS60190444 A JP S60190444A JP 4672684 A JP4672684 A JP 4672684A JP 4672684 A JP4672684 A JP 4672684A JP S60190444 A JPS60190444 A JP S60190444A
Authority
JP
Japan
Prior art keywords
acrylpiperidine
hydrophilic
poly
temperature
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4672684A
Other languages
Japanese (ja)
Inventor
Shoji Ito
昭二 伊藤
Kensaku Mizoguchi
溝口 健作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4672684A priority Critical patent/JPS60190444A/en
Publication of JPS60190444A publication Critical patent/JPS60190444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a hydrophilic-hydrophobic thermally reversible material composed essentially of an aqueous solution of poly(acrylpiperidine), and having lower transition temperature than the know material. CONSTITUTION:The objective poly(acrylpiperidine) having a hydrophilic-hydrophobic transition temperature of 4-6 deg.C is prepared by irradiating acrylpiperidine or a proper solvent solution of acrylpiperidine with radiation, or by heating acrylpiperidine in the presence of a radical polymerization initiator. The intrinsic viscosity of the poly(acrylpiperidine) is preferably 0.01-6, espectially 0.1-3.

Description

【発明の詳細な説明】 本発明は、新規な親水性−疎水性熱可逆型材料に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel hydrophilic-hydrophobic thermoreversible material.

スケートリンク、低温倉庫の透明壁、明りとり用天窓な
どは、冬期を除き、必要以」二に内部の温度を上昇させ
ることがあるので、このような場合には、なんらかの手
段で直射日光を遮ることが望ましい。これまで、このよ
うな遮光手段としては、カーテン、スダレ、ブラインド
などの遮光体で、所定の透明部分を覆い、直射日光から
内部を遮ることが行われていた。しがしながら、このよ
うな方法では、遮光が必要か否かを判断した上、その都
度遮光体を取りつけたり取りはずしたりしなければなら
ないというわずられしさがある。したがって、低温では
光をよ(透過するが、内部の温度が上昇したときには、
これを透過しなくなるような感温性材料で透明部分を形
成させれば、上記のようなわずられしさをなくすること
ができる。
Skating rinks, transparent walls in low-temperature warehouses, skylights for lighting, etc. can cause the internal temperature to rise more than necessary, except in winter, so in such cases, take some measure to block direct sunlight. This is desirable. Until now, such light shielding means has been carried out by covering a predetermined transparent part with a light shielding body such as a curtain, blind, or blind to shield the interior from direct sunlight. However, this method is cumbersome because it requires determining whether or not light blocking is necessary and then attaching or removing the light blocking body each time. Therefore, at low temperatures it allows light to pass through, but when the internal temperature rises,
If the transparent portion is formed of a temperature-sensitive material that does not transmit this, the above-mentioned troublesomeness can be eliminated.

本発明者らは、このような要求を満たす材料を開発すべ
く種々研究を重ね、先にN−イソプロピルアクリルアミ
ド、N−イソプロピルメタクリルアミド、N −n−プ
ロピルアクリルアミド、N−n−プロピルメタクリルア
ミド、N−シクロプロピルアクリルアミド、N−シクロ
プロピルメタクリルアミド又はN、N−ジエチルアクリ
ルアミドの重合体は、ある温度以下では親水性であり、
その水溶液は透明であるが、その温度より高(なると疎
水性に変わり、不透明化する性質を有することを見出し
、この性質を利用して遮光材料とすることなどを提案し
た。
The present inventors have conducted various studies to develop materials that meet these requirements, and have previously developed materials such as N-isopropylacrylamide, N-isopropylmethacrylamide, N-n-propylacrylamide, N-n-propylmethacrylamide, Polymers of N-cyclopropylacrylamide, N-cyclopropylmethacrylamide or N,N-diethylacrylamide are hydrophilic below a certain temperature;
Although the aqueous solution is transparent, they found that it becomes hydrophobic and opaque when the temperature rises above that temperature, and proposed that this property could be used to make it into a light-shielding material.

