JPS60189877A - Polymer metal complex film covered photo response electrode - Google Patents

Polymer metal complex film covered photo response electrode

Info

Publication number
JPS60189877A
JPS60189877A JP59044911A JP4491184A JPS60189877A JP S60189877 A JPS60189877 A JP S60189877A JP 59044911 A JP59044911 A JP 59044911A JP 4491184 A JP4491184 A JP 4491184A JP S60189877 A JPS60189877 A JP S60189877A
Authority
JP
Japan
Prior art keywords
electrode
film
metal
complex
polynuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59044911A
Other languages
Japanese (ja)
Other versions
JPH0564435B2 (en
Inventor
Masao Kaneko
正夫 金子
Akira Yamada
瑛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP59044911A priority Critical patent/JPS60189877A/en
Publication of JPS60189877A publication Critical patent/JPS60189877A/en
Publication of JPH0564435B2 publication Critical patent/JPH0564435B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To give an electrode desired photo respose property by covering the surface of conductive material with the film of polynuclear metal cyanocomplex obtained from metal salt of VIII group and hexacyanocomplex salt of VIII group metal. CONSTITUTION:Polynuclear metal cyanocomplex is obtained from a salt of VIIIgroup metal such as Fe and a hexacyanocomplex of VIII group metal, for example, from the equimolar mixture solution of ferric chloride and potassium ferricyanide. A working electrode comprising conductive material, a counter electrode, and a reference electrode are immersed in the cyanocomplex solution, and the working electrode is set to a specified potential and a film of polynuclear metal cyanocomplex is fomed on the electrode. This electrode is used as photoresponse electrode. According to circumferences, the upper layer or the lower layer of this film is convered with a polymer film of tris(2,2'-bipyridine)ruthenium (II) complex. When light is irradiated on the surface of this film, photocurrent is obtained depending on electrode potential.

Description

【発明の詳細な説明】 本発明は、多核屋金属シアノ錯体の膜を被覆して成る元
応答性′ζ極に電子る。
DETAILED DESCRIPTION OF THE INVENTION The present invention applies electrons to an ex-responsive ζ pole formed by coating a film of a polynuclear metal cyano complex.

本発明者らは、光励起状態で電子移動反応を起す金属錯
体を電極表面に被覆することにより、電極に光応答機能
を付与することができるという観点から、種々の金属錯
体について鋭意研究を行った。その結果、多核現金属シ
アノ錯体の安定な膜を電極表面に容易に被覆できること
を見出し、本発明を完成するに至った。
The present inventors conducted intensive research on various metal complexes from the viewpoint that by coating the electrode surface with a metal complex that causes an electron transfer reaction in a photoexcited state, it is possible to impart a photoresponsive function to the electrode. . As a result, the present inventors discovered that it is possible to easily coat an electrode surface with a stable film of a polynuclear current metal cyano complex, leading to the completion of the present invention.

本発明は、周期律災第■族の金属M工の塩と、周期律表
第%’jll族の金属M2のヘキサンアノ錯塩とから得
られる多核型金属シアノ錯体の膜を、導電性材料表面に
被覆して成る光応答性電極である。
The present invention provides a film of a polynuclear metal cyano complex obtained from a salt of a metal M in group 1 of the periodic table and a hexane ano complex salt of a metal M2 in group %'jll of the periodic table on the surface of a conductive material. It is a photoresponsive electrode formed by coating.

本発明はま/ヒ、上記多核型金属シアノ錯体の膜と、ト
リス(42′−ビピリジン)ルテニウム(II)錯体の
高分子膜とを、導電性材料表面に積層被覆して成る光応
答性電極である。トリス(2,2’−ビピリジン)ルテ
ニウム(■)@体の高分子膜は、多核型金A・〕17ア
ノ錯体の膜に対して、上層または下層(すなわち多核屋
金属シアノ錯体の膜と作用電極との間)のいずれに形成
してもよい。このように2種の膜を被覆することにより
、一層大きな光電流をとり出すことができる。
The present invention provides a photoresponsive electrode comprising a layer of a polynuclear metal cyano complex and a polymer film of a tris(42'-bipyridine)ruthenium(II) complex layered on the surface of a conductive material. It is. The polymer film of tris(2,2'-bipyridine) ruthenium (■) @ acts as an upper or lower layer (i.e., a film of a polynuclear metal cyano complex) with respect to a film of a polynuclear gold A.]17ano complex. It may be formed anywhere (between the electrodes). By coating with two types of films in this manner, a larger photocurrent can be extracted.

M□およびM2は、周期律表第■族の金属であればよく
、同一でもよく、また異なるものでもよい。
M□ and M2 may be metals from group Ⅰ of the periodic table, and may be the same or different.

