JPS60189926A - Method and device for forming vapor phase thin film - Google Patents

Method and device for forming vapor phase thin film

Info

Publication number
JPS60189926A
JPS60189926A JP4691484A JP4691484A JPS60189926A JP S60189926 A JPS60189926 A JP S60189926A JP 4691484 A JP4691484 A JP 4691484A JP 4691484 A JP4691484 A JP 4691484A JP S60189926 A JPS60189926 A JP S60189926A
Authority
JP
Japan
Prior art keywords
sample substrate
substrate
sample
raw material
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4691484A
Other languages
Japanese (ja)
Inventor
Kunihiko Washio
鷲尾 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4691484A priority Critical patent/JPS60189926A/en
Publication of JPS60189926A publication Critical patent/JPS60189926A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To enable rapid formation of a multilayer film by a metod wherein, using a sample-substrate rotation means arranged so as to be part of a partition, the sample substrate is rotated by the rotation of a rotary shaft parallel to the substrate surface, so as to successively contact a plurality of raw material gasses. CONSTITUTION:A gas bath 21 is partitioned by the partition 22, and two reaction chambers 23 and 24 independent of each other are formed. A sample-substrate holding device 25 rotates by the rotation of the shaft parallel to the substrate surface of the sample substrate 26, and exposes the substrate surface to the inside of the chambers 23 and 24 alternately. For example, a tungsten film is formed by photo dissociation of tungsten carbonyl in the chamber 23 by using a KrF excimer laser 27 of 248nm wavelength. The mixed gas of ammonia and silane is underwent to photochemical reaction by irradiation of the chamber 24 with a laser beam of 193nm wavelength from an ArF excimer laser 30, resulting in the deposition of an Si nitride film by adhesion on the sample substrate 26. In such a manner, desired multilayer wirings are formed by alternately laminating metallic films are dielectric films.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は紫外線・赤外線などの放射線を用いて化合物気
体を解離し、試料基板上に所望の物質を被着させて薄膜
を形成するようにした気相薄膜形成方法およびこの方法
を実施する装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention uses radiation such as ultraviolet rays and infrared rays to dissociate a compound gas and deposit a desired substance on a sample substrate to form a thin film. The present invention relates to a vapor phase thin film forming method and an apparatus for implementing this method.

(従来技術とその間融点) 近年、半導体デバイスなどの急速な発達とともに、集積
回路の絶縁膜や電気配線膜の形成、三次元機能デバイス
の作成などの目的で、金属・半導体・誘電体などの被膜
を試料基板上に形成する技術が非常に重要に々ってきた
。とくに、化合物気体を含んだ原料ガスにレーザ光を照
射し、これKよって化合物気体を解離せしめ、試料基板
上に所望の物質を被着させて薄膜を形成するレーザ気相
薄膜形成法は、パターニング照射が容易にできること、
プロセスの低温化が可能なことなどの理由により、近年
盛んに試みられるようになった。
(Prior art and their melting points) In recent years, with the rapid development of semiconductor devices, coatings of metals, semiconductors, dielectrics, etc. The technology to form chromatography on sample substrates has become very important. In particular, the laser vapor phase thin film formation method, in which a source gas containing a compound gas is irradiated with laser light, the compound gas is dissociated by K, and a desired substance is deposited on a sample substrate to form a thin film is a patterning method. Easy to irradiate;
Recently, many attempts have been made due to the possibility of lowering the process temperature.

例えば、アール・ソランキ(R,5olanki)らに
より、アプライド、フィジクス、レターズ(App +
 1edAhysics Leuers)結41巻19
82年12月1日号1048ページから1050ページ
に「高融点金属薄膜の低温堆積」と題[2て発表された
論文においては、第1図に示したごとく、化合物気体1
をガス槽2内に流入させ、レンズ光学系4を介して試料
基板3上に紫外レーザ光5を照射することにより、試料
基板3上に高融点金属薄膜を形成させるようにした試料
基板固定型構造の気相薄膜形成装置が示されている、ガ
ス槽2に設けられた窓6には、曇り防止のためパージガ
スとしてヘリウムガスが吹きつけらねでいる。この例で
は化合物気体としてMo、W、Orなどのカルボニル化
合物が用いられている。
For example, Applied, Physics, Letters (App +
1edAhysics Leuers) Conclusion Volume 41 19
In the paper published in the December 1, 1982 issue, pages 1048 to 1050 entitled "Low-temperature deposition of high-melting point metal thin films" [2], as shown in Figure 1, compound gas 1
A sample substrate fixing type in which a high melting point metal thin film is formed on the sample substrate 3 by causing the sample substrate 3 to flow into a gas tank 2 and irradiating the sample substrate 3 with ultraviolet laser light 5 through a lens optical system 4. Helium gas is blown as a purge gas into a window 6 provided in a gas tank 2, which shows the structure of the vapor phase thin film forming apparatus, to prevent fogging. In this example, carbonyl compounds such as Mo, W, and Or are used as the compound gas.

しかし、このような従来の試料基板固定型構造の気相薄
膜形成装置には以下に述べるような重大な欠点がある。
However, such a conventional vapor phase thin film forming apparatus having a sample substrate fixed structure has serious drawbacks as described below.

すなわち、異なる組成からなる多層構造の被膜を形成す
るKけ、この場合複数の原る古い原料ガスを排気し、終
え、ガス槽内に新しい原料ガスを流入させてガス圧を安
定させるのに長時間の待機時間を要するため作業能率が
悪く不経済である。また、同一系統の排気処理系を用い
て相異なる複数の原料ガスを処理しようとすると、万全
な公害対策を施すのが困難になり、しかも非常に高額な
排気処理装置を備えなければならないのでこれまた不経
済である。
In other words, in order to form a multilayered film with different compositions, it takes a long time to evacuate the old raw material gas from multiple sources, finish it, and then introduce new raw material gas into the gas tank to stabilize the gas pressure. Since it requires many hours of waiting time, the work efficiency is low and it is uneconomical. In addition, if you try to treat multiple different raw material gases using the same exhaust treatment system, it will be difficult to take thorough measures against pollution, and you will also have to install very expensive exhaust treatment equipment. It is also uneconomical.

(発明の目的) 本発明の目的は、異なる組成からなる多層の被膜が速や
かに形成でき、かつ経済的な気相薄膜形成方法およびこ
の方法を実施するための装置の提供にある。
(Objective of the Invention) An object of the present invention is to provide an economical method for forming a vapor phase thin film, which can rapidly form multilayer coatings having different compositions, and an apparatus for carrying out the method.

(発明の構成) 本発明による気相薄膜形成方法は、互いに異なる化合物
気体を含む複数の原料ガスを互いに空間的に隔離して供
給する工程と、前記複数の原料ガスに試料基板を順次晒
すと共に、試料基板が晒されている原料ガスにエネルギ
ー線を照射して原料ガスを解離せしめ、この解離により
生成した所望の物質を前記試料基板表面上の所望の位@
VC被着亡しむる工程とを有する構成となっている。
(Structure of the Invention) The method for forming a vapor phase thin film according to the present invention includes a step of supplying a plurality of raw material gases containing different compound gases while spatially separating each other, sequentially exposing a sample substrate to the plurality of raw material gases, and sequentially exposing a sample substrate to the plurality of raw material gases. , the source gas to which the sample substrate is exposed is irradiated with energy rays to dissociate the source gas, and the desired substance generated by this dissociation is deposited at a desired location on the surface of the sample substrate.
The structure includes a step of attaching and dying VC.

本発明による気相薄膜形成装置の構成は、互いに異なる
化合物気体を含む複数の原料ガスが互いに分かれて流れ
るように内部に隔壁を有したガス槽と、前記互いに異な
る化合物気体をエネルギー線の照射によりそれぞれ解離
させるためのエネルギーIIj!照射手段とを含み、か
つ前記互いに分かれて流れている複数の原料ガスに試料
基板面が順次接することができるように、前記試料基板
を前記試料基板面と平行な軸の回りで回転させられるよ
うにした試料基板回転手段を、前記隔壁の一部分となる
ようにして備えたことを特徴とする。
The structure of the vapor phase thin film forming apparatus according to the present invention includes a gas tank having a partition wall inside so that a plurality of raw material gases containing different compound gases flow separately from each other, and a gas tank having a partition wall inside to separate and flow the different compound gases. Energy IIj for each dissociation! irradiation means, and the sample substrate is rotated around an axis parallel to the sample substrate surface so that the sample substrate surface can sequentially come into contact with the plurality of raw material gases flowing separately from each other. The present invention is characterized in that the sample substrate rotating means is provided as a part of the partition wall.

(本発明の作用・原理) 本発明による気相薄膜形成方法の原理は、ガス槽内に隔
壁を設けて、互いに異なる化合物気体を含む複数の原料
ガスを互いに分かねて流れるようにし、前記隔壁の一部
分となるよう配置された試料基板回転手段を用いて前記
試料基板を基板面と平行な回転軸の回抄で回転し、前記
試料基板の基板面が前記互いに分かれて流れている複数
の原料ガスに順次接するようにすることによって、前記
基板面上に速やかに多層被膜が形成されるようにしたこ
とにある。
(Operation/Principle of the Present Invention) The principle of the vapor phase thin film forming method according to the present invention is that a partition wall is provided in a gas tank so that a plurality of raw material gases containing different compound gases are separated from each other and flow. The sample substrate is rotated by rotation of a rotation axis parallel to the substrate surface using a sample substrate rotation means arranged so that the substrate surface of the sample substrate is separated from the plurality of source gases flowing from each other. By sequentially contacting the substrate, a multilayer coating can be quickly formed on the surface of the substrate.

(実施例) 以下本発明の実施例について図面を1照して詳細に説明
する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例の構成を示すブロックダイヤ
グラム図である。図において、ガス槽21は隔壁22に
よシ仕切られておシ、互いに独立な2つの反応室23.
24が形成されている。反応室23にはアルゴンガスで
希釈されたタングステンカルボニル(W(Co)a )
ガスが供給されている。
FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, a gas tank 21 is partitioned by a partition wall 22 into two mutually independent reaction chambers 23.
24 is formed. The reaction chamber 23 contains tungsten carbonyl (W(Co)a) diluted with argon gas.
Gas is supplied.

本実施例における希釈比は4:1で、全圧は8Torr
である。試料基板保持装置25は試料基板26の基板面
と平行な軸の回シで回転できるようになつており、反応
室23,24間の気密をほとんど損なうことなく、基板
面を反応室23.24内に交互に曝すことができる。反
応室24にはアンモニア(NH,) とシラン(SiH
,)の混合ガスが供給されている。アンモニアどシラン
との流量比は1o:1で混合ガスの全圧けやけり8To
rrである。タングステンカルボニルk 波長248 
nmのKrFエキシマレーザ27を用いて光解離させた
ところ、気相被着反応により、試料基板26上に0.1
7μm/分の成膜速度で配線用のタングステン被膜を形
成することができた。レーザ光の光路上にはホトマスク
28と結像光学系29が設置されておシ、これにより所
望の配線パターンを試料基板26上に形成することがで
きた。タングステン被膜の膜厚を03μmとしたときの
シート抵抗は約5Ωん であった。
The dilution ratio in this example was 4:1, and the total pressure was 8 Torr.
It is. The sample substrate holding device 25 can rotate around an axis parallel to the substrate surface of the sample substrate 26, and holds the substrate surface between the reaction chambers 23 and 24 without substantially impairing the airtightness between the reaction chambers 23 and 24. can be exposed alternately. The reaction chamber 24 contains ammonia (NH,) and silane (SiH).
, ) is supplied. The flow rate ratio of ammonia and silane is 1o:1, and the total pressure of the mixed gas is 8To.
It is rr. Tungsten carbonyl k wavelength 248
When photodissociation was performed using a KrF excimer laser 27 with a wavelength of 0.1 nm, a 0.1
A tungsten film for wiring could be formed at a film formation rate of 7 μm/min. A photomask 28 and an imaging optical system 29 were installed on the optical path of the laser beam, so that a desired wiring pattern could be formed on the sample substrate 26. The sheet resistance was approximately 5Ω when the thickness of the tungsten film was 0.3μm.

また、反応室24 には、A’rFエキシマレーザ3゜
からの波長193nmのレーザ光を照射し、前記アンモ
ニアとシランの混合ガスに光化学反応を生ぜしめたとこ
ろ、約05μm/分の成膜速度で窒化シリコン膜を試料
基板上圧被着堆積させることができた。得らhた窒化シ
リコン膜を評価したところリーク電流ならびに表面電荷
密度が少なく、絶縁耐圧の高い良好な誘電体膜が得られ
、その膜質は通常のプラズマCVD法で得られる窒化シ
リコン膜より格段に優れていることが判明した。この場
合にもレーザ光の光路上に第2のホトマスク3】 と第
2の結像光学系32とを設置することによって所望の絶
縁被膜パターンを有した誘電体被膜を形成することがで
きた。
In addition, when the reaction chamber 24 was irradiated with laser light with a wavelength of 193 nm from an A'rF excimer laser at 3° to cause a photochemical reaction in the mixed gas of ammonia and silane, the film formation rate was approximately 0.5 μm/min. A silicon nitride film could be deposited on the sample substrate by pressure deposition. When the obtained silicon nitride film was evaluated, it was found that a good dielectric film with low leakage current and surface charge density and high withstand voltage was obtained, and the film quality was much better than that of the silicon nitride film obtained by ordinary plasma CVD method. It turned out to be excellent. In this case as well, by installing the second photomask 3 and the second imaging optical system 32 on the optical path of the laser beam, it was possible to form a dielectric film having a desired insulating film pattern.

試料基板保持装置25により試料基板26を遂次回転し
、基板面を反応室23.24内に交互に曝して金媚被膜
と誘電体被膜とを交互に積層することによシ所望の多層
配線を形成することができた。
The sample substrate 26 is successively rotated by the sample substrate holding device 25, and the substrate surface is alternately exposed to the reaction chambers 23 and 24 to alternately laminate the gold coating and the dielectric coating, thereby forming the desired multilayer wiring. was able to form.

光学的気相被着反応によシ生成した反応生成物が窓33
.34に被着すると窓の透過率が低下し、良質な薄膜を
試料基板上に再現性よく形成することが困難になるため
、窓の曇りを未然に防ぐ目的で、前記窓33.34には
共にパージガスとしてアルゴンガスが吹きつけられてい
る。
The reaction product produced by the optical vapor phase deposition reaction is exposed to the window 33.
.. 34, the transmittance of the window decreases and it becomes difficult to form a high-quality thin film on the sample substrate with good reproducibility. In both cases, argon gas is blown as a purge gas.

本実施例では試料基板26としてシリコンウェハを用い
たが、この代わりに石英ガラス基板やセラミクス基板を
用いた場合においても良好な被膜を形成することができ
た。本更飾例では多層配線形成のだめの金属被膜と誘電
体被膜の多層化を例に挙げて説明したが、シリコンやG
aAsなとの半導体の被HAを形成することももちろん
可能である。
Although a silicon wafer was used as the sample substrate 26 in this example, a good film could be formed even when a quartz glass substrate or a ceramic substrate was used instead. In this decoration example, we have explained the use of multilayer metal films and dielectric films as an example to form multilayer wiring.
Of course, it is also possible to form the HA of a semiconductor such as aAs.

本実施例に用いた試料基板保持装置25にけヒータを組
み込むことも可能であり、これによって被膜の膜質を一
層精密にコントロールすることができる。
It is also possible to incorporate a heater into the sample substrate holding device 25 used in this example, and thereby the film quality of the film can be controlled more precisely.

第3図は第2図のl−A 部の断面概略構造を示す模式
図である。図において、隔壁22には適度のバネ弾性を
有したダンパ35が試料基板保持装置25の側面を軽く
押えつけてお)、これにより隔壁22で隔てられた反応
室23.24間の気密が保たれるようになっている。
FIG. 3 is a schematic diagram showing a schematic cross-sectional structure taken along line 1-A in FIG. 2. In the figure, a damper 35 with appropriate spring elasticity is attached to the partition wall 22 and lightly presses the side surface of the sample substrate holding device 25), thereby maintaining airtightness between the reaction chambers 23 and 24 separated by the partition wall 22. It's starting to drip.

第4図は、本発明の第2の実施例の試料基板回転手段部
の断面概略構造を示す模式図である。
FIG. 4 is a schematic diagram showing a schematic cross-sectional structure of a sample substrate rotating means section according to a second embodiment of the present invention.

図において、カバー36.37は試料基板保持装置25
0回転と同期して開閉するようになっている・試料基板
26の裏側に位置する方のカバーは通常閉じられてお9
、この閉じられた方のカバーと基板保持装置25 との
間を減圧排気することによっヰ て、異なる反応室間で原料ガスが混じりあうこp2はぼ
完全に防止することができる。
In the figure, the covers 36 and 37 are attached to the sample substrate holding device 25.
The cover is designed to open and close in synchronization with the 0 rotation.The cover located on the back side of the sample substrate 26 is normally closed.
By evacuating the space between the closed cover and the substrate holding device 25 under reduced pressure, mixing of source gases between different reaction chambers can be almost completely prevented.

本発明の実施例に関しては反応室の数は2つの場合につ
いて述べたが、前記試料基板保持装置25の回転軸の回
りに放射状に複数の隔壁を配すことなどによって、反応
室の数をさらに増やし、これに応じて同時に使用する原
料ガスの種類を増すことも可能である。また、上述の実
施例においては化合物気体の解離用の放射線源としてエ
キシマレーザを用いたが、これに限らず他のレーザ光源
やランプ光源などを使用することももちろん可能である
Regarding the embodiment of the present invention, the case where the number of reaction chambers is two has been described, but the number of reaction chambers can be further increased by arranging a plurality of partition walls radially around the rotation axis of the sample substrate holding device 25. It is also possible to increase the number of raw material gases used simultaneously. Further, in the above embodiments, an excimer laser was used as a radiation source for dissociating compound gases, but the present invention is not limited to this, and it is of course possible to use other laser light sources, lamp light sources, etc.

(発明の効果) 本発明の第1の実施例に示した気相薄膜形成装置を用い
て多層配線被膜を形成したところ、従来の試料基板固定
型構造の気相薄膜形成装置を用いた場合に比べ、薄膜形
成に要する作業時間をl/10以下と、大幅に短縮でき
生巌件の向上に寄与すること多大であった。また、本発
明による気相薄膜ノ 形成方法および装置を用いると、複数の原料ガスについ
てそれぞれに最適な、Lかも安価な排ガス処理系を個別
に設置することができるため、排ガス処理系に費17た
設備費は全体としてもかなシ少なくてすんだ。以上詳細
に述べた通り、本発明によれば、異なる組成からなる多
層の被膜が速やかに形成でき、かつ経済的な気相薄膜形
成方法およびこの方法を実施するための装置が得られる
(Effects of the Invention) When a multilayer wiring film was formed using the vapor phase thin film forming apparatus shown in the first embodiment of the present invention, it was found that when a conventional vapor phase thin film forming apparatus with a fixed sample substrate structure was used, In comparison, the working time required to form a thin film was significantly shortened to 1/10 or less, which greatly contributed to improving production efficiency. Furthermore, by using the vapor phase thin film forming method and apparatus according to the present invention, it is possible to individually install an optimal and low-cost exhaust gas treatment system for each of a plurality of source gases. Overall equipment costs were much lower. As described in detail above, according to the present invention, there is provided an economical method for forming a vapor-phase thin film and an apparatus for carrying out the method, which can quickly form multilayer coatings having different compositions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気相薄膜形成装置の概略構成図、第2図
は本発明の一実施例の構成を示すブロックダイヤグラム
図、第3図は第2図のA−A 部の断面概略構造を示す
模式図、第4図は本発明の第2の実施例の試料基板回転
手段部の断面概略構造を示す模式図である。 図において、1・・・化合物気体、2・・・ガス槽、3
・・・試料基板、4・・・レンズ光学系、5・・・紫外
レーザ光、6・・・窓、21・・・ガス槽、22・・・
隔壁、23.24・・・反応室、25・・・試料基板医
持装置、26・・・試料基板、27・・・KrFエキシ
マレーザ、28 ・・・ホトマスク、29・・・結像光
学系、30・・・ArFエキシマレーザ、31・・・第
2のホトマスク、32・・・第2の結像光学系、33.
34・・・窓、35・・・ダンパ、36.37・・・カ
バーをそれぞれ示す。 71 図
FIG. 1 is a schematic configuration diagram of a conventional vapor phase thin film forming apparatus, FIG. 2 is a block diagram diagram showing the configuration of an embodiment of the present invention, and FIG. 3 is a schematic cross-sectional structure of the section A-A in FIG. 2. FIG. 4 is a schematic diagram showing a schematic cross-sectional structure of a sample substrate rotating means section according to a second embodiment of the present invention. In the figure, 1... Compound gas, 2... Gas tank, 3
... Sample substrate, 4... Lens optical system, 5... Ultraviolet laser light, 6... Window, 21... Gas tank, 22...
Partition wall, 23.24...Reaction chamber, 25...Sample substrate medical holding device, 26...Sample substrate, 27...KrF excimer laser, 28...Photomask, 29...Imaging optical system , 30... ArF excimer laser, 31... second photomask, 32... second imaging optical system, 33.
34...Window, 35...Damper, 36.37...Cover. 71 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)互いに異なる化合物気体を含む複数の原料ガスを
互いに空間的に隔離して供給する工程と、前記複数の原
料ガスに試料基板を順次晒すと共に。 試料基板が晒されている原料ガスにエネルギー線を照射
して原料ガスを解離せしめ、この解離により生成した所
望の物質を前記試料基板表面上の所才 望の位置に被着せしむる工程と!有することを特徴とす
る気相薄膜形成方法。
(1) A step of supplying a plurality of raw material gases containing mutually different compound gases in a manner that is spatially isolated from each other, and sequentially exposing a sample substrate to the plurality of raw material gases. A step of irradiating the source gas to which the sample substrate is exposed with energy rays to dissociate the source gas, and depositing a desired substance produced by this dissociation at a desired position on the surface of the sample substrate! A method for forming a vapor phase thin film, comprising:
(2)互いに異なる化合物気体を含む複数の原料ガスが
互bVc分かれて流れるように内部に隔壁を有したガス
槽と、前記互いに異なる化合物気体をエネルギー線の照
射によりそれぞれ解離させるためのエネルギー線照射手
段とを含み、かつ前記互いに分かれて流れている複数の
原料ガスに試料基板面が順次接することができるように
、前記試料基板を前記試料基板面と平行な軸の回りで回
転させられるよう圧した試料基板回転手段を、前記隔壁
の一部分となるよう圧して備えたことを特徴とする気相
薄膜形成装置。 評
(2) A gas tank having partition walls inside so that a plurality of raw material gases containing different compound gases flow separately bVc from each other, and energy ray irradiation for dissociating the different compound gases by irradiating them with energy rays. and pressure such that the sample substrate can be rotated around an axis parallel to the sample substrate surface so that the sample substrate surface can sequentially contact the plurality of raw material gases flowing separately from each other. A vapor phase thin film forming apparatus characterized in that the sample substrate rotating means is pressed so as to become a part of the partition wall. Review
JP4691484A 1984-03-12 1984-03-12 Method and device for forming vapor phase thin film Pending JPS60189926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4691484A JPS60189926A (en) 1984-03-12 1984-03-12 Method and device for forming vapor phase thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4691484A JPS60189926A (en) 1984-03-12 1984-03-12 Method and device for forming vapor phase thin film

Publications (1)

Publication Number Publication Date
JPS60189926A true JPS60189926A (en) 1985-09-27

Family

ID=12760607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4691484A Pending JPS60189926A (en) 1984-03-12 1984-03-12 Method and device for forming vapor phase thin film

Country Status (1)

Country Link
JP (1) JPS60189926A (en)

Similar Documents

Publication Publication Date Title
US4265932A (en) Mobile transparent window apparatus and method for photochemical vapor deposition
EP0252667B1 (en) Chemical vapour deposition methods
US4643799A (en) Method of dry etching
JPH05175135A (en) Optical cvd apparatus
JP2752235B2 (en) Semiconductor substrate manufacturing method
JPS649728B2 (en)
EP0466320B1 (en) Process for preparing a semiconductor device including the selective deposition of a metal
JPS60189926A (en) Method and device for forming vapor phase thin film
EP0135179B1 (en) Process for depositing metallic copper
CA1330601C (en) Apparatus for semiconductor process including photo-excitation process
JPS60128265A (en) Device for forming thin film in vapor phase
JPS63152120A (en) Thin film formation
JPS59208065A (en) Depositing method of metal by laser
JPS593931A (en) Forming of thin film
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JPS63317675A (en) Plasma vapor growth device
JPS60249334A (en) Formation of thin film
Hess IR and UV laser-induced chemical vapor deposition: Chemical mechanism for a-Si: H and Cr (O, C) film formation
JPH0654756B2 (en) Thin film formation method
JPH09330887A (en) Method and device for forming and processing metal material film
JPH04173976A (en) Thin film forming device
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPH03268320A (en) Optical cvd system
JPS60236215A (en) Laser cvd method
JPH0373528A (en) Manufacture of electrode wiring of semiconductor integrated circuit device