れない。Not possible.

本発明者らは、さらに異った転移温度をもち、低温貯蔵
庫用に利用範囲の拡大された材料を開発すべく研究を続
けた結果、ポリ (アクリルピペリジン)が、親水性と
疎水性との転移温度が4〜6゜Cであり、従来のものよ
りもかなり低い転移温度の感温性材料を構成しうろこと
を見出し、この知見に基づいて本発明をなすに至った。
The present inventors continued their research to develop materials with different transition temperatures and an expanded range of applications for low-temperature storage. As a result, poly(acrylic piperidine) has a combination of hydrophilic and hydrophobic properties. It was discovered that scales constitute a temperature-sensitive material having a transition temperature of 4 to 6 DEG C., which is considerably lower than that of conventional materials, and based on this knowledge, the present invention was accomplished.

すなわち、本発明は、ポリ(アクリルピペリジン)の水
溶液から実質的に成る転移温度4〜6°Cをもつ親水性
−疎水性熱可逆型材料を提供するものである。
That is, the present invention provides a hydrophilic-hydrophobic thermoreversible material having a transition temperature of 4 to 6°C consisting essentially of an aqueous solution of poly(acrylic piperidine).

本発明で用いられるポリ (アクリルピペリジン)は、
例えば、アクリルピペリジンを単独でもしくは適当な溶
剤に溶かし、放射線照射するか、あるいはラジカル重合
開始剤の存在下で加熱することにより製造される。この
ものは4〜6°Cの温度で可逆的に親水性−疎水性の転
移を行い、その水溶液中で示差走査熱量測定において4
.7°Cで吸熱ピークを示すという特徴を有している。
The poly(acrylic piperidine) used in the present invention is
For example, it is produced by irradiating acrylic piperidine alone or by dissolving it in a suitable solvent and heating it in the presence of a radical polymerization initiator. It undergoes a reversible hydrophilic-hydrophobic transition at a temperature of 4 to 6°C, and in differential scanning calorimetry in its aqueous solution,
.. It is characterized by an endothermic peak at 7°C.

またポリ(アクリルピペリジン)は適当の高分子量を有
するもの、例えばクロロホルムを用いて30°Cにおけ
る極限粘度は0.01〜6.0程度のものが実用的であ
り、特に0.1〜3.0のものが好ましい。
Further, poly(acrylic piperidine) having an appropriate high molecular weight, for example, using chloroform, has a practical intrinsic viscosity of about 0.01 to 6.0 at 30°C, particularly 0.1 to 3. 0 is preferred.

本発明の親水性−疎水性熱可逆型材料は、ポリ(アクリ
ルピペリジン)を水溶液のような水との組成物の形に調
整する必要がある。この際の濃度は使用目的に応じて変
わるが、通常0.05〜30重量%の範囲で選ばれる。
The hydrophilic-hydrophobic thermoreversible material of the present invention requires preparing poly(acrylic piperidine) into a composition with water such as an aqueous solution. The concentration at this time varies depending on the purpose of use, but is usually selected in the range of 0.05 to 30% by weight.

このようにして調整された親水性−疎水性熱可逆型材料
は、その光透過についての温度可逆性を利用して、遮光
材料、水溶性接着剤、被覆材料、なっ染剤などとして広
範囲に利用される。例えば、本発明の親水性−疎水性熱
可逆型材料は、水溶液のままで、あるいは含水ゲルやマ
イクロカプセルの形態で透明板状体に積層される。この
際用いられる透明板状体の材料としては、所望の用途1
こ耐えうる強度を有するものであれば特に制限はな(、
ガラス、プラスチック等これまで透明壁、窓などに広く
使用されてきた材料の中から任意に選択することができ
る。
The hydrophilic-hydrophobic thermoreversible material prepared in this way is widely used as a light-shielding material, water-soluble adhesive, coating material, dyeing agent, etc. by taking advantage of its temperature reversibility of light transmission. be done. For example, the hydrophilic-hydrophobic thermoreversible material of the present invention is laminated on a transparent plate-like body in the form of an aqueous solution or in the form of a hydrogel or microcapsule. The material of the transparent plate-like body used at this time is as follows:
There is no particular restriction as long as it has the strength to withstand this (,
Any material can be selected from materials that have been widely used for transparent walls, windows, etc., such as glass and plastic.

この透明板状体に前記組成物を積層させる方法としては
、例えば水溶液や含水ゲルの場合は2枚の透明板状体の
間にこれを封入する方法、マイクロカプセルの場合は、
適当なバインダーで透明板状体の表面に塗布する方法な
どがある。
The method of laminating the composition on this transparent plate-like body includes, for example, in the case of an aqueous solution or hydrogel, a method of encapsulating the composition between two transparent plate-like bodies, and in the case of a microcapsule,
There is a method of coating the surface of a transparent plate with a suitable binder.

このようにして得られた遮光材料は、例えば太陽直射光
によって必要以−Lに低温倉庫の室内温度が昇温するの
を自動的に防止するための透明材料として好適である。
The light-shielding material thus obtained is suitable as a transparent material for automatically preventing the indoor temperature of a low-temperature warehouse from increasing more than necessary due to direct sunlight, for example.

次に実施例によって本発明を更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

参考例 11容の三角フラスコにトリエチルアミン50.98及
びアセトン450m1を入れ、三角フラスコを氷で冷や
して内容液を10°C以下の温度に保ち、かきまぜなが
ら、この中にアクリル酸クロリド41.5mlとアセト
ン5QmJとの混合溶液を滴下漏斗から約して沸点85
〜86°c/ 1 mmT(gの留分を回収し、無色透
明の液体41.6gを得た。この物質のマススペクトル
では、親ピークが138でアクリルピペリジンの分子量
と一致し、物質が確認された。
Reference Example 1 Put 50.98 ml of triethylamine and 450 ml of acetone into an 11-volume Erlenmeyer flask, cool the Erlenmeyer flask with ice to keep the content below 10°C, and add 41.5 ml of acrylic acid chloride to the flask while stirring. A mixed solution with 5QmJ of acetone was added to the dropping funnel to give a boiling point of 85.
A fraction of ~86 °C/1 mmT (g) was collected, yielding 41.6 g of a colorless and transparent liquid. In the mass spectrum of this substance, the parent peak was 138, which matched the molecular weight of acrylic piperidine, and the substance was confirmed. It was done.

実施例 参考例で得たアクリルピペリジン4.99g、ベンゼン
20WIl、アゾビスイソブチロニトリル0.2gをア
ンプルに入れ、液体窒素を用いて減圧脱気を行い空気を
除いたのち、上部をバーナーで封じた。
Example: Put 4.99 g of acrylpiperidine obtained in the reference example, 20 WIl of benzene, and 0.2 g of azobisisobutyronitrile into an ampoule, perform vacuum degassing using liquid nitrogen to remove air, and then heat the upper part with a burner. Sealed.

これに、70°Cで30分加熱して重合を行わせた。This was heated at 70°C for 30 minutes to effect polymerization.

次いでアンプル中の反応液をベンゼン−n−ヘキサン混
合溶液中に投入し、ポリ (アクリルピペリジン)を析
出沈殿させ、単離して4.66gのポリマーを得た。
Next, the reaction solution in the ampoule was poured into a benzene-n-hexane mixed solution, and poly(acrylpiperidine) was precipitated and isolated to obtain 4.66 g of polymer.

得られたポリマーをクロロホルムを用いて30°Cの温
度で粘度測定した結果、その極限粘度は0,19であっ
た。
The viscosity of the resulting polymer was measured using chloroform at a temperature of 30°C, and the intrinsic viscosity was found to be 0.19.

得られたポリ (アクリルピペリジン)を水に溶解して
1重量%水溶液を調整し、この水溶液を昇温速度1°C
/minで昇温させながら分光光度計を用いて5001
mの透過率を測定し、その水溶液の温度と透過率との関
係をめた。この結果をグラフとして第1図に示す。
The obtained poly(acrylic piperidine) was dissolved in water to prepare a 1% by weight aqueous solution, and this aqueous solution was heated at a heating rate of 1°C.
5001 using a spectrophotometer while increasing the temperature at /min.
The transmittance of m was measured, and the relationship between the temperature of the aqueous solution and the transmittance was determined. The results are shown in FIG. 1 as a graph.

このグラフから明らかなように、水溶液中のポリ (ア
クリルピペリジン)は低温域では溶解しているが、4°
Cより析出しはじめ、昇温と共に急激に析出量が増大し
、6°Cでは、5 Q Q nmの透過率がOとなり水
に不溶となることがわかる。
As is clear from this graph, poly(acrylpiperidine) in aqueous solution dissolves at low temperatures;
It can be seen that the precipitation starts from C, and the amount of precipitation increases rapidly as the temperature rises, and at 6° C., the transmittance at 5 Q Q nm becomes O, making it insoluble in water.

また、得られたポリ (アクリルピペリジン)3.2■
及び水59.11Vをアルミニ1クム製密封容器に入れ
、密封セルの蓋をかぶせてサンプルシーラーで密封し試
料を作成した。試料を示差走査熱量計を用いて、昇温速
度1°C/minで熱量測定のSC測定)した。その結
果を第2図に示す。これをみると、吸熱ピークは約O″
Cよりはじまり15′Cまでブロードな曲線がえかかれ
ている。この吸熱ピークのピークトップの温度をめると
4,7°Cであった。これらの結果より、ポリ (アク
リルピペリジン)水溶液は4〜6°Cに転移温度を有す
ることがわかる。
In addition, the obtained poly (acrylic piperidine) 3.2■
A sample was prepared by placing 59.11 V of water and 59.11 V of water in a sealed container made of 1 cum aluminum, covering the container with a sealed cell lid, and sealing the container with a sample sealer. The sample was subjected to calorimetric SC measurement using a differential scanning calorimeter at a heating rate of 1°C/min. The results are shown in FIG. Looking at this, the endothermic peak is about O''
A broad curve is drawn starting from C and ending at 15'C. The temperature at the top of this endothermic peak was 4.7°C. These results show that the poly(acrylpiperidine) aqueous solution has a transition temperature of 4 to 6°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ポリ (アクリルピペリジン)1重量%水溶
液の温度と5 Q Q nmの透過率との関係を示すグ
ラフで、第2図は、ポリ (アクリルピペリジン)水溶
液のDSC曲線を示すグラフである。 特許出願人 工業技術院長 川 口] 裕 部(%)*
W?
Figure 1 is a graph showing the relationship between the temperature and transmittance at 5 Q Q nm of a 1% by weight aqueous solution of poly(acrylic piperidine), and Figure 2 is a graph showing the DSC curve of an aqueous solution of poly(acrylic piperidine). be. Patent applicant Kawaguchi, Director of the Agency of Industrial Science and Technology] Hirobe (%) *
W?

Claims (1)

【特許請求の範囲】[Claims] (1) ポリ (アクリルピペリジン)の水溶液から実
質的に成る転移温度4〜6°Cをもつ親水性−疎水性熱
可逆型材料。
(1) A hydrophilic-hydrophobic thermoreversible material with a transition temperature of 4 to 6°C consisting essentially of an aqueous solution of poly(acrylic piperidine).
JP4672684A 1984-03-12 1984-03-12 Hydrophilic-hydrophobic thermally reversible material Pending JPS60190444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4672684A JPS60190444A (en) 1984-03-12 1984-03-12 Hydrophilic-hydrophobic thermally reversible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4672684A JPS60190444A (en) 1984-03-12 1984-03-12 Hydrophilic-hydrophobic thermally reversible material

Publications (1)

Publication Number Publication Date
JPS60190444A true JPS60190444A (en) 1985-09-27

Family

ID=12755342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4672684A Pending JPS60190444A (en) 1984-03-12 1984-03-12 Hydrophilic-hydrophobic thermally reversible material

Country Status (1)

Country Link
JP (1) JPS60190444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147923A (en) * 1987-10-05 1992-09-15 Ciba-Geigy Corporation Thermotropic biphilic hydrogels and hydroplastics
US6974660B2 (en) 2002-03-15 2005-12-13 Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163867A (en) * 1984-02-06 1985-08-26 Mitsui Toatsu Chem Inc N-acryloyl cyclic imine and its preparation
JPS60168705A (en) * 1984-02-14 1985-09-02 Mitsui Toatsu Chem Inc Temperature-sensitive polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163867A (en) * 1984-02-06 1985-08-26 Mitsui Toatsu Chem Inc N-acryloyl cyclic imine and its preparation
JPS60168705A (en) * 1984-02-14 1985-09-02 Mitsui Toatsu Chem Inc Temperature-sensitive polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147923A (en) * 1987-10-05 1992-09-15 Ciba-Geigy Corporation Thermotropic biphilic hydrogels and hydroplastics
US6974660B2 (en) 2002-03-15 2005-12-13 Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution
US7011930B2 (en) 2002-03-15 2006-03-14 The Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution

Similar Documents

Publication Publication Date Title
Paik et al. Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk
Kröger et al. Light controlled solubility change of polymers: Copolymers of N, N‐dimethylacrylamide and 4‐phenylazophenyl acrylate
KR102079690B1 (en) Method for preparing a temperature responsive hydrogel possible of controlling transmittance by optically bistable switching, the hydrogel prepared by the method and the smart pannel comprising the hydrogel
JPS6123938B2 (en)
CN102633960A (en) Multi-environmental-sensitivity triblock copolymer and preparation method and application thereof
JPS6048543B2 (en) Hydrophilic-hydrophobic thermoreversible materials
Liu et al. A new application of Krafft point concept: an ultraviolet-shielded surfactant switchable window
JPS60190444A (en) Hydrophilic-hydrophobic thermally reversible material
Zhang et al. A novel low-voltage fast-response electrically controlled dimming film based on fluorinated PDLC for smart window applications
JPH09509976A (en) Crosslinked polymer system
Seeboth et al. Chromogenic polymer gels for reversible transparency and color control with temperature at a constant volume
JPS6355527B2 (en)
Ratner et al. Photochromic polysulfones. 2. Photochromic properties of polymeric polysulfone carrying pendant spiropyran and spirooxazine groups
JPS6123937B2 (en)
Filipova et al. Synthesis and spectral properties of new N‐substituted naphthalimide luminophores for structural coloration of polymethylmethacrylate and polystyrene
JPS62148504A (en) Hydrophilic-hydrophobic thermally reversible polymer and production thereof
JPS62243609A (en) Polymer thermally reversible between hydrophilic and hydrophobic state and production thereof
JPS60110709A (en) Thermally reversible hydrophilic-hydrophobic material having n-cyclopropylacrylamido group as side chain and its production
JPS58201810A (en) Preparation of polymer of thermally reversible hydrophilic-hydrophobic type
JPS6332805B2 (en)
JPS63241007A (en) Thermo-reversibly hydrophilic-hydrophobic material
KR102637327B1 (en) Electrochromism element composite based on Poly(butyl acrylate) having light transmissibility and stretchability, and manufacturing method of electrochromism member
JPS6332802B2 (en)
JPS62243608A (en) Polymer thermally reversible between hydrophilic and hydrophobic state and production thereof
Watanabe Intelligent windows using new thermotropic layers with long-term stability