JPS5944773A - Photoresponsive high-polymer electrolyte film - Google Patents

Photoresponsive high-polymer electrolyte film

Info

Publication number
JPS5944773A
JPS5944773A JP57154582A JP15458282A JPS5944773A JP S5944773 A JPS5944773 A JP S5944773A JP 57154582 A JP57154582 A JP 57154582A JP 15458282 A JP15458282 A JP 15458282A JP S5944773 A JPS5944773 A JP S5944773A
Authority
JP
Japan
Prior art keywords
membrane
film
metal
complex
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57154582A
Other languages
Japanese (ja)
Inventor
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57154582A priority Critical patent/JPS5944773A/en
Publication of JPS5944773A publication Critical patent/JPS5944773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To give simply excellent photoresponsiveness to a film by making a polyanion type high-polymer electrolyte film to hold a tris(polypyridyl) metal (II) complex. CONSTITUTION:A polyanion type high-polymer electrolyte film such as naphion is made to hold a tris(polypyridyl) metal (II) complex belonging to the periodic law table VIII family. A photocurrent is remarkably increased when a proper oxidation-reduction reagent capable of electron mobile reaction is made to be melted or to coexist in said film during said metal (II) complex is in the excited condition.

Description

【発明の詳細な説明】 10発明の背景 〔技術分野〕 この発明は、光応答性膜に関するものであり、更に詳細
ζこは、ポリアニオン型高分子膜中ζこ、トリス(ポリ
ピリジル)金属■錯体を含有保持してなる光応答性膜に
関するものである。
Detailed Description of the Invention 10 Background of the Invention [Technical Field] The present invention relates to a photoresponsive film, and more specifically, a tris(polypyridyl) metal complex in a polyanionic polymer film. The present invention relates to a photoresponsive film containing and retaining.

〔先行技術および問題点〕[Prior art and problems]

従来の光変換素子の素材としては大部分が金属や半導体
の光物理的な過程を利用したものが多い。しかしながら
、化合物の光励起状態の化学反応全利用する、つまり光
を吸収して励起状態になった化合物がi℃荷分離を引き
起こすような条件全設計できれば新しいふ理に基づ、<
yt、変換素子として利用できるはずである。本発明で
は、こうした新しい考えに基づく光変換素子を高分子電
解質膜音用いることにより作製する。このような新しい
原理(こ基づく光応答性膜の実現は、光センサ−、光電
池、光lこよる水電解膜、半導体素子、全く新しい種類
の光ダイオードとして利用価値が極めて高い。
Most of the materials used for conventional photoconversion elements are metals and semiconductors that utilize optical physical processes. However, if we can fully utilize the chemical reaction of the photoexcited state of the compound, that is, if we can design all the conditions such that the compound that absorbs light and becomes excited state causes i°C charge separation, then based on the new theory, <
yt, it should be possible to use it as a conversion element. In the present invention, a photoconversion element based on such a new idea is manufactured by using a polymer electrolyte membrane. The realization of photoresponsive films based on such new principles has extremely high utility value as optical sensors, photovoltaic cells, water electrolytic membranes that rely on light, semiconductor devices, and completely new types of photodiodes.

一般(こ、トリス(ポリピリジル)金属(損錯体(以下
、rM(ppy):+Jという。)力庵液中で優れた光
反応性を示すことはよく知られている。この化学種は、
光励起状態から種々のRn子受容体に電子移動を行なう
が、その逆電子移動反応が速いため、両者を含む溶液に
電極全浸漬しても、電極での光応答は観察されない。
It is well known that general (tris(polypyridyl) metal) loss complexes (hereinafter referred to as rM (ppy): +J) exhibit excellent photoreactivity in liquid.
Electrons are transferred from the photoexcited state to various Rn receptors, but because the reverse electron transfer reaction is fast, no photoresponse is observed at the electrode even if the electrode is completely immersed in a solution containing both.

しかしながら、M(my):+ を適当な高分子電解質
物質に担持させて得られ7るMCpptt)3+含含有
分子′屯)眸賀膜は、その膜表面(こ′亀気伝纒性物質
の薄膜を被着保持せしめると、励起状態の錯体MCpp
tt)”、”た該薄膜表面における電子授受反応が可能
となり、これにより、本来は光応答機醸をもたない高分
子電解質膜(こ光応答機能會発現させることができるこ
とがわかった。本発明は上記の知見に基づき完成された
ものである。
However, the membrane obtained by supporting M (my): When the thin film is adhered and held, the excited state complex MCpp
tt)","It has become possible to conduct an electron transfer reaction on the surface of the thin film, and as a result, it has been found that it is possible to develop a photoresponsive function in a polymer electrolyte membrane (which originally does not have a photoresponsive mechanism). The invention was completed based on the above findings.

■1発明の目的 したがって、本発明、の目的は、溶液中ですぐれた光反
応性を示すMCppy)’g”f高分子膜に保持せしめ
ることをこより、膜に光応答性を付与することである。
■1 Purpose of the Invention Therefore, the purpose of the present invention is to retain MCppy)'g"f, which exhibits excellent photoreactivity in solution, in a polymer film, thereby imparting photoresponsivity to the film. be.

本発明の目的は更に、光反応性を有するM(7+7ty
 )’4十を含有する高分子電解質膜表面に電気伝導性
物質の薄膜を被着保持せしめてなる高分子膜と薄層電導
体とが一体化した光応答性高分子電解質膜を提供するこ
とである。
The object of the present invention is to further provide photoreactive M(7+7ty
) To provide a photoresponsive polymer electrolyte membrane in which a thin film of an electrically conductive substance is adhered and retained on the surface of a polymer electrolyte membrane containing 0.40, in which a polymer membrane and a thin conductor are integrated. It is.

用1発明の具体的説明 本発明に使用されるA/(ppv)a+のポリピリジル
配位子としては、たとえば、2,2′−ビピリジン(以
下Cbpv)という)、O−フェナントロリン(以下(
phen)という)など全あげることができる。一般に
分子中にポリピリジル基を有する高分子化合物も本発明
瘉こ使用することができる。
Specific Description of the Invention The polypyridyl ligand of A/(ppv)a+ used in the present invention includes, for example, 2,2'-bipyridine (hereinafter referred to as Cbpv), O-phenanthroline (hereinafter referred to as (
You can list all the words such as phen). In general, polymer compounds having polypyridyl groups in their molecules can also be used in the present invention.

このような高分子化合物としては、たとえば次のような
例が挙げられる。
Examples of such polymer compounds include the following.

一つはビニル基金分子中に有するポリピリジル化合物、
たとえば4−ビニル−2,2′−ビピリジル、4−メチ
ル−4′−ビニル−2,2′−ビピリジル、4−ビニル
−〇−フェナントロリン、4−メチル−7−ピニルーO
−フェナントロリンなどを単独で重合させて得られる高
分子化合物、ないしは他のビニル化合物と任意の割合で
共重合させて得られる高分子化合物が挙げられる。他の
例としては、高分子化合物にポリピリジル化合物を反応
させて合成される含ポリピリジル高分子化合物がある。
One is a polypyridyl compound that has a vinyl foundation molecule,
For example, 4-vinyl-2,2'-bipyridyl, 4-methyl-4'-vinyl-2,2'-bipyridyl, 4-vinyl-〇-phenanthroline, 4-methyl-7-pinyl-O
- Polymer compounds obtained by polymerizing phenanthroline or the like alone, or polymer compounds obtained by copolymerizing with other vinyl compounds in any proportion are exemplified. Another example is a polypyridyl-containing polymer compound synthesized by reacting a polymer compound with a polypyridyl compound.

この−例として、ポリスチレンの芳香核を臭素化した後
(こリチウム化し、次いでポリピリジル化合物全反応さ
せること(こより芳香環にポリピリジル基が導入された
ポリスチレンが挙げられる。さらに、4.4′−ジホル
ミル−2,2′−ビピリジル全ポリビニルアルコールと
反応させて得られる高分子化合物、ポリ(4−ビニルピ
リジン)fこγ−ピコリンを反応させて得られる高分子
化合物などが挙げられる。これらのポリピリジル基を含
有する高分子化合物とM(ppy)i+との反応より合
成された篩分子金属錯体を本発明に使用できる。まだ、
中ノ0金属としては、周期律表第市原に属する鉄、コバ
ルト、ニッケル、ルテニウム、ロジウム、パラジウム、
オスミウム、イリジウム、白金があげられる。通常、こ
れら余端の塩、例えは塩化物JP硫酸塩を、適当な溶媒
中で前記配位子と反応させ錯体全得る。
An example of this is polystyrene in which a polypyridyl group is introduced into the aromatic ring by brominating the aromatic nucleus of polystyrene (this is lithiated), and then a total reaction of the polypyridyl compound (this is done. Examples include polymer compounds obtained by reacting -2,2'-bipyridyl with all-polyvinyl alcohol, and polymer compounds obtained by reacting poly(4-vinylpyridine) with γ-picoline.These polypyridyl groups A sieve molecule metal complex synthesized by the reaction of a polymer compound containing M(ppy)i+ with M(ppy)i+ can be used in the present invention.
The middle metals include iron, cobalt, nickel, ruthenium, rhodium, palladium, which belongs to Ichihara of the periodic table.
Examples include osmium, iridium, and platinum. Usually, these extra salts, such as chloride JP sulfate, are reacted with the ligand in a suitable solvent to obtain the entire complex.

このような金属錯体を、ポリアニオン型高分子膜番こ保
持した状態で使用することにより、膜φこ光応答性を付
与できるのである。
By using such a metal complex while holding it in a polyanionic polymer film, it is possible to impart photoresponsiveness to the film.

液中ないし膜中に適当な酸化還元試剤が溶解ないし共存
していれば光電流は著しく増大する。上記酸化還元試剤
とは、トリス(ポリピリジル)金属■錯体の励起状態と
の間で°m電子動反応が可能な試剤を意味し、電子受容
性レドックス試剤および電子供与性レドックス試剤金倉
む。該錯体の励起状態から電子を受は取る電子受容性レ
ドックス試剤としてはビオロゲン類、第二銅塩類、第二
鉄塩類、鉄、銅、ニッケル、コバルト、モリブデン、ク
ロム、ルテニウム、白金などのシアン化錯体、アンミン
錯体、チオラド錯体あるいは有機配位性化合物などとの
錯体、キノンおよびその誘導体、テトラシアノキノジメ
タン、ニトロベンゼンおよびその誘導体などが挙げられ
る。このうちビオロゲン類トシてはジメチルビオロゲン
、ジエチルビオロゲンなどのほか、炭素数20以下のジ
アルキル“ビオロゲン、高分子化合物に結合された高分
子ビオロゲンやポリキシリルビオロゲンなどのビオロゲ
ン誘導体などが含まれる。電子供与性レドックス試剤の
具体例としては芳香族アミン類、ノ・イドロキノンおよ
びその誘導体がある。
If an appropriate redox agent is dissolved or coexists in the liquid or film, the photocurrent increases significantly. The above-mentioned redox reagent means a reagent capable of electrodynamic reaction with the excited state of the tris(polypyridyl) metal complex, and includes an electron-accepting redox reagent and an electron-donating redox reagent. Electron-accepting redox reagents that accept electrons from the excited state of the complex include viologens, cupric salts, ferric salts, cyanide of iron, copper, nickel, cobalt, molybdenum, chromium, ruthenium, platinum, etc. Examples include complexes, ammine complexes, thiorad complexes, complexes with organic coordination compounds, quinones and derivatives thereof, tetracyanoquinodimethane, nitrobenzene and derivatives thereof. Among these, viologens include dimethyl viologen, diethyl viologen, etc., as well as dialkyl viologens having 20 or fewer carbon atoms, viologen derivatives such as polymeric viologens bonded to polymeric compounds, and polyxylyl viologens. Specific examples of donating redox reagents include aromatic amines, hydroquinone, and derivatives thereof.

本発明に使用されるポリアニオン型窩分子ta解質膜と
しては、ナフィオン(商品名:デュポン社製重膜番号1
20.125.315.415など)やセミレオン(商
品名:旭硝子株式会社製)のような強アニオン型フッ素
樹脂、ポリ(メチルメタクリレート)などがあげられる
The polyanion-type foveolar molecule TA membrane used in the present invention is Nafion (trade name: Heavy membrane No. 1 manufactured by DuPont).
20.125.315.415, etc.), strong anionic fluororesins such as Semireon (trade name: manufactured by Asahi Glass Co., Ltd.), and poly(methyl methacrylate).

高分子電解質膜の表面を薄膜の形で被覆する導体および
半導体としては、白金、金、酸化ルテニウム、酸化チタ
ン、酸化亜鉛、酸化スズ、酸化インジウム、カーボンな
どが用いられる。ポリアニオン型窩分子膜klffi用
して7114(ppy)3含有高分子膜全作製するには
、まずMCppy)3 錯体金言むストック溶液(こ、
高分子膜を十分な時間浸漬する。このことにより、膜中
(こおけるアニオン置換基と金属錯体との静電的相互作
用や、膜の金属錯体に対する親和力の効果によりMCp
py)憂+は膜中に挿入固定できる(N、Oyama&
 F、、C,Anson+ J、Electroche
m、5oc−+  127.247(1980))。同
様の方法◆こより、電子受容性レドックス試剤も高分子
電解質膜中に保持できる。高分子膜を浸漬するM(芹v
)3 溶液の溶媒としては、水、ジメチルスルホキシド
CDMSO)、ジメチルホルムアミド(DMF)など膜
自身が溶媒を含みやすく、かつMCppy ) ’g+
や電子受容性レドックス試剤を溶解する媒体が好ましい
As the conductor and semiconductor that coats the surface of the polymer electrolyte membrane in the form of a thin film, platinum, gold, ruthenium oxide, titanium oxide, zinc oxide, tin oxide, indium oxide, carbon, etc. are used. To prepare the entire 7114(ppy)3-containing polymer film for the polyanion-type foveal molecular film klffi, first prepare a stock solution containing MCppy)3 complex gold.
Soak the polymer membrane for a sufficient amount of time. As a result, MCp
py) Yu+ can be inserted and fixed into the membrane (N, Oyama &
F, ,C,Anson+ J,Electroche
m, 5oc-+ 127.247 (1980)). By the same method◆, electron-accepting redox reagents can also be retained in the polymer electrolyte membrane. Immersing the polymer membrane
) 3 Solution solvents include water, dimethyl sulfoxide (CDMSO), dimethyl formamide (DMF), etc. The membrane itself tends to contain solvents, and MCppy ) 'g+
A medium that dissolves the electron-accepting redox reagent and the electron-accepting redox reagent is preferred.

10mMのRu (bpy )、の水溶液中にナフィオ
ン(膜番号125 )kl 0分間浸漬した時、膜はオ
レンジ色になり、分光光度法による測定によれば、10
mM以上のルテニウム錯体が膜中(こ保持された。また
、含ポリピリジル高分子化合物とIvfCppv)七と
の反応により合成された高分子金属錯体(,4) C特
、願昭57−39859〕の場合、この錯体はDMSO
,DM’Fに可溶であるので、この溶媒全媒体としたl
OmATm度(ルテニウム単位当りの濃度)のストック
溶媒に上記ナフィオン′fc浸漬した時、やはり同程度
のルテニウム錯体が膜lこ保持できた。上記の方法によ
り作製された含ルテニウム錯体ナフィオン膜を純水中に
浸漬し、ルテニウム錯体の膜中での保持安定性を検討し
た結果1週間の浸漬(こよるlhL (b py )i
+錯体モノマーおよびポリマーの脱離による減少(1%
以下、実験誤差内で一足)がほとんど見られず極めて安
定に膜中に保持された。乾燥状1漂では、内作製膜とも
、ルテニウム錯体は極めて安定に膜中に保持された。
When immersed in Nafion (membrane no. 125) kl for 0 min in an aqueous solution of 10mM Ru (bpy), the membrane turned orange, and as determined by spectrophotometry,
In addition, a polymer metal complex (4) synthesized by the reaction of a polypyridyl-containing polymer compound and IvfCppv)7 (C Patent, Application No. 1985-39859) containing a ruthenium complex of more than mM was retained in the membrane. If the complex is DMSO
, DM'F, so this solvent was used as the entire medium.
When the above Nafion'fc was immersed in a stock solvent of OmATm degrees (concentration per ruthenium unit), the same amount of ruthenium complex could be retained in the film. The ruthenium-containing complex Nafion membrane prepared by the above method was immersed in pure water, and the retention stability of the ruthenium complex in the membrane was investigated.
+Reduction due to elimination of complex monomers and polymers (1%
Within the experimental error, almost no particles were observed and the film was extremely stably retained in the film. In dry conditions, the ruthenium complex was retained extremely stably in both the internally prepared membranes and the membranes.

上記と同様の検討を電子受容性レドックス試剤でも行な
った。まず10mA(メチルビオロゲン水溶液にナフィ
オン膜番号125を10分間浸漬した後、水洗い50m
MNα2St04を含む溶液に浸漬し、ナフィオン膜に
保持された全てのメチルビオロゲンをモノカチオンラジ
カルに変え、分光光度法により、膜中に固定されたメチ
ルビオロゲンの濃度を測定すると1.0M以上であった
。実験はAτ気流下で行なった。またポリキシリルビオ
ロゲンやCB)のような高分子メチルビオロゲン(メチ
ルアルコール−DMSOの1:1重量比溶媒に溶かす)
やその誘導体を使用しても、Cツノ。
The same study as above was also conducted with electron-accepting redox reagents. First, 10 mA (Nafion membrane number 125 was immersed in methyl viologen aqueous solution for 10 minutes, then washed with water for 50 m
It was immersed in a solution containing MNα2St04 to convert all the methyl viologen retained in the Nafion membrane into monocation radicals, and the concentration of methyl viologen fixed in the membrane was measured by spectrophotometry, and it was found to be 1.0 M or more. . The experiment was conducted under Aτ airflow. Also, polymeric methyl viologens such as polyxylyl viologen and CB (dissolved in a 1:1 weight ratio solvent of methyl alcohol and DMSO)
Even if you use or its derivatives, C horn.

やはり該化合物をナフィオン++C川】に挿入保持でき
た。j]炉IIにおける該試剤の水溶液浸漬条件下での
保持安定性は、七ツマ−およびポリマーとも良好であっ
た1、たた17、ビ号ロゲン高分子の場合、挿入さJま
たビオロゲンの肪1中での分布は、モノマーのビオロゲ
ンと比べ均一ではなかった。
As expected, the compound could be inserted and retained in Nafion ++C River. j] The retention stability of the reagent under aqueous solution immersion conditions in Furnace II was good for both 7-mer and polymer. The distribution in 1 was not uniform compared to monomeric viologen.

LOmAIのFe(phen):+の水溶液中にナフィ
オン(膜番号125)を30分間浸漬した時、膜は赤だ
いだい色になり、分光光度法による測定によilは、2
mAl以上の鉄錯体が膜中に保持された。1作製さねた
含鉄錯体ナフィオン膜を純水中に浸漬し、錯体のj膜中
での保持安定付を棟側した結果、24時間の浸漬による
錯体の脱離6′Cよる減少は80〜90%であり、錯体
はそ」1はど安定に膜中に保持さJ9.なかった。
When Nafion (membrane number 125) was immersed in an aqueous solution of LOmAI Fe(phen):+ for 30 minutes, the membrane turned reddish-orange, and as measured by spectrophotometry, il was 2.
More than mAl of iron complex was retained in the membrane. 1. As a result of immersing the fabricated iron-containing complex Nafion membrane in pure water and stabilizing the retention of the complex in the membrane, the reduction due to desorption of the complex by 6'C after 24 hours of immersion was 80 ~ 90%, and the complex is stably retained in the membrane J9. There wasn't.

高分子膜側面へのηを気伝導性あるいは半伝導性物質な
どの薄膜の被着は、金属錯体や酸化還元試剤を高力子膜
へ挿入前後どちらでも行なうことができる。例えば、高
分子膜表面の片側をあらかじめ、真空蒸着法や無電解メ
ッキ法等で金属薄膜を被着し、その後肢膜中に金属錯体
を挿入する。
A thin film of gas-conducting or semi-conducting material can be deposited on the side surface of the polymer membrane either before or after the metal complex or redox agent is inserted into the high force membrane. For example, a thin metal film is previously deposited on one side of the polymer membrane surface by vacuum deposition, electroless plating, etc., and a metal complex is inserted into the hindlimb membrane.

あるいは、金属錯体等を挿入した後、膜側面をコーティ
ングする。(例えば、Ru02N膜作製の場合、膜をR
1LO4でコーティングすると膜表面物質が酸化さJl
、Ru0zの薄膜が被着する。ン一般に薄膜の厚さは、
光の透過性、高分子膜との被着性、伝導性、機械的強度
、膨張率等を考慮し、6(JJ−IQ’ 18Nカ用イ
ラf1 ルカ、1oo〜5oo7程度か良好な結果を与
える。
Alternatively, after inserting a metal complex or the like, the side surface of the membrane is coated. (For example, in the case of Ru02N film production, the film is
When coating with 1LO4, the film surface substance is oxidized Jl
, Ru0z thin film is deposited. In general, the thickness of a thin film is
Considering the light transmittance, adhesion to the polymer film, conductivity, mechanical strength, expansion coefficient, etc., a good result of about 6 give.

光照射の際、金属錯体や前記酸化還元試剤が保持された
膜中に微粒子の金属を分散保持させると光応答性を変化
させたり、増太賂せることが可能になる。次のような方
法により金属微粒子を膜に保持することができる。例え
は、高分子電M質膜fP tClニーやPttC弓−の
溶液に十分浸漬した後、該膜の一方の側面をA’ a、
 B11* C%開昭55−38934]やN2114
を含むアルカリ性溶液に浸漬し、金属4オンの還元反応
によりl) tおよびPd金属を膜底面およびその内部
に析出できる。。
During light irradiation, if fine particles of metal are dispersed and held in a film holding a metal complex or the redox reagent, it becomes possible to change or increase the photoresponsiveness. Metal fine particles can be retained on the film by the following method. For example, after fully immersing a polymer electrolyte membrane fPtCl knee or PttC bow in a solution, one side of the membrane is A'a,
B11* C% Kaisho 55-38934] and N2114
The membrane is immersed in an alkaline solution containing 1) t and Pd metal can be precipitated on the bottom surface and inside of the membrane by the reduction reaction of metal 4-one. .

このようにして調製した光機能化膜(以1[作用膜電イ
(という)を対極と導線で連結し、水中あるいは支持電
解剥を溶解した水や極性有機媒体例えばアルコール類、
アセトニトリル、デトラヒドロフラン、シオシーザン、
I)MF、11 M I) Aなどの溶液に浸漬し、作
用N極に光を照射すると光電流が観察される。極性有機
媒体を用いるときの支持車wC質としてはハロゲン化テ
トラアルキルアンモニウム塩、有機酸のアルカリ金属塩
などが用し・らjする。
The photo-functionalized film thus prepared (hereinafter referred to as 1) was connected to the counter electrode with a conductive wire, and the photofunctionalized film (hereinafter referred to as 1) was connected to the counter electrode with a conductive wire, and the photofunctionalized film (hereinafter referred to as 1) was connected to the counter electrode with a conductive wire, and the film was washed with water or a polar organic medium, such as alcohol, in which the supporting electrolytic strip was dissolved.
acetonitrile, detrahydrofuran, sioxin,
I) MF, 11 M I) When immersed in a solution such as A and irradiated with light to the working N electrode, a photocurrent is observed. When a polar organic medium is used, halogenated tetraalkylammonium salts, alkali metal salts of organic acids, etc. are used as the support material.

作用電極に照射する光源としては、例えばタ/クステ/
ランプ、螢光燈ランプ、巴・セノンランノ、り/クスデ
ンハロゲンランプ、太陽光などが挙げら」1石。
As a light source for irradiating the working electrode, for example,
Lamps, fluorescent lamps, tomoe/senonranno, ri/kusuden halogen lamps, sunlight, etc.''1 stone.

本発明の光応答性膜の応答機構は次のように説明される
。。
The response mechanism of the photoresponsive film of the present invention is explained as follows. .

高分子電解質膜中は一保持されたMCppy)、、  
は、光照射下でM(ppy)3  を生成し、適当な電
子受答性化合物(以下、1川と略す。〕が共存すると電
荷の移行が起こり、下記の反応様式に従ってA、1(7
)TIJ)”3”とA−を生成する。
MCppy was retained in the polymer electrolyte membrane),
generates M(ppy)3 under light irradiation, and when an appropriate electron-accepting compound (hereinafter abbreviated as 1kawa) coexists, charge transfer occurs, and A, 1(7
) TIJ) Generates "3" and A-.

湧常同−反応系を溶液中に共存づせても )でハされた
逆反応が極めて速いため、通常の電極ではこの溶液系で
光応答は観察されない。しかしながら、該反応系を高分
子電解質膜に保持させ、光電流を観1測するための導体
薄膜を被着させると、導体表面近傍での支配的な反応の
違いにより、導体との電子授受反応が起こり、カソード
光電流やアノード光電流が観察される。前記の反応様式
において、左側に導体薄膜が存在する時、アノード光電
#J″−観察される1、得ら牙するカッ−1・光電流は
、酸素が共存する条ff’ Iてij約2倍に増加する
。一方、アノード九霜、流ζ才酸素が共合(−(も影響
をほとんど受けない。0川は、生成するΔ−か速やかに
酸素酸化さJlてAに戻る結果、M(r>py)”、’
の薄膜近傍での蓄積量が増え、電極反応に有利に作用す
るためと考λ−られる。
Even if the normal reaction system coexists in a solution, the reverse reaction caused by ) is extremely fast, so no photoresponse is observed in this solution system using a normal electrode. However, when the reaction system is held in a polymer electrolyte membrane and a conductive thin film is attached for observing and measuring the photocurrent, the electron transfer reaction with the conductor occurs due to the difference in the dominant reaction near the conductor surface. occurs, and cathode photocurrent and anodic photocurrent are observed. In the above reaction mode, when there is a conductive thin film on the left side, the anode photocurrent #J''-1 is observed, and the resulting photocurrent is approximately 2 On the other hand, at the anode, the flow ζ is almost unaffected. (r>py)",'
This is thought to be because the amount of λ accumulated near the thin film increases, which has an advantageous effect on the electrode reaction.

上記光応答性膜中に白金などの微粒子の金属を保持させ
るとカソード光電流、アノ−I・光重、流ともに約10
倍に増加する1、こi′+は、有効電極面積の増加と保
持金属の反応促進効果によると考ズることができる。
When fine particles of metal such as platinum are retained in the above-mentioned photoresponsive film, the cathode photocurrent, ano-I/light gravity, and current are both about 10
The doubling of 1, i'+ can be considered to be due to the increase in the effective electrode area and the reaction promoting effect of the holding metal.

一般に、光応答性を得る温度条件は約O℃〜80℃の範
囲から選は第1るが通常は室温でよい。本発明の蓋LE
、、答性高分子電解質膜は、本来光応答性のない高分子
膜杓料に光応答性が容易に付与できるので、工業上極め
て価佃が高い1、本発明の光機能化膜は光センサー、光
重4ワ5、光による水面層膜半導体素子、全く新しい種
類の光ダイオードとしての利用など応用上極めて価値が
高い。以下実施例をもって本発明を更に詳細に説明する
Generally, the temperature conditions for obtaining photoresponsiveness are selected from the range of about 0° C. to 80° C., but usually room temperature is sufficient. Lid LE of the present invention
,, The responsive polymer electrolyte membrane has extremely high industrial value because it can easily impart photoresponsiveness to polymer membranes that are not originally photoresponsive1.The photofunctionalized membrane of the present invention It is extremely valuable in applications such as sensors, light weight 4W5, light-based water surface layer film semiconductor devices, and use as a completely new type of photodiode. The present invention will be explained in more detail with reference to Examples below.

実施例1゜ カフ1オ/(膜番号125)を1.0Mの過塩素酸で洗
浄した。次に1.0& #αOH水溶液で約1時間煮沸
後、十分水洗した。この膜をRu(bpv)七の10m
&水溶液に浸漬すると、ナフィメノ膜中にルテニウム錯
体が保持さJする。
Example 1 Cuff 1/(membrane number 125) was washed with 1.0M perchloric acid. Next, it was boiled in a 1.0&#αOH aqueous solution for about 1 hour, and then thoroughly washed with water. This film is Ru (bpv) 7.
& When immersed in an aqueous solution, the ruthenium complex is retained in the Naphimeno membrane.

この膜を水洗し乾燥後、膜の片側表面をRub<でコー
ディングし、Ru0z薄膜を被覆する。白金線で接触を
とったこの膜を、10rr+Jfメチルビオロゲ/とC
F3CO()Naを02M含むpJllの水溶液に浸漬
し、対極として白金網、基準電極とし食塩飽和カロメル
電極(以下、S S (、’ Eと略す)を用い、室温
トで、500ワツトキセノ/ランプからの光を、RuO
2薄膜の反対側から照射すると、−0,3ボルト対5S
CHの電位で約10μA / cdlのカソード光電流
が生じた。+0.8ボルト対5SCEの電位で約160
μA /artのアノード光電流が生じた。実験はアル
ゴン雰囲気下で行なわ]′省だ。
After washing this membrane with water and drying, one surface of the membrane is coated with Rub< and coated with a Ru0z thin film. This membrane, which was in contact with a platinum wire, was heated with 10rr+Jf methylviologe/and C
It was immersed in an aqueous solution of pJll containing 02M of F3CO()Na, and using a platinum mesh as a counter electrode and a salt-saturated calomel electrode (hereinafter abbreviated as 'E') as a reference electrode, at room temperature, from 500 W xeno/lamp. The light of RuO
2 When irradiated from opposite sides of the thin film, -0.3 volts vs. 5S
A cathodic photocurrent of approximately 10 μA/cdl was generated at the potential of CH. Approximately 160 at a potential of +0.8 volts vs. 5SCE
An anode photocurrent of μA/art was generated. The experiment was conducted under an argon atmosphere.

実施例Z 実施例1で特製した含ルテニウム錯体高分子策解質膜を
メチルビオロゲン(1、1’−ジメチル−4,4′−ジ
ビリジンニ塩化物、以下IMV  Jと略#’ ) 1
0 mMに10分間浸漬した。水洗後乾燥し、」二記同
様RtLO2薄膜を被覆した。
Example Z The ruthenium-containing complex polymer solution membrane specially produced in Example 1 was treated with methyl viologen (1,1'-dimethyl-4,4'-dipyridine dichloride, hereinafter abbreviated as IMV J and #') 1
0 mM for 10 minutes. After washing with water, it was dried and coated with an RtLO2 thin film as described in Section 2.

この膜をCP’3COONαを0.2M含む、H7の水
溶液に浸漬し、室温下で500ワツトキセノンランプか
らの光をRu 02薄膜の反対側から照射すると−0,
3ボルト対5.5 CEの電位で約15μA/1nfl
のカソード光電流、+0.8ボルト対S S C’ E
で約160μA / ctt4のアノード光電流が生じ
た。
When this film was immersed in an aqueous H7 solution containing 0.2 M of CP'3COONα and irradiated with light from a 500 Watt xenon lamp from the opposite side of the Ru02 thin film at room temperature, -0,
Approximately 15 μA/1 nfl at a potential of 3 volts vs. 5.5 CE
Cathode photocurrent of +0.8 volts vs. S S C' E
An anodic photocurrent of approximately 160 μA/ctt4 was generated.

実験はアルゴン雰囲気下で行なわれた。同様の実験を、
酸素飽オII(1,2+I/  (,1”3COOA’
a水溶71v、でイーfなつに1時、カン−1・X1流
は約20チバーセノト増加したが、アノード光電流はほ
とんど変わらす−・定であった。
The experiment was conducted under an argon atmosphere. A similar experiment,
Oxygen saturation II (1,2+I/ (,1"3COOA'
When the aqueous solution was 71 V, the Kan-1.

実施例& 実施例1と同様に洗浄したナフィオン膜を、異積溶液を
含む二室の境界に位置させる。一方の室には20mA/
112PtC16水溶液を入れ、残る一方には、0.5
MのN a、BH4のアルカリ水溶液を入」1.る3、
室温で士数分後、白金はH4F t C16溶液を含む
ナフィオン膜側に析出し、はじめる、。
Examples & A Nafion membrane cleaned as in Example 1 is placed at the boundary of two chambers containing the heterovolume solution. One room has 20mA/
Pour the 112PtC16 aqueous solution, and add 0.5 to the remaining one.
Add an alkaline aqueous solution of M Na and BH4.1. 3,
After several minutes at room temperature, platinum begins to precipitate onto the side of the Nafion membrane containing the H4FtC16 solution.

約1時間この状態を放置した後、膜を十分水洗いする。After leaving this state for about 1 hour, the membrane was thoroughly washed with water.

次に、このIl*に実1山例2と同様の取り扱いを行な
い、Ru(b7NI)”3+およびAlF2謄この膜中
に保持させる。次に、白金が析出していない他の一方の
膜111而をRu O4で:T−テインクし、RtL(
J2薄膜を被着する。Rqb O2薄膜電極として白金
線でリードをとった。こうしで作製された高分子電解質
膜をQ、2J/ (1’ FsCOON a (F/7
7 )の水溶液に浸漬し、室温下で500ワントキセノ
ンラ/プからの光を白金薄膜側から照射すると、−0,
3V対5SCEの電位で0.1mA/crlrのカソー
ド光電流、+0.8ボルト対S 、5 CEでL5mA
/cy/iのアノード光電流が生じた3、実験はアルゴ
ン雰囲気下で行なわれた。同様の実験を酸素雰囲気下で
行なった時、カソード光電流は約2倍に増加した。
Next, this Il* is treated in the same manner as in Example 2, and Ru(b7NI)"3+ and AlF2 are retained in this film. Next, the other film 111 on which platinum is not precipitated is Then, with Ru O4: T-tain, RtL(
Deposit J2 thin film. A lead was taken with a platinum wire as the Rqb O2 thin film electrode. Q, 2J/ (1' FsCOON a (F/7
When the platinum thin film is immersed in an aqueous solution of 7) and irradiated with light from a 500 xenon lamp at room temperature, -0,
Cathode photocurrent of 0.1 mA/crlr at potential of 3V vs. 5SCE, +0.8V vs. S, L5mA at 5CE
An anode photocurrent of /cy/i was generated3, and the experiments were performed under an argon atmosphere. When a similar experiment was performed under an oxygen atmosphere, the cathode photocurrent increased approximately twice.

実施例4 実施例1と同様に洗浄したナフィオン膜を、LOmMF
e(phen)3 を含む溶液に30分間浸漬し、膜中
に鉄錯体を保持させる。次に、実施例2と同様の取り扱
いによりMV2+を保持させる。こうして調製さiIた
膜の光応答性を実施例2と同様の方法により観察し、た
。−0,3ボルト対5SCEの電位で約3μA/−のカ
ソード光電流、+0.8ボルト対5SCEで約20μA
/dのアノード光電流が観察さ、+′また。実験はアル
ゴン雰囲気下で行なわれた。
Example 4 A Nafion membrane cleaned in the same manner as in Example 1 was treated with LOmMF.
The film is immersed in a solution containing e(phen)3 for 30 minutes to retain the iron complex in the film. Next, MV2+ is maintained by the same handling as in Example 2. The photoresponsiveness of the II film thus prepared was observed in the same manner as in Example 2. - Cathode photocurrent of about 3 μA/- at potential of 0.3 volts versus 5SCE, about 20 μA at +0.8 volts versus 5SCE
An anode photocurrent of /d is observed, +' also. The experiment was conducted under an argon atmosphere.

実施例& 実施例1と同様に洗浄したナフィオン膜を、10mM(
ルテニウム単位濃度)を含む式(,4)のルテニウム高
分子錯体のDMSO溶液に約1時間浸漬きせた。この膜
を純DMSOで洗浄後人に10m#(ビオロゲン単位濃
度)を含むポリキシリルビオロゲンの水溶液に約1時間
浸漬し、含ルテニウム錯体ポリマーおよびビオロケンボ
リマー高分子電解質膜を作製した。この腰元応答性に関
する実験を実施例2と同様に行った結果、−〇、3ボル
ト対5SCEで約5μA / cdのカソード光電流、
+0.8ボルト対5SCEで約50μA/e、71のア
ノード光電流が生じた、。
Examples & Nafion membranes washed in the same manner as in Example 1 were treated with 10mM (
It was immersed for about 1 hour in a DMSO solution of a ruthenium polymer complex of the formula (4) containing (ruthenium unit concentration). After washing this membrane with pure DMSO, it was immersed in an aqueous solution of polyxylyl viologen containing 10 m# (viologen unit concentration) for about 1 hour to produce a ruthenium-containing complex polymer and violoken polymer polymer electrolyte membrane. An experiment regarding this hip response was conducted in the same manner as in Example 2, and as a result, a cathode photocurrent of about 5 μA/cd at -0, 3 volts vs. 5 SCE,
At +0.8 volts vs. 5SCE an anode photocurrent of approximately 50 μA/e, 71, was produced.

実施例0 ポリキシリルビオロゲンのかわりに、式(B)のビオロ
ゲンポリマーをナフィオン膜に保持した膜で実施例5と
同様の実験を行なった。この場合、ビオロゲンