JPS6019001A - Flowline material for liquid separation apparatus and preparation thereof - Google Patents

Flowline material for liquid separation apparatus and preparation thereof

Info

Publication number
JPS6019001A
JPS6019001A JP12687883A JP12687883A JPS6019001A JP S6019001 A JPS6019001 A JP S6019001A JP 12687883 A JP12687883 A JP 12687883A JP 12687883 A JP12687883 A JP 12687883A JP S6019001 A JPS6019001 A JP S6019001A
Authority
JP
Japan
Prior art keywords
knitted
melting point
channel material
point component
synthetic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12687883A
Other languages
Japanese (ja)
Other versions
JPH0366008B2 (en
Inventor
Teisuke Kojima
小嶋 悌亮
Heiichiro Matsuda
松田 平一郎
Takuo Ito
卓雄 伊藤
Kozo Yoshimitsu
吉光 孝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12687883A priority Critical patent/JPS6019001A/en
Publication of JPS6019001A publication Critical patent/JPS6019001A/en
Publication of JPH0366008B2 publication Critical patent/JPH0366008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To lower the flow resistance of a flowline material, by forming the same from a tricot knitted fabric having a backing structure part and a ridge part knitted from a thermoplastic synthetic fiber filament yarn. CONSTITUTION:A three-ply shuttle knitted fabric has a backing structure part knitted from yarns F, M each having relatively fine denier and a ridge part knitted with a yarn B having denier thicker than that of the yarns F, M. The yarns F, M with fine denier are respectively supplied to a front shuttle and a middle shuttle to be knitted into double Denbigh stitch of [1/1] as shown by the drawings A, B while the yarn B is supplied to a back shuttle to be knitted into chain stitch of [1/0] as shown by the drawing C. The sinker loop part of stitch formed by the front shuttle and the middle shuttle comes to the backing structure part and a needle loop part and the chain stitch formed by the back shuttle comes to the ridge part.

Description

【発明の詳細な説明】 本発明は、液体分離装置において原液を受圧する半透膜
の裏面側を支持するようにしだ流路材及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow channel material that supports the back side of a semipermeable membrane that receives pressure on a stock solution in a liquid separation device, and a method for manufacturing the same.

半透膜を利用した液体分離装置には、一般にその半透膜
を長尺の封筒状(袋状)に形成すると共に、その封筒内
に半透膜側からかがる原液圧力を支え且つ透過液を案内
する流路′となる流路材が内挿し、その流路材を内挿し
た封筒開放端側を中空軸に固定してスパイラル状に高密
度に巻付けてなるスパイラル型や、或いは上記多数枚の
半透膜封筒の開放端側を保持板に高密度に保持させて容
器内に収納してなるチューブラ型などがある。いずれも
内側がら流路材で支えられた半透膜封筒の外側に高圧の
原液を通し、その半透膜を通過した透過液を流路材で案
内しながら外へ取り出すようにしている。このよ・うな
流体分離装置は広くボイラ用水の前処理、排水の再利用
、海水の淡水化などの遣水装置として実用化されている
In a liquid separation device using a semipermeable membrane, the semipermeable membrane is generally formed into a long envelope shape (bag shape), and the envelope supports the pressure of the stock solution applied from the semipermeable membrane side and prevents permeation. A spiral type, in which a channel material that becomes a channel for guiding the liquid is inserted, and the open end side of the envelope into which the channel material is inserted is fixed to a hollow shaft and wound tightly in a spiral shape, or There is a tubular type in which the open end sides of a large number of semipermeable membrane envelopes are held tightly by a holding plate and housed in a container. In both cases, a high-pressure stock solution is passed through the outside of a semipermeable membrane envelope that is supported from the inside by a channel material, and the permeated liquid that has passed through the semipermeable membrane is taken out while being guided by the channel material. Such fluid separation devices are widely put into practical use as water supply devices for pre-treatment of boiler water, reuse of wastewater, desalination of seawater, etc.

ところで、上記流体分離装置の流路材は一般に織物や編
物などの多孔性で、かつ微細な溝を有する布帛が用いら
れるが、この流路材には半透膜を介して原液の高圧が作
用するため、流動抵抗が大きいと透過液流量が減少し、
単位容積当りの透過液生産量を少な(するという問題が
ある。−力、この問題を解消するため流動抵抗を下げる
ようとすると流路材の厚さを大きくせざるを得な(なり
、透過液の単位生産量当りの流体分離装置のコンパクト
化に不利になる問題がある。
By the way, the channel material of the above-mentioned fluid separation device is generally a porous fabric such as a woven fabric or a knitted fabric and has fine grooves, but the high pressure of the stock solution acts on this channel material through a semipermeable membrane. Therefore, when the flow resistance is large, the permeate flow rate decreases,
There is a problem of reducing the amount of permeate produced per unit volume.If you try to lower the flow resistance to solve this problem, you will have to increase the thickness of the channel material. There is a problem in that it is disadvantageous to downsizing the fluid separation device per unit production amount of liquid.

本発明の目的は、流路材の厚さを増すことなく流動抵抗
を下げることができ、それによって透過液生産性を上げ
ることができ、さらにはその性能を長期間維持すること
ができる液体分離装置用流路材を提供せんとすることに
ある。本発明のさらに他の目的は、上記流路材を効率的
に生産することができる製造方法を提供せんとすること
にある。
The purpose of the present invention is to reduce the flow resistance without increasing the thickness of the channel material, thereby increasing permeate productivity, and furthermore, to achieve liquid separation that can maintain its performance for a long period of time. The object of the present invention is to provide a channel material for devices. Still another object of the present invention is to provide a manufacturing method that can efficiently produce the channel material.

上記目的を達成する本発明の流体分離装置用流路材は、
原液を受圧する半透膜の裏面側を支持する液体分離装置
の流路材において、該流路材が熱可塑性合成繊維フィラ
メント糸条から編成した地組織部分とうね部分とを有す
るトリコット編地からなり、前記うね部分は前記地組織
部分を構成する糸条より太繊度の糸条を編込み、かつ前
記糸条が互いに接着してトリコツl−編地を剛直状態に
していることを特徴とするものである。
The channel material for a fluid separation device of the present invention that achieves the above object is as follows:
In a channel material for a liquid separation device that supports the back side of a semipermeable membrane that receives pressure on a stock solution, the channel material is made of a tricot knitted fabric having a ground texture portion and a ribbed portion knitted from thermoplastic synthetic fiber filament threads. The ridge portion is characterized by knitting yarns having a thicker fineness than the yarns constituting the ground weave portion, and the yarns adhere to each other to make the tricot l-knitted fabric in a rigid state. It is something to do.

また、その製造方法は、少なくとも3枚オサを有するト
リコット編機により、少なくとも2組の細繊度の熱可塑
性合成繊維フィラメント糸条で地組織部分を編成すると
共に、咳地組織部分のニードル・ループ部分に少なくと
も1組の太繊度の熱可塑性合成繊維フィラメント糸条を
編込んでうね部分を形成したトリコット編地を編成し、
さらに該トリコツ+−m地中の糸条相互を接着処理して
編地金体を剛直化させることを特徴とするものである。
In addition, the manufacturing method includes knitting the ground weave part with at least two sets of thermoplastic synthetic fiber filament yarns of fineness using a tricot knitting machine having at least three reeds, and also knitting the needle loop part of the cough ground weave part. knitting a tricot knitted fabric in which ridges are formed by weaving at least one set of thick thermoplastic synthetic fiber filament yarns into the fabric,
Furthermore, the knitted fabric metal body is made rigid by bonding the yarns in the Tricot +-m ground to each other.

本発明の流路材の素材となるトリコツl−I、I地は少
なくとも3枚以上のオサ数のトリコント編機により編成
される。その編地の一例である3枚オサ編地を第1図及
び第2図A、B、Cに示している。
The tricot l-I and I fabrics, which are the raw materials for the channel material of the present invention, are knitted by a tricot knitting machine having at least three or more strands. A three-piece reed knitted fabric, which is an example of the knitted fabric, is shown in FIGS. 1 and 2 A, B, and C.

第1図に示す3枚オサ編地は、地組織部分が比較的細繊
度の糸条F、Mがら編成され、うね部分にこの糸条F、
Mよりも太繊度の糸条Bが編込まれた構成になっている
。上記細繊度の糸条F、Mは、それぞれフロント・オサ
とミドル・オサとに供給し、第2図A、Bに示すような
(1/1)のダブル・デンビ編に編成する一方、大繊度
の糸条Bはハック・オサに供給して第2図Cに示すよう
な(110)の鎖編に編成されている。このような編成
によってフロント・オサ及びミドル・オサで形成された
編目のソンヵ・ループ部が地組織部分となり、ニードル
・ループ部及びバンク・オサで形成された鎖編がうね部
分となる。
In the three-ply reed knitted fabric shown in Fig. 1, the ground weave is knitted with relatively fine yarns F and M, and the ridges are knitted with yarns F and M of relatively fine fineness.
It has a structure in which yarns B, which are thicker than yarns M, are woven together. The above-mentioned fine yarns F and M are supplied to the front woven fabric and the middle woven fabric, respectively, and are knitted into a (1/1) double woven knit as shown in Fig. 2 A and B. Yarn B having a fineness is fed to a hack ossa and knitted into a (110) chain stitch as shown in FIG. 2C. With such knitting, the songka loop part of the stitches formed by the front recess and middle recess becomes the ground weave part, and the chain stitch formed by the needle loop part and bank recess becomes the ridge part.

即ち、本発明の流路材素材の1−リコソト編地は、少な
くとも1組の太繊度の熱可塑性合成繊維フィラメント糸
条と少なくとも2組の細繊度の熱可塑性合成繊維マイ糸
条ント系条との少なくとも3組の整経された熱可塑性合
成繊維フィラメント糸条を用い、少なくとも3枚オサの
トリコント編機を使用して編成することができ、前記細
繊度側の2組の糸条により地組織部分を編成し、この2
組の糸条が形成するニードル・ループ部にもう1組の太
繊度の糸条を編込むことによってうね部分を形成するも
ので、これによって地組織部分とうね部分とをもったト
リコント編地が形成される。
That is, the 1-Ricosoto knitted fabric of the channel material material of the present invention comprises at least one set of thick thermoplastic synthetic fiber filament threads and at least two sets of fine thread thermoplastic synthetic fiber filament threads. It can be knitted using at least three sets of warped thermoplastic synthetic fiber filament yarns, using a tricot knitting machine with at least three reeds, and the two sets of yarns on the fineness side create a ground texture. Organize the parts and make this 2
A ridged part is formed by weaving another set of thicker yarns into the needle loop part formed by one set of yarns, and this creates a tricontre knitted fabric with a ground texture part and a ridged part. is formed.

このように地組織部分が少なくとも2本の細繊度の糸条
で編成され、うね部分にこの地組織部分を形成する糸条
よりも太繊度の少なくとも1本の糸条がさらに編込まれ
ているため、地組織部分では薄く、うね部分では厚くな
った構造が形成される。そのため隣合う二つのうね部分
の間は薄い地組織部分で接続された断面コ字形の流路用
の空間が形成される。
In this way, the ground weave portion is knitted with at least two threads of fineness, and the ridge portion is further knitted with at least one thread of thicker fineness than the threads forming this ground weave portion. As a result, a structure is formed that is thinner in the ground tissue and thicker in the ridges. Therefore, a space for a flow path with a U-shaped cross section connected by a thin ground structure is formed between two adjacent ridges.

このようなうね部分と地組織部分との厚薄の関係を顕著
にするためには、うね部分を構成する大繊度糸条の繊度
を地組織部分を構成する細繊度糸条よりも、1.2倍以
上大きくすることが好ましい。またその繊度としては、
うね部分を50〜70デニール、地組織部分を30〜5
0デニー、ルの範囲で選択することが好ましい。
In order to make the relationship between thickness and thinness between the ridges and the ground texture part more noticeable, the fineness of the large fineness yarns that make up the ridges should be set to 1. .It is preferable to increase the size by 2 times or more. In addition, its fineness is
The ridge part is 50-70 denier, the ground texture part is 30-5 denier.
It is preferable to select within the range of 0 denier and 0 denier.

上述のように編成したトリコツH,liA地は、さらに
糸条相互を接着処理して剛直化させ、高圧の原液に対し
て簡単に潰れることがないようにする必要がある。
The Trikotsu H and liA fabrics knitted as described above must be made rigid by bonding the yarns together, so that they will not be easily crushed by high-pressure stock solutions.

このような接着処理としては、メラミン樹脂を付着させ
る樹脂加工によってもよく、又はトリコット編地を構成
する熱可塑性合成繊維フィラメント糸条を低融点成分と
高融点成分とからなる複合構成とし、その低融点成分の
みを熱処理により溶融して糸条相互を融着させることに
よっても行うことができる。特に、後者の低融点成分の
融着による方法は、樹脂加工の場合に比べて透過水中へ
の溶出物がないので、高純度の透過水を生産する必要の
ある用途において有益である。
Such adhesion treatment may be carried out by resin processing in which melamine resin is attached, or by making the thermoplastic synthetic fiber filament threads constituting the tricot knitted fabric into a composite structure consisting of a low-melting point component and a high-melting point component. It can also be carried out by melting only the melting point components by heat treatment and fusing the yarns together. In particular, the latter method of fusing low melting point components is advantageous in applications where it is necessary to produce highly purified permeated water, since there is no eluate in the permeated water compared to the case of resin processing.

低融点成分と高融点成分とからなる熱可塑性合成繊維フ
ィラメント糸条としては、複合糸や混繊糸などの形態に
すればよい。複合糸の場合は、鞘側に低融点成分を配置
し、8側に高融点成分を配置した芯鞘型複合糸や、両成
分を左右両側から貼合せたバイメタル型複合糸のいずれ
も使用可能である。混繊糸は低融点成分のフィラメント
と高融点成分のフィラントとがそれぞれ混ざり合ったも
のである。
The thermoplastic synthetic fiber filament yarn consisting of a low melting point component and a high melting point component may be in the form of a composite yarn, a mixed fiber yarn, or the like. In the case of composite yarns, both core-sheath type composite yarns in which a low melting point component is placed on the sheath side and high melting point component on the 8th side, and bimetal type composite yarns in which both components are laminated from both the left and right sides can be used. It is. The mixed fiber yarn is a mixture of filaments having a low melting point component and filants having a high melting point component.

2種の異なる成分の比率は接着剤となる低融点成分が5
0%を越えない方が好ましいが、溶融後に骨格となる高
融点成分が強度的に充分機能するならばこの限りではな
い。また、両成分の融点差は少なくとも10℃、好まし
くは20℃以上あれば充分である。
The ratio of the two different components is 5 for the low melting point component that becomes the adhesive.
Although it is preferable that the content does not exceed 0%, this is not the case as long as the high melting point component that becomes the skeleton after melting functions sufficiently in terms of strength. Further, it is sufficient that the difference in melting point between the two components is at least 10°C, preferably 20°C or more.

高融点成分と低融点成分との代表的な組合せは、高融点
ポリエステルと低融点ポリエステル、高融点ポリアミド
と低融点ポリアミド、高融点ポリオレフィンと低融点ポ
リオレフィンなどがあり、このうちでも融着加工後の剛
性などの点から高融点ポリエステルと低融点ポリエステ
ルとの組合せが好ましい。低融点成分は一般に高分子共
重合体とすることよって簡単に得ることができ、その融
点差は共重合比率の変更、共重合成分の追加、共重合成
分の変更、立体規則性或いは重合度の変更等によって変
更することができる。また、これとは別に融点差のある
異種重合体との組合せによってもよい。
Typical combinations of high melting point components and low melting point components include high melting point polyester and low melting point polyester, high melting point polyamide and low melting point polyamide, and high melting point polyolefin and low melting point polyolefin. A combination of a high melting point polyester and a low melting point polyester is preferred from the viewpoint of rigidity. A low melting point component can generally be easily obtained by using a polymer copolymer, and the difference in melting point can be determined by changing the copolymerization ratio, adding a copolymer component, changing the copolymer component, stereoregularity, or polymerization degree. It can be changed by modification or the like. Alternatively, a combination with different polymers having different melting points may be used.

上述した両成分の組合せからなる熱可塑性合成繊維フィ
ラメント糸条は、地組織部分及びうね部分の糸条におい
て使用する必要があり、また画部分に使用する低融点成
分は同一の融点であることが望ましい。
The thermoplastic synthetic fiber filament yarn consisting of a combination of both of the above-mentioned components must be used in the ground texture part and the ridge part, and the low melting point component used in the image part must have the same melting point. is desirable.

第3図及び第4図は、上述した流路材を使用したスパイ
ラル型の流体分離装置を例示したものである。
FIGS. 3 and 4 illustrate a spiral type fluid separation device using the above-mentioned channel material.

1は流体分離素子であり、2はこの流体分離素子1を収
納している円筒容器である。流体分離素子1は円筒容器
2内で一端をシール材3によりシールされ、他方の端部
の透過液排出管4を円筒容器2の外側へ突出させている
。円筒容器2は周壁に原液供給管5を、また側壁に原液
排出管6を設けている。
1 is a fluid separation element, and 2 is a cylindrical container housing this fluid separation element 1. The fluid separation element 1 is sealed at one end with a sealing material 3 within a cylindrical container 2, and has a permeate discharge pipe 4 at the other end protruding to the outside of the cylindrical container 2. The cylindrical container 2 is provided with a stock solution supply pipe 5 on the peripheral wall and a stock solution discharge pipe 6 on the side wall.

流体分離素子1ば、第4図に示すように中心に小孔7を
有する中空管からなる透過液排出管4を有し、その外側
を封筒状の半透11*9がスパイラル状に巻回している
。封筒状の半透膜9はその内側に本発明による透過液流
路材1oを内挿し、その開口端を上記小孔7に対向させ
て透過液排出管4の内側に連通している。またスパイラ
ル状に巻回した封筒状の半透膜9の外側面同士の間には
原液流路材11が介在し、流体分離素子表面の原液人口
12がら中心の原液出口13まで延長しており、この原
液出口13は円筒容器2の原液排出管6に連通している
As shown in Fig. 4, the fluid separation element 1 has a permeate discharge pipe 4 made of a hollow pipe with a small hole 7 in the center, and an envelope-shaped semi-transparent layer 11*9 is spirally wound around the outside of the permeate discharge pipe 4. It's spinning. The envelope-shaped semipermeable membrane 9 has a permeate channel material 1o according to the present invention inserted thereinto, and its open end faces the small hole 7 and communicates with the inside of the permeate discharge pipe 4. In addition, a concentrate channel material 11 is interposed between the outer surfaces of the spirally wound envelope-shaped semipermeable membrane 9, and extends from the concentrate 12 on the surface of the fluid separation element to the concentrate outlet 13 in the center. , this stock solution outlet 13 communicates with the stock solution discharge pipe 6 of the cylindrical container 2.

したがって、上記液体分離装置において、原液供給管5
から供給された高圧の原液は、液体骨Rs子1の原液人
口12がら原液流路材11を通過する間に一部が半透膜
9に透過されて透過液流路材10側へ移り、この透過液
流路材10に案内されて透過液排出管4がら取り出され
る。原液の残液は原液出口13を経て原液排出管6から
排出される。
Therefore, in the liquid separation device, the stock solution supply pipe 5
While the high-pressure stock solution supplied from the liquid bone Rs. The permeate is guided by the permeate channel material 10 and taken out from the permeate discharge pipe 4 . The residual liquid of the stock solution is discharged from the stock solution discharge pipe 6 via the stock solution outlet 13.

上述した本発明による流路材によると、剛直状態の地組
織部分とうね部分とを有するトリコット編地からなり、
かつ地組織部分は薄いかうね部分は大繊度糸条の編込み
により厚くなっているため、隣接する二つのうね部分の
間には編地全断面積に対する断面比率が比較的大きくな
ったコ字形の流路を形成する。そのため流路材の全体厚
さは従来の流路材と変らないにも拘わらず、上述した液
体骨l1Ilt操作における流動抵抗を大幅に低下させ
、コンパクトな装置容量を維持しながら透過液生産量を
向上することができる。また、後述の実施例で明らかで
あるように上記流路材の良好な性能を長期間にわたり維
持することができ、耐久性を高めるごとができる。
According to the channel material according to the present invention described above, it is made of a tricot knitted fabric having a rigid ground structure portion and a ridge portion,
In addition, since the ground texture part is thin and the ridge part is thick due to the weaving of large fineness yarns, there is a space between two adjacent ridge parts where the cross-sectional ratio to the total cross-sectional area of the knitted fabric is relatively large. Forms a letter-shaped flow path. Therefore, although the overall thickness of the channel material is the same as that of conventional channel materials, the flow resistance in the liquid bone Ilt operation described above is significantly reduced, and the permeate production volume is increased while maintaining a compact device capacity. can be improved. Furthermore, as will be clear from the Examples described below, the good performance of the channel material can be maintained over a long period of time, and the durability can be improved.

実施例1 ポリエチレンテレフタレー1−からなる次のデニール及
びフィラメント数で構成された3種類G、H,Iのフィ
ラメント糸条を用意した。
Example 1 Three types of filament yarns, G, H, and I, made of polyethylene terephthalate 1 and having the following denier and number of filaments were prepared.

G17.5デニール、18フイラメント](: 25デ
ニール、12フィラメントI:15デニール、12フイ
ラメント また、ポリエチレンテレツクレートにイソフタル酸をl
Oモル%共重合したポリマからなる次のデニール及びフ
ィラメント数で構成された3種類g+h、iのフィラメ
ント糸条を用意した。
G17.5 denier, 18 filament] (: 25 denier, 12 filament I: 15 denier, 12 filament
Three types of filament yarns (g+h, i) made of polymers copolymerized with O mol % and having the following denier and number of filaments were prepared.

g:37.5デニール、18フィラメントh:25デニ
ール、12フィラメント i:15デニール、12フイラメント さらに、上記フィラメント糸条をG2g同士、H,h同
士、I、i同士でそれぞれ1:1に混繊した75デニー
ル、50デニール、30デニールの混繊糸J、に、Lを
それぞれ作成した。
g: 37.5 denier, 18 filament h: 25 denier, 12 filament i: 15 denier, 12 filament Furthermore, the above filament yarns were mixed at a ratio of 1:1 between G2g, H and h, and I and i, respectively. Mixed fiber yarns J and L of 75 denier, 50 denier, and 30 denier were prepared, respectively.

次いで、第1.2図に示す編組織により、フロント・オ
サ及びミドル・オづ・に上記混繊糸りを、バック・オサ
に上記混繊糸Kを供給し、32ゲージ、3枚オサ・トリ
コット編地を編成した。この編地を精練したのち、熱処
理後のウェル、コース密度がそれぞれ47/ 25mm
、60/25mm及び48/ 25mm、、73/ 2
5mmとなるようにテンク条件を決めて250 ”Cで
1分間の熱融着加工を行い、2種類の本発明に相当する
流路材P及びQ(それぞれ上記ウェル、コース密度の前
者と後者に対応する)を作成した。
Next, according to the knitting structure shown in Fig. 1.2, the above-mentioned mixed fiber yarn was supplied to the front woven fabric and the middle woven fabric, and the above-mentioned mixed fiber yarn K was supplied to the back woven fabric to form a 32 gauge, 3-woven fabric. Made of tricot knitted fabric. After refining this knitted fabric, the well and course densities after heat treatment are 47/25 mm, respectively.
, 60/25mm and 48/25mm, , 73/2
After determining the tensile conditions so that the thickness was 5 mm, heat-sealing was performed at 250 ''C for 1 minute, and two types of channel materials P and Q corresponding to the present invention (the former and the latter with the well and course densities described above, respectively) were prepared. corresponding) was created.

一方、比較品として上記混繊糸Jを用いて、32ゲージ
、2枚オサ・トリコットによりダブルデンビ編地を編成
した。この編地を精練したのち、熱処理後のウェル、コ
ース密度がそれぞれ40/ 25mm、54/ 25m
mとなるようにテンタ条件を決めて250℃で1分間の
熱融着加工をして流路材Rを作成した。
On the other hand, as a comparison product, a 32-gauge, double-densified fabric was knitted using the mixed fiber yarn J using two-layer tricot fabric. After refining this knitted fabric, the well and course densities after heat treatment are 40/25 mm and 54/25 mm, respectively.
Tenter conditions were determined so that m was obtained, and heat fusion processing was performed at 250° C. for 1 minute to create channel material R.

これらの流路材P、Q、Rについて、後述する第5図の
圧損測定器により測定した流動抵抗係数11及び流路材
の厚さを比較したところ第1表のような結果を得た。
For these channel materials P, Q, and R, the flow resistance coefficient 11 measured by a pressure drop measuring device shown in FIG. 5, which will be described later, and the thickness of the channel materials were compared, and the results shown in Table 1 were obtained.

なお、テストにおける流路材の大きさはシール部内の面
積0.024nr (rlJo、08mX長さO,’3
m)、高圧水の圧力を30 kg / c+A 、差圧
Δpを2kg/c+A、水温を25℃とした。
The size of the channel material in the test was 0.024nr (rlJo, 08m x length O, '3) within the sealing area.
m), the pressure of high-pressure water was 30 kg/c+A, the differential pressure Δp was 2 kg/c+A, and the water temperature was 25°C.

第1表 試料 流動抵抗係数H厚さくmm) P 3.1 0.244 Q 3.6 0.247 R5,10,285 第1表から明らかであるように、本発明による流路材P
、Qは厚さが小さい上に、流動抵抗係数1]が小さく、
両面において比較品の流路材Rより優れている。
Table 1 Sample Flow resistance coefficient H thickness mm) P 3.1 0.244 Q 3.6 0.247 R5,10,285 As is clear from Table 1, the channel material P according to the present invention
, Q has a small thickness and a small flow resistance coefficient 1],
It is superior to the comparative channel material R on both sides.

続いて、高圧水の圧力を70 kg/ c+aに上げ、
さらに水温を40°Cに上げて200時間テストを続け
た後の流動抵抗係数I]及び厚さを測定してその変化を
8周べたところ、第2表のような結果を得た。
Subsequently, the pressure of high-pressure water was increased to 70 kg/c+a,
Further, the water temperature was raised to 40°C and the test was continued for 200 hours, after which the flow resistance coefficient I] and the thickness were measured and the changes were calculated 8 times, and the results shown in Table 2 were obtained.

第2表 試料 流動抵抗係数11 厚さくmm)P 7.0 0
.209 Q 8.2 0.215 R19,50,252 第2表から明らかであるように、本発明による流路材P
、 Qは比較品Rに比べて流動抵抗係数Hの増加の割合
が小さく、性能が長期間安定していることがわかる。
Table 2 Sample Flow resistance coefficient 11 Thickness mm) P 7.0 0
.. 209 Q 8.2 0.215 R19,50,252 As is clear from Table 2, the channel material P according to the present invention
, Q has a smaller increase in flow resistance coefficient H than comparative product R, indicating that its performance is stable over a long period of time.

実施例2 実施例1において流路材P、Qの累月として編成した2
種類の3枚オザ・トリコット編地をさらにカレンダ加工
してさらに薄地化した流路材S、Tを作成した。これら
について実施例1と同様の測定を行ったところ、水温度
25℃による測定では第3表の結果を、さらに水温40
°Cで200時間経過後の測定では第4表の結果をそれ
ぞれ得た。
Example 2 In Example 1, flow channel materials P and Q were organized as a stack 2.
The three-layer tricot knitted fabric was further calendered to create thinner channel materials S and T. The same measurements as in Example 1 were carried out on these, and the results in Table 3 were obtained when the water temperature was 25°C.
After 200 hours at °C, the results shown in Table 4 were obtained.

第3表 試料 流動抵抗係数H厚さくmm) S 6.6 0.184 T 6.1 0.198 第4表 試料 流動抵抗係数H厚さくmm) s 14.5 0.178 T 11.5 0.189 上^3,4表から明らかであるように、カレンダ加工に
よる薄地化により流動抵抗係数I]は若干増大している
が、厚さがさらに減少して装置のコンパクト化に有利に
なっている。
Table 3 Sample Flow resistance coefficient H Thickness mm) S 6.6 0.184 T 6.1 0.198 Table 4 Sample Flow resistance coefficient H Thickness mm) s 14.5 0.178 T 11.5 0 .189 As is clear from Tables 3 and 4 above, the flow resistance coefficient I] has increased slightly due to thinning through calendering, but the thickness has further decreased, which is advantageous for making the device more compact. There is.

また、水温25℃における測定値に比べて、40℃、2
00時間経過後の測定値の変化率は小さく、性能が長期
間安定していることがわかる。
Also, compared to the measured value at a water temperature of 25°C, at 40°C, 2
It can be seen that the rate of change in the measured values after 00 hours has passed is small, indicating that the performance is stable over a long period of time.

(圧損測定器の説明) 第5図に示すように、測定対象の流路材50と半透膜5
1とを重ねて上下の支持枠52,530間に挾持させる
。半透膜51側に形成される流路54には高圧水供給管
55から高圧水を供給して排出管56から排出させるよ
うにし、また流路材50側の流路57には低圧水供給管
58から低圧水を供給して排出管59から排出するよう
にする。排出管59の端部には計量器60が備えられ、
流出する液量を測定できるようになっている。
(Description of pressure drop measuring device) As shown in FIG.
1 and sandwiched between the upper and lower support frames 52 and 530. High-pressure water is supplied from a high-pressure water supply pipe 55 to a flow path 54 formed on the semipermeable membrane 51 side and discharged from a discharge pipe 56, and low-pressure water is supplied to a flow path 57 on the flow path material 50 side. Low pressure water is supplied from the pipe 58 and discharged from the discharge pipe 59. A measuring device 60 is provided at the end of the discharge pipe 59,
It is possible to measure the amount of liquid flowing out.

いま、高圧水供給管55から原液に相当する高圧水を供
給し、その状態を保ちつつ低圧水供給管58から透過液
に相当する低圧水を供給するとき、同一条件においては
高圧水の圧力が高くなるにつれて流路材50が加圧変形
され、低圧水の流量が減る。このことから流路材50の
変形の程度を、この低圧水の圧損(差圧)Δpと流量q
を測定することにより流動抵抗係数Hとして示すことが
できる。
Now, when high-pressure water corresponding to the stock solution is supplied from the high-pressure water supply pipe 55, and low-pressure water corresponding to the permeate is supplied from the low-pressure water supply pipe 58 while maintaining this state, the pressure of the high-pressure water is As the height increases, the channel material 50 is deformed under pressure, and the flow rate of low-pressure water decreases. From this, the degree of deformation of the channel material 50 can be determined by the pressure drop (differential pressure) Δp of this low-pressure water and the flow rate q.
By measuring this, it can be expressed as the flow resistance coefficient H.

即ち、流量qは一般に次の式で与えられる。That is, the flow rate q is generally given by the following formula.

q−(1/H) (dΔp/Δ1)W (ここに、lは流路の長さ、Wは流路の巾)これを解い
て、流動抵抗係数Hが次の式のように得られる。
q-(1/H) (dΔp/Δ1)W (where l is the length of the flow path, W is the width of the flow path) By solving this, the flow resistance coefficient H is obtained as in the following formula. .

H=K (Δp / q ) (atm /lon /
day )(ここに、Kは装置によって定まる定数)し
たがって、Δp、qを測定すれば流動抵抗係数Hをめる
ことができる。
H=K (Δp/q) (atm/lon/
day ) (where K is a constant determined by the device) Therefore, by measuring Δp and q, the flow resistance coefficient H can be calculated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流路材の累月であるトリコットm地(
3枚オサ編地)の要部拡大平面図、第考図A、B、Cは
それぞれ同トリコットi地の各オサにおける組織図、第
3図は同流路材を使用した流体分離装置の一例を示す縦
断面図、第4図は第3図のIV−IV矢視断面図、第5
図は圧損欠測定器の概略図である。 F・・フロント・オサの糸条、 M・・ミドル・オサの
糸条、 B・・ハック・オサの糸条l・−流体分離素子
、 9・・封筒状の半透膜、10・・流路材。 代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士斎下和彦 第1図 (A) (B) (C) 第2図 第3図
Figure 1 shows the tricot m material (
Figure 3 is an enlarged plan view of the main parts of the 3-layer I-woven tricot fabric; Figures A, B, and C are organization charts for each of the tricot I fabrics, and Figure 3 is an example of a fluid separation device using the same channel material. FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, and FIG.
The figure is a schematic diagram of a pressure drop measuring device. F...Front reel thread, M...Middle reel thread, B...Hack reel thread L--Fluid separation element, 9...Envelope-shaped semipermeable membrane, 10...Flow Road material. Agent: Patent Attorney Shin Ogawa - Patent Attorney Ken Noguchi Teru Patent Attorney Kazuhiko Saishita Figure 1 (A) (B) (C) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (11原液を受圧する半透膜の裏面側を支持する液体分
離装置の流路材において、該流路材が熱可塑性合成繊維
フィラメント糸条から編成した地組織部分とうね部分と
を有するトリコント編地からなり、前記うね部分は前記
地組織部分を構成する糸条より太繊度の糸条を編込み、
かつ前記糸条が互いに接着してトリコット編地を剛直状
態にしていることを特徴とする液体分離装置用流路材。 (2)熱可塑性合成繊維フィラメント糸条が低融点成分
と高融点成分とから形成され、かつ前記低融点成分が溶
融固化して糸条相互を接着している特許請求の範囲第1
項記載の液体分離装置用流路材。 (3)少なくとも3枚オサを有するトリフ・ノド編機に
より、少なくとも2組の細繊度の熱可塑性合成繊維フィ
ラメント糸条から地組織部分を編成すると共に、咳地組
織部分のニードル・ループ部分に少なくとも1組の太繊
度の熱可塑性合成繊維フィラメント糸条を編込んでうね
部分を形成したトリコント編地を編成し、さらに該トリ
コット編地中の糸条相互を接着処理して編地全体を剛直
化させることを特徴とする液体分離装置用流路材の製造
方法。 (4)熱可塑性合成繊維フィラメント糸条が低融点成分
と高融点成分とから形成され、該熱可塑性合成繊維フィ
ラメント糸条から編成したI・リコソ)m地を熱処理し
て前記低融点成分のみを溶融し、該溶融した低融点成分
により糸条相互を接着させる特許請求の範囲第3項記載
の液体分離装置用流路材の製造方法。
[Scope of Claims] (11) In a channel material of a liquid separation device that supports the back side of a semipermeable membrane that receives pressure on an undiluted solution, the channel material has a base structure portion knitted from thermoplastic synthetic fiber filament threads and ridges. The ridge portion is made of a tricontre knitted fabric having a portion, and the rib portion is knitted with yarn having a fineness thicker than that of the yarn constituting the ground weave portion,
A channel material for a liquid separation device, characterized in that the threads adhere to each other to make the tricot knitted fabric rigid. (2) The thermoplastic synthetic fiber filament thread is formed from a low melting point component and a high melting point component, and the low melting point component melts and solidifies to bond the threads together.
A channel material for a liquid separation device as described in Section 2. (3) Using a truffle throat knitting machine having at least three sheets, the ground fabric is knitted from at least two sets of fine-grained thermoplastic synthetic fiber filament yarns, and at least A tricot knitted fabric is knitted with a set of thick thermoplastic synthetic fiber filament yarns to form ridges, and the threads in the tricot knitted fabric are bonded to each other to make the entire knitted fabric rigid. 1. A method for producing a channel material for a liquid separation device, the method comprising: (4) A thermoplastic synthetic fiber filament thread is formed from a low-melting point component and a high-melting point component, and the fabric knitted from the thermoplastic synthetic fiber filament thread is heat-treated to remove only the low-melting point component. 4. The method for producing a channel material for a liquid separation device according to claim 3, wherein the threads are melted and the melted low melting point component adheres the threads to each other.
JP12687883A 1983-07-14 1983-07-14 Flowline material for liquid separation apparatus and preparation thereof Granted JPS6019001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12687883A JPS6019001A (en) 1983-07-14 1983-07-14 Flowline material for liquid separation apparatus and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12687883A JPS6019001A (en) 1983-07-14 1983-07-14 Flowline material for liquid separation apparatus and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6019001A true JPS6019001A (en) 1985-01-31
JPH0366008B2 JPH0366008B2 (en) 1991-10-15

Family

ID=14946078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12687883A Granted JPS6019001A (en) 1983-07-14 1983-07-14 Flowline material for liquid separation apparatus and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6019001A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257609A (en) * 1985-09-09 1987-03-13 Hitachi Ltd Spiral membrane element
EP1059114A3 (en) * 1999-06-08 2002-03-06 Nitto Denko Corporation Liquid separation membrane module and method of producing the same
WO2007036332A3 (en) * 2005-09-29 2007-05-18 Microdyn Nadir Gmbh Single-piece filter element and a method for the production thereof
JP2011245454A (en) * 2010-05-28 2011-12-08 Fukui Tateami Kogyo Kk Tricot knitted fabric for flow passage material to be used in liquid separation apparatus and method for producing the fabric
WO2016047696A1 (en) * 2014-09-25 2016-03-31 日東電工株式会社 Spiral membrane element
JP2017000939A (en) * 2015-06-09 2017-01-05 東レ株式会社 Tricot flow passage material
WO2017131031A1 (en) * 2016-01-29 2017-08-03 東レ株式会社 Flow path material
JP2020104099A (en) * 2018-12-26 2020-07-09 東レ株式会社 Flow path material
CN111394876A (en) * 2020-01-21 2020-07-10 浙江德俊新材料有限公司 High-shielding fabric, preparation method and application of high-shielding fabric in preparation of advertising cloth
US10968549B1 (en) 2020-01-21 2021-04-06 Zhejiang Dejun New Material Co., Ltd. Fabric with high shielding performance, preparation method thereof, and application thereof in preparing advertising fabric
WO2023281719A1 (en) * 2021-07-08 2023-01-12 Kbセーレン株式会社 Flow path material for liquid separation devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637232B2 (en) * 2014-11-13 2020-01-29 日東電工株式会社 Permeation-side flow path material for spiral-type membrane element and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158152U (en) * 1974-10-30 1976-05-07
JPS5221480A (en) * 1975-08-01 1977-02-18 Erika Inc Improved type unwoven fabric support screen for substance moving apparatus
JPS5417383A (en) * 1977-07-11 1979-02-08 Toray Ind Inc Separating unit for liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158152U (en) * 1974-10-30 1976-05-07
JPS5221480A (en) * 1975-08-01 1977-02-18 Erika Inc Improved type unwoven fabric support screen for substance moving apparatus
JPS5417383A (en) * 1977-07-11 1979-02-08 Toray Ind Inc Separating unit for liquid

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257609A (en) * 1985-09-09 1987-03-13 Hitachi Ltd Spiral membrane element
EP1059114A3 (en) * 1999-06-08 2002-03-06 Nitto Denko Corporation Liquid separation membrane module and method of producing the same
US6454942B1 (en) 1999-06-08 2002-09-24 Nitto Denko Corporation Liquid separation membrane module
WO2007036332A3 (en) * 2005-09-29 2007-05-18 Microdyn Nadir Gmbh Single-piece filter element and a method for the production thereof
JP2011245454A (en) * 2010-05-28 2011-12-08 Fukui Tateami Kogyo Kk Tricot knitted fabric for flow passage material to be used in liquid separation apparatus and method for producing the fabric
US10918996B2 (en) 2014-09-25 2021-02-16 Nitto Denko Corporation Spiral membrane element
JP2016064363A (en) * 2014-09-25 2016-04-28 日東電工株式会社 Spiral membrane element
WO2016047696A1 (en) * 2014-09-25 2016-03-31 日東電工株式会社 Spiral membrane element
JP2017000939A (en) * 2015-06-09 2017-01-05 東レ株式会社 Tricot flow passage material
WO2017131031A1 (en) * 2016-01-29 2017-08-03 東レ株式会社 Flow path material
JPWO2017131031A1 (en) * 2016-01-29 2018-11-15 東レ株式会社 Channel material
JP2020104099A (en) * 2018-12-26 2020-07-09 東レ株式会社 Flow path material
CN111394876A (en) * 2020-01-21 2020-07-10 浙江德俊新材料有限公司 High-shielding fabric, preparation method and application of high-shielding fabric in preparation of advertising cloth
US10968549B1 (en) 2020-01-21 2021-04-06 Zhejiang Dejun New Material Co., Ltd. Fabric with high shielding performance, preparation method thereof, and application thereof in preparing advertising fabric
CN111394876B (en) * 2020-01-21 2022-04-05 浙江德俊新材料有限公司 High-shielding fabric, preparation method and application of high-shielding fabric in preparation of advertising cloth
WO2023281719A1 (en) * 2021-07-08 2023-01-12 Kbセーレン株式会社 Flow path material for liquid separation devices

Also Published As

Publication number Publication date
JPH0366008B2 (en) 1991-10-15

Similar Documents

Publication Publication Date Title
US6454942B1 (en) Liquid separation membrane module
JPS6019001A (en) Flowline material for liquid separation apparatus and preparation thereof
US6054216A (en) Meltblown yarn
WO2007114069A1 (en) Liquid separation device, flow channel material and process for producing the same
JP4488431B2 (en) Spiral type separation membrane element
JP3559475B2 (en) Liquid separation membrane module
JPH06511050A (en) High temperature stable nonwoven web based on multilayer blown microfibers
JP5005662B2 (en) Liquid separation channel forming material and method for producing the same
KR100406515B1 (en) Flexible nonwovens and laminates thereof
JPH1190135A (en) Pleated filter
JP6844533B2 (en) Channel material
JP2017000939A (en) Tricot flow passage material
WO2000057988A1 (en) Filter cartridge
JP3956262B2 (en) Liquid separation membrane module
JPS6136964B2 (en)
JP7358914B2 (en) Channel material
JP3326808B2 (en) filter
JP2003508646A (en) Melt-processable perfluoropolymer foam
US20040182775A1 (en) Spiral separation membrane element
JP2000051668A (en) Liquid separation element and water making method
JP2018094549A (en) Permeation liquid channel material for spiral type separation element
JP2001321622A (en) Filter cartridge
JPH0714467B2 (en) Liquid separation element
JPS6041505A (en) Liquid separator
JP2759667B2 (en) Cylindrical filter media