MユおよびM2の典型的な例は、hb、RUである。Typical examples of Myu and M2 are hb, RU.

本発明において、多核型金属シアノ錯体とは、同種また
は異種の金属イオンが、シアノ配位子を介して交互に多
数連結した錯体を意味する。このような多核型金属シア
ノ錯体は、第■族より選ばれる金属M工の塩と、第vn
t族よシ選ばれる金属M。
In the present invention, a polynuclear metal cyano complex means a complex in which a large number of metal ions of the same type or different types are alternately connected via cyano ligands. Such a polynuclear metal cyano complex is made of a salt of a metal M selected from group Ⅰ and a metal cyano complex selected from group Ⅰ.
Metal M selected by the T family.

のヘキサシアノ錯塩の、はぼ等モルの水溶液を混合する
ことによシ容易に形成することができる。
can be easily formed by mixing approximately equimolar aqueous solutions of the hexacyano complex salts of .

この水溶液に導電性材料すなわち作用電極ならびに、白
金などの対極および参照電極を浸漬して作用電極に還元
電位または酸化電位をかけることによシ、作用電極上に
多核型金属シアノ錯体の(摸を被覆形成することができ
る。代表的な多核型鉄シアノ錯体を例にとってこれを説
明すると次のようになる。
By immersing a conductive material, that is, a working electrode, a counter electrode such as platinum, and a reference electrode in this aqueous solution and applying a reduction potential or an oxidation potential to the working electrode, a polynuclear metal cyano complex (sample) is deposited on the working electrode. This can be explained as follows using a typical polynuclear iron cyano complex as an example.

第二鉄塩たとえば塩化第二鉄と、フェリシアン化カリウ
ム(に3〔h3+(CN)6〕ト)の等モル水溶液を混
合すると、I”n” −FalIIIJの多核型金属シ
アノ錯体が生成する。この錯体水溶液中に、作用電極、
対極、参照電極を浸漬して、作用電極を電位−〇、SV
 (vs、 Ag−Agα参照電極) に設定すると、
作用電極表面上で、II −、、ill型の錯体が還元
されてhIII−1tII型の錯体となp、同時にこの
作用電極表面にこの錯体が析出して被膜を形成する。ち
なみVCコのPb” −F、’a”型の多核型鉄シアノ
錯体はグルンアンプルー(以下Paと略す)と呼ばれ、
その組成はFag” [Fa■(CN)6パーで表わさ
れる。PBの単位格子の結晶構造を添付図面に示す。本
発明に使用される多核型金属シアノ錯体は、このような
単位が4ムめて多数つながった構造をとっている。
When a ferric salt such as ferric chloride is mixed with an equimolar aqueous solution of potassium ferricyanide (ni3[h3+(CN)6]), a polynuclear metal cyano complex of I"n"-FalIIIJ is formed. In this complex aqueous solution, a working electrode,
The counter electrode and reference electrode are immersed, and the working electrode is placed at a potential of -〇, SV.
(vs, Ag-Agα reference electrode),
On the surface of the working electrode, the II-, .ill-type complexes are reduced to hIII-1tII-type complexes, and at the same time, this complex is deposited on the surface of the working electrode to form a film. By the way, VC Co.'s Pb"-F,'a" type polynuclear iron cyano complex is called Gurung Amp Blue (hereinafter abbreviated as Pa).
Its composition is expressed as Fag'' [Fa■(CN)6per. The crystal structure of the unit cell of PB is shown in the attached drawing. The polynuclear metal cyano complex used in the present invention has 4 units of It has a structure in which many are connected together.

多核型金属シアン銘体膜の厚さは、弘θA〜/θμmが
適当でおる。多核型シアノ錯体水溶液から作用電極上に
錯体膜を電析させる際、水溶液中に硫酸カリウム、塩化
カリウムなどの電解質を溶存させておくと電析の効率が
向上するので好ましい。
The thickness of the polynuclear metal cyan inscription film is suitably between θA and θμm. When electrodepositing a complex film on a working electrode from an aqueous solution of a polynuclear cyano complex, it is preferable to dissolve an electrolyte such as potassium sulfate or potassium chloride in the aqueous solution, since this improves the efficiency of electrodeposition.

上記例に示したように、原料として高原子価のMエ −
M、凹型(たソしMよ2M、は異種または同種II の金属イオン)の多核型金属シアノ錯体水溶液を用いた
場合は、作用電極に還元電位をかけてM工■二M2nま
fC,はM□■−M2■型の多核型金属シアノ錯体膜を
作用電極上に析出せしめる。その時の電位?10.3 
V 〜−/ OV (vs、Ag −Age/ )カ適
当テ;hる。また原料として低原子価のM□ −M2■
型の&j■ 体水溶液を用いた場合は、作用電極に酸化電位をかけて
M工In + M21またはM工n −M2m型の多核
型金属シアノ謔体膜を作用電極上に析出せしめる。その
時の電位は0.7 V 〜/ OV (vs、 Ag 
−AEI!α)が適当である。通常はM□ −M2■型
錯体を原料としII て用いればよい。
As shown in the above example, high valence M-
When using an aqueous solution of a polynuclear metal cyano complex of M, concave type (metal ions of different or similar metal ions), a reduction potential is applied to the working electrode. A polynuclear metal cyano complex film of the M□■-M2■ type is deposited on the working electrode. What is the potential at that time? 10.3
V ~-/OV (vs, Ag -Age/) as appropriate. Also, as a raw material, low valence M□ −M2■
When an aqueous solution of &j■ type is used, an oxidation potential is applied to the working electrode to precipitate a polynuclear metal cyano-forming film of Mn+M21 or Mn-M2m type on the working electrode. The potential at that time is 0.7 V ~/OV (vs, Ag
-AEI! α) is appropriate. Usually, a M□-M2■ type complex may be used as a raw material.

本発明に用いられる作用電極としては、どのような4@
性材料からつくられたものでもよいが、経済的な観点か
らは炭素電極がよい。
What kind of 4@ as the working electrode used in the present invention?
Although the electrode may be made from a carbonaceous material, carbon electrodes are preferable from an economical point of view.

このようにして生成した多核ム2金栢シアノ錯体の膜を
水で洗浄した後、この被覆作用電極、対極、および参照
電極(Ag −Agα)を、水中あるいは、硫1反カリ
ウムあるいは塩化カリウムなどの電解質を溶存する水中
に浸漬し、作用電極に適当な電位全かけ、被覆膜表面に
光照射すると、元電流を生ずる。元の照射、遮断に応じ
て繰り返し可逆的に)°C電流が流れる。)YS電流の
方向は電極電位に依存し、o V (vs、 p、a、
−A(2Ct)以下ではカソード光電流、0.2V以上
ではアノード光電流となる。
After washing the membrane of the polynuclear 2-metal cyano complex produced in this way with water, the coated working electrode, counter electrode, and reference electrode (Ag-Agα) were washed in water or in 1-antpotassium sulfate or potassium chloride. When the working electrode is immersed in water containing a dissolved electrolyte, an appropriate potential is applied to the working electrode, and light is irradiated onto the surface of the coating, an original current is generated. The current flows repeatedly and reversibly depending on the original irradiation and interruption) °C. ) The direction of the YS current depends on the electrode potential, o V (vs, p, a,
Below -A (2Ct), it becomes a cathode photocurrent, and above 0.2V, it becomes an anode photocurrent.

光源としては可視5’ll、なら何でもよく、たとえば
太陽光、白?11′1電」〕k1 ケイ光灯、プロジェ
クタ−”it、キセノン元、レーレ9−ツeなどが用い
られる。
As a light source, any visible 5'll will do, such as sunlight or white? A fluorescent lamp, a projector, a xenon lamp, a Lele 9-e, etc. are used.

)゛0応答量(光電1びr、の値)は、水中にレドック
ス試剤の酸化および4元型を溶存せしめておくことによ
シ、著しく増大する。レドックス試剤の酸化および還元
型としては、たとえは/−73νに2+。
) The zero response amount (value of photoelectricity 1 and r) is significantly increased by oxidizing the redox reagent and dissolving the quaternary form in water. For the oxidized and reduced forms of redox reagents, for example 2+ to /-73ν.

Cu2+/C+−+1+、 Pb”/Pb”+ などの
金属イオン、Fa(CN)孟−/FA(Cro3− 、
 n (lIl)エチレンジアミン四酢畝キレート/鉄
(If)エチレンジアミン四酢酸キレート、Co (N
H3) 6α2+/Co (NH3) 、α1+などの
金属錯体、+2/l;、α2/α−などのハロダン系、
千ノン/ハイドロギノン、アスコルビン酸/デヒドロア
スコルビン酸などの有機化合物などの系が挙けられる。
Metal ions such as Cu2+/C+-+1+, Pb"/Pb"+, Fa(CN)/FA(Cro3-,
n (lIl) ethylenediaminetetraacetic acid chelate/iron (If) ethylenediaminetetraacetic acid chelate, Co (N
H3) 6α2+/Co (NH3), metal complexes such as α1+, +2/l;, halodane systems such as α2/α-,
Examples include organic compounds such as fluorine/hydrogenone and ascorbic acid/dehydroascorbic acid.

本発明はまた、上記多核型金属シアノ錯体膜の上層また
は下層すなわちこの膜と電極との間((、トリス(,2
,,2’−ビビリCクン)ルプニウム(II) 部体の
高分子膜を被覆した光応答性7Ct極を提供するもので
ある。トリス(シλ′−ビビリノン)ルノ°ニウム錯体
(以下RU(1)py)、、”+と略す)は光励起状態
で糊々のレドックス反応を起す。このRu (bp y
 ) 3” ”単独では被膜として用いることは、出来
ないが、合成島分子物質を利用すると1jりとして被覆
でき、この膜中のRu(t)p、)3”+ がその光励
起状態で1隣接する膜成分である多核型金属シアノ1体
とレドックス反応を起し、これが電極応答に反映されて
、元電流が増加する。Ru(り、、)32+ の高分子
膜化け、たとえばポリ(スチレンスルホン酸ナトリウム
)、または、式(1): %式% (たソしXは0くx〈/の数で、nは/〜コθの整数を
表わす) でW’−わされるような繰シ返し単位を肩するポリアニ
オン性高分子材料〔たとえば、デュポン社製ボナフィオ
ン〃(登録商標)〕をキャスト法によシ1」1薯ヒする
が、心るいはたとえば摺造式@に示すような、R,、(
b、y) 3”+ 錯措造をにンダント基に有する高分
子をやはシキャスト法にょシ膜化することによシ行われ
る。
The present invention also provides an upper or lower layer of the polynuclear metal cyano complex film, that is, between the film and the electrode ((, Tris(, 2
,,2'-BibiliCkun) Lupnium (II) A photoresponsive 7Ct electrode coated with a polymer film is provided. The tris(λ'-bivirinone)runonium complex (hereinafter RU(1)py), abbreviated as "+", causes a redox reaction of glue in the photoexcited state.
)3"" cannot be used alone as a film, but if a synthetic island molecular material is used, it can be coated as a film, and Ru(t)p,)3"+ in this film is in its photo-excited state with one adjacent A redox reaction occurs with one polynuclear metal cyano, which is a membrane component, and this is reflected in the electrode response, increasing the original current. (sodium chloride), or formula (1): % formula % (Tasso X is the number of 0 x A polyanionic polymer material (for example, Bonafion (registered trademark) manufactured by DuPont) that supports the backing unit is cast by a casting method, but if it is not easy to use, ,R,,(
b, y) This is carried out by forming a polymer having a 3"+ complex structure into a film by a casting method.

〔式「rNへI’J cハ目′−ビビリ:クンでらり、
×(1θく×≦/、y!j、0≦y(/かつθくx+y
≦/Cある。Aは共j重合体単位で、;′ヒとズーI=
−fスチレンこのようにして、多核型金属シアンA体の
膜を被覆した作用電極上に、Ru(j’py)3”+の
高分子膜を形成することができる。
[Formula ``rN to I'J c は目' - Chatter: Kunderari,
×(1θ×≦/, y!j, 0≦y(/andθ×x+y
≦/C exists. A is a copolymer unit; ;'Hi and Zu I=
-f Styrene In this way, a polymer film of Ru(j'py)3''+ can be formed on the working electrode coated with a film of polynuclear metal cyan A-body.

一方、多核型金属シアノ錯体膜と作用電極の間ニRU(
bpy)3′+ 高分子膜を形成するには、作用’ii
j極上に予めキャスト法でRu(bpy)32+ 高分
子膜を形成した後、この被覆電極を作用電極として用い
て多核型金属シアノ錯体膜を電相させれはよい。
On the other hand, between the polynuclear metal cyano complex film and the working electrode, NiRU (
bpy) 3'+ To form a polymer film, action 'ii
After forming a Ru(bpy)32+ polymer film on the J electrode in advance by a casting method, the polynuclear metal cyano complex film can be electrophased using this coated electrode as a working electrode.

RU(b、y)3′+ 高分子膜の厚さは弘oA〜10
μmが適当である。
RU(b,y)3'+ The thickness of the polymer film is HirooA~10
μm is appropriate.

以下実施例音板って本発明を説明する。The present invention will be explained below with reference to an embodiment of the tone plate.

実施例/〜5 塩化第二鉄−0mMのaθ/M−Hα水溶欣10−およ
びフェリシアン化カリウム20 m Mのo、oiM−
Hα 水溶液/ (7ml f混合すると、Fn −F
≧ 型の多核型鉄シアノ錯体(ぺ/l/ IJ 7 f
リーンと呼はれる)水浴液が直ちに得られる。この水浴
液に棒状の炭素電極(7427面の面積は0、 /7 
c、! )、山雀対、1歳(/ all ) 、および
AjJ−/Jα呑照′+fi他を浸漬し、炭素電極に一
〇、、S V (vs、 Ag −Aet2)kかける
と電極上にゾルシアンブルー(Pa ’、 Fn” −
pH2’−型錯体)の膜が析出する。
Examples/~5 Ferric chloride - 0mM aθ/M-Hα aqueous 10- and potassium ferricyanide 20mM o,oiM-
Hα aqueous solution/(7ml) When mixed, Fn -F
≧ type polynuclear iron cyano complex (P/l/IJ 7 f
A water bath solution (referred to as lean) is immediately obtained. A rod-shaped carbon electrode (7427 surface area is 0, /7
c,! ), Yamajaku pair, 1 year old (/all), and AjJ-/Jαnorsho'+fi, etc. are immersed in carbon electrodes and applied with 10, S V (vs, Ag-Aet2)k, and solcian is deposited on the electrodes. Blue (Pa', Fn" -
A film of pH2'-type complex) is deposited.

300秒間電解を行なった後、被覆電極分取シ出して水
≧先いする。
After electrolysis for 300 seconds, the coated electrode is taken out and water is ≥1.

このPB彼情炭素′jij、凧、白金対極、およびAg
−八gα 参照電極を硫酸カリウム0.5Mの水溶液中
に浸漬し、被覆膜表面にho0wキセノンランフ0から
の光を照射すると、電極電位に依存して光電流が得られ
た。光電流の値を表/に示す。
This PB his love carbon'jij, kite, platinum counterpole, and Ag
-8gα When the reference electrode was immersed in an aqueous solution of 0.5M potassium sulfate and the surface of the coating film was irradiated with light from a ho0w xenon lamp 0, a photocurrent was obtained depending on the electrode potential. The photocurrent values are shown in Table/.

表 / 実施例乙 実施例/において、に2So4水溶液の代りに、フェリ
シアン化カリおよびフェロシアン化カリをそれぞれ0.
1Mずつ含む水溶液を用い、同様に光照射を行なったと
ころ、電)l′Ii電位ovでは/グアμA/dのカソ
ード光電流が、0.5■では/ 77 /J A/cr
Aのアノード光電流が得られた。
Table/Example B In Example/, potassium ferricyanide and potassium ferrocyanide were each added at 0.0% in place of the 2So4 aqueous solution.
When light irradiation was performed in the same manner using aqueous solutions containing 1M each, the cathode photocurrent was /gua μA/d at the electric potential ov, and /77 /J A/cr at 0.5■.
An anodic photocurrent of A was obtained.

実施例7 笑施例乙において、フェリシアン化カリおよびフェロシ
アン化カリの代りに塩化第二鉄および塩化第一鉄を用い
たほかは実施例6と全く同様の操作を行ったところ、θ
■ではg1gμA/dのアノード光電流が、−〇、3v
ではグ/μA/cJのカソード光電流が得られた。
Example 7 In Example B, the same operation as in Example 6 was performed except that ferric chloride and ferrous chloride were used instead of potassium ferricyanide and potassium ferrocyanide.
In ■, the anode photocurrent of g1gμA/d is -〇, 3v
In this case, a cathode photocurrent of 1.5 g/μA/cJ was obtained.

実施例g 実施例7において、塩化第二鉄および塩化第一鉄の代シ
にヨウ素およびヨウ化カリウムを用い、太陽光を照射し
たところ、−〇、3V で3/μA/cJのアノード光
電流が得られた。
Example g In Example 7, when iodine and potassium iodide were used as substitutes for ferric chloride and ferrous chloride and sunlight was irradiated, an anode photocurrent of 3/μA/cJ at -0, 3V was obtained. was gotten.

実施例り 塩化ルテニ’) A (lll) 20 tn M +
7) 0.07 M−H01水n液/θ−およびフェリ
シアン化カリウム20mMの0.θ/ M−Hα水溶液
/θ−を混合すると /ik3”−Ru 型の多核型シ
アノ錯体水溶液が得られる。
Examples Ruthenium chloride') A (llll) 20 tn M +
7) 0.07 M-H01 water n solution/θ- and 20 mM potassium ferricyanide. When θ/M-Hα aqueous solution/θ- is mixed, an /ik3''-Ru type polynuclear cyano complex aqueous solution is obtained.

この水溶液に白金作用電極(/6It)、白金対極(/
 cr& )およびAg−A8α参照電極を浸漬し、白
金作用電極に一コ■をかけると電極上にFX ” −R
u 2+型の多核型錯体(ルテニウムツク−プルと呼ば
れる)が析出する。700秒間電解を行なった後、被り
電極を取シ出して水洗いする。
A platinum working electrode (/6It) and a platinum counter electrode (/6It) were added to this aqueous solution.
cr & ) and Ag-A8α reference electrode and apply one coat to the platinum working electrode, FX ” -R appears on the electrode.
A u 2+ -type polynuclear complex (called ruthenium couple) is precipitated. After performing electrolysis for 700 seconds, the covered electrode is taken out and washed with water.

この被覆白金作用電極、白金対極、およびAQ−Agα
 参照電極を7M塩化カリウム水浴液中に浸漬し、被υ
膜表面にプロジェクタ−用ハロゲンランプからの元を照
射すると、電極電位0■で/、2μA/dのカソード光
電流が得られた。
This coated platinum working electrode, platinum counter electrode, and AQ-Agα
The reference electrode was immersed in a 7M potassium chloride water bath, and the
When the film surface was irradiated with light from a halogen lamp for a projector, a cathode photocurrent of 2 μA/d was obtained at an electrode potential of 0 μ/d.

実施例70〜/2 実施例/の方法でPa膜を被覆した炭素電極のPB膜上
に、構造式(2においてX = Y = 0.033で
あるR、(b、y)、S”+型筒分子錯体のツメチルホ
ルムアミド(DMF)溶液(e度は試料ユ26 my/
/ tntD M F ) 0.乙gμt2マイクロシ
リンジにてのせて均一に拡げ、乾燥させ、高分子Ru(
bp、)32+ の膜を形成した。
Examples 70-/2 On the PB film of the carbon electrode coated with the Pa film by the method of Example A solution of the mold cylinder molecule complex in methylformamide (DMF) (e degree is 26 my/min for the sample)
/tntDMF) 0. Place it on a gμt2 microsyringe, spread it evenly, dry it, and add polymer Ru (
A film of bp, )32+ was formed.

この二層被覆電極を用いて実施例/と同様に)′0照射
を行なったところ、表コに示すような光電流が得らit
だ。
When irradiation was carried out using this two-layer coated electrode in the same manner as in Example 1, a photocurrent as shown in Table 1 was obtained.
is.

表 コ 実施1夕1」/3〜15 実施例10に2ける二層被覆電極を用い、硫酸第二鉄と
硫酸第一鉄をそれぞれ0.7 Mずつ含む水溶液を用い
、実施例/と同様に光照射を行なったところ、表3に示
すような光電流が得られた。
Table 1 Example 1 / 3 to 15 Same as Example 1, using the two-layer coated electrode in Example 10 and using an aqueous solution containing 0.7 M each of ferric sulfate and ferrous sulfate. When irradiated with light, photocurrents as shown in Table 3 were obtained.

表 3 実施例/乙 棒状炭素電極(ディスク面の面積0. /’7 ca 
l 表面に、ナフィオン(登録商標)のジメチルスルホ
キシド/エタノール= /// (V、 /V、の混合
溶媒溶酸< o、 s6重量%)2μtをマイクロシリ
ンジを用いてのせ、拡げて乾燥し、ナフィオ7膜全形成
した。このナフィオン膜被覆電極を、RU(6p、)X
+’c / m M含む水41液中に浸漬すると、RL
l(b、、)3””がすフイオン膜中に取p込まれて、
R,(bp、)3”+膜被凌電極ができる。この被謹電
極異面に、実施例/と同様の方法でPB膜を被覆し、二
層被覆電極をつくった。この10表面に実施例乙と同様
の方法で光照射すると、OvでS/θμA/cA のア
ノード光電流、/■で’130μA/cJのアノード光
電流がイIIられた。
Table 3 Example/Otsu rod-shaped carbon electrode (disc surface area 0./'7 ca
l On the surface, 2 μt of Nafion (registered trademark) dimethyl sulfoxide/ethanol = /// (V, /V, mixed solvent solution <o, s6% by weight) was placed on the surface using a microsyringe, spread and dried, All Nafio 7 membranes were formed. This Nafion membrane-coated electrode is RU(6p,)X
+'c/m When immersed in 41 liquids of water containing M, RL
l(b,,)3"" is incorporated into the ion film,
R, (bp,) 3"+ film-covered electrode is formed. The different surface of this covered electrode is coated with a PB film in the same manner as in Example/, to create a two-layer coated electrode. On the surface of this 10 When light was irradiated in the same manner as in Example B, an anode photocurrent of S/θμA/cA was obtained at Ov, and an anode photocurrent of 130μA/cJ was obtained at /■.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、j□’n ” −h、”型多核シアノ錯体
(プルシアンブルー)の結晶単位格子の構造を示すもの
である。 ・ Fe” 0Fe2+
The attached drawings show the structure of a crystal unit cell of a j□'n''-h,'' type polynuclear cyano complex (Prussian blue).・Fe” 0Fe2+

Claims (1)

【特許請求の範囲】 (/′) 周期律表第■族の金属M工の塩と、周期律表
第s’lll族の金属M2のへキサシアノ錯塩とから得
られる多核型金属シアノ錯体の膜を、導電性材料表面に
被覆して成る光応答性電極。 (,2)MユおよびM2がhである特許請求の範囲第1
項記載の電極。 (,1)M□がRUXM2がhである特許請求の範囲第
/項記載の電極。 (lA 周期律表第ν“ill族の釡属M□の塩と、周
期律表第Vlll族の釜属M2のへキサシアノ錯塩とか
ら得られる多核型金属シアノ錯体の膜と、トリス(2゜
2′−ビビリシン)ルテニウム(n)錯体の高分子膜と
を、導電性材料表面に被覆して成る光応答性電極。 (j 多核型金属シアノ錯体の膜の上層にトリス(4,
2’−ビビリシンyルテニウム(II)錯体の高分子膜
が被覆されている特許請求の範囲第を項記載の電極。 (θ 多核型金属シアノ錯体の膜の下層にトリスホロ′
−ビピリジン)ルテニウム(II) 錯体の高分子膜が
被覆されている特許請求の範囲第7項記載の電極。 (7)M工およびM2がhである特許請求の範囲第り項
または第3項または3乙項記載の電極。 (g) M□がRu、M2がhである特許請求の範囲第
j項または第3項または縞6項記載の′Iu、極。
[Claims] (/') A film of a polynuclear metal cyano complex obtained from a salt of a metal M of Group I of the Periodic Table and a hexacyano complex salt of a metal M2 of Group S'll of the Periodic Table. A photoresponsive electrode made by coating the surface of a conductive material. (,2) Claim 1 in which M yu and M2 are h
Electrode as described in Section. (,1) The electrode according to claim 1, wherein M□ is RUXM2 is h. (lA) A film of a polynuclear metal cyano complex obtained from a salt of the genus M□ of group ν ill of the periodic table and a hexacyano complex salt of genus M2 of group Vllll of the periodic table, and tris(2゜A photoresponsive electrode formed by coating the surface of a conductive material with a polymer film of a ruthenium (n) complex (2'-biviricin).
The electrode according to claim 1, wherein the electrode is coated with a polymer film of a 2'-biviricin y ruthenium (II) complex. (θ There is a tris holo′ in the lower layer of the polynuclear metal cyano complex film.
8. The electrode according to claim 7, wherein the electrode is coated with a polymer film of a ruthenium (II) complex. (7) The electrode according to claim 1, 3, or 3b, wherein M and M2 are h. (g) 'Iu, pole according to claim j or claim 3 or stripe claim 6, wherein M□ is Ru and M2 is h.
JP59044911A 1984-03-09 1984-03-09 Polymer metal complex film covered photo response electrode Granted JPS60189877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044911A JPS60189877A (en) 1984-03-09 1984-03-09 Polymer metal complex film covered photo response electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044911A JPS60189877A (en) 1984-03-09 1984-03-09 Polymer metal complex film covered photo response electrode

Publications (2)

Publication Number Publication Date
JPS60189877A true JPS60189877A (en) 1985-09-27
JPH0564435B2 JPH0564435B2 (en) 1993-09-14

Family

ID=12704639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044911A Granted JPS60189877A (en) 1984-03-09 1984-03-09 Polymer metal complex film covered photo response electrode

Country Status (1)

Country Link
JP (1) JPS60189877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319775A (en) * 1986-07-10 1988-01-27 Rikagaku Kenkyusho Photo storage battery comprising semiconductor electrode and polynuclear complex
WO2009157554A1 (en) * 2008-06-27 2009-12-30 独立行政法人産業技術総合研究所 Process for production of prussian blue-type metal complex nanoparticle structure, structure obtained by the process, substrate provided with the structure, electrochromic elements, rectifying devices, and photoresponsive elements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157069A (en) * 1982-03-13 1983-09-19 Rikagaku Kenkyusho Light-responsive electrode
JPS5944773A (en) * 1982-09-07 1984-03-13 Noboru Koyama Photoresponsive high-polymer electrolyte film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157069A (en) * 1982-03-13 1983-09-19 Rikagaku Kenkyusho Light-responsive electrode
JPS5944773A (en) * 1982-09-07 1984-03-13 Noboru Koyama Photoresponsive high-polymer electrolyte film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319775A (en) * 1986-07-10 1988-01-27 Rikagaku Kenkyusho Photo storage battery comprising semiconductor electrode and polynuclear complex
WO2009157554A1 (en) * 2008-06-27 2009-12-30 独立行政法人産業技術総合研究所 Process for production of prussian blue-type metal complex nanoparticle structure, structure obtained by the process, substrate provided with the structure, electrochromic elements, rectifying devices, and photoresponsive elements
JPWO2009157554A1 (en) * 2008-06-27 2011-12-15 独立行政法人産業技術総合研究所 Method for producing Prussian blue-type metal complex nanoparticle structure, structure obtained thereby, structure-equipped substrate using the same, electrochromic device, rectifier, and photoresponsive device
US8658251B2 (en) 2008-06-27 2014-02-25 National Institute Of Advanced Industrial Science And Technology Method of producing structural member having prussian blue-type metal complex nanoparticles, structural member obtained by the method, substrate, electrochromic device, rectifying device, and photo responding device, using the structural member
JP5663736B2 (en) * 2008-06-27 2015-02-04 独立行政法人産業技術総合研究所 Method for producing Prussian blue-type metal complex nanoparticle structure, structure obtained thereby, structure-equipped substrate using the same, electrochromic device, rectifier, and photoresponsive device

Also Published As

Publication number Publication date
JPH0564435B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
Hu et al. Surfactant-intercalated clay films for electrochemical catalysis. Reduction of trichloroacetic acid
Albery et al. Modified electrodes
Carter et al. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt (III) and iron (II) with 1, 10-phenanthroline and 2, 2'-bipyridine
Oyama et al. Factors affecting the electrochemical responses of metal complexes at pyrolytic graphite electrodes coated with films of poly (4‐Vinylpyridine)
Bond et al. Assessment of conditions under which the oxidation of ferrocene can be used as a standard voltammetric reference process in aqueous media
Lei et al. Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles
DE60211213T2 (en) ELECTRODE FOR ACTIVE OXYGEN SPECIES AND THE ELECTRODE USING SENSOR
DE2260048A1 (en) IMAGE PLAYBACK CELL
Kozawa Effects of anions and cations on oxygen reduction and oxygen evolution reactions on platinum electrodes
Yagi et al. Charge transfer and molecular distribution of Ru (bpy) 2+ 3 complex dispersed in a Nafion® membrane as studied by in-situ spectrocyclic voltammetry
Yagi et al. Channel mimetic sensing membranes for alkali metal cations based on oriented monolayers of calixarene esters
de Oliveira et al. Voltammetric determination of persulfate anions using an electrode modified with a Prussian blue film
Yagi et al. Charge transfer distance between tris (2, 2′-bipyridine) ruthenium (II) redox centers incorporated in Nafion® membrane
Kenyhercz et al. Thin layer spectroelectrochemical study of vitamin B12 and related cobalamin compounds in aqueous media
JPS60189877A (en) Polymer metal complex film covered photo response electrode
Mortimer Electrochemical responses of bilayer electrodes with Prussian blue as the ‘inner’layer and electroactive cation-incorporated Nafion® as the ‘outer’layer
Crumbliss et al. Characterization of carrageenan hydrogel electrode coatings with immobilized cationic metal complex redox couples
Morigaki et al. Azobenzene-Derivative Langmuir-Blodgett Films Deposited on Various Thiol Monolayers
JPH0140966B2 (en)
Niedziolka et al. Stabilising electrode| redox liquid| aqueous solution system with hydrophobic silicate film
Takehara et al. Electrochemical studies of the permeation of FAD and UQ0 into the self-assembled n-alkanethiol monolayer formed on a gold electrode
Hanzlik et al. Ion-exchange voltammetry of tris (2, 2′-bipyridyl) ruthenium (II), iron (II), osmium (II) and tris (2, 2′-bipyrazyl) ruthenium (II) in acetonitrile solutions at poly (ester-sulphonate) coated electrodes
Kenyhercz et al. A Thin Layer Spectroelectrochemical Study of Cob (I) alamin to Cob (III) alamin Oxidation Processes
Nguyen et al. Electrochemical examination of electrostatic attraction of cations and the ejection of anions by polyanionic electrode coatings stable in non-aqueous solvents
Senthil Kumar et al. Redox mediated electrochemical method for vat dyeing in ferric-oxalate-gluconate system: process optimization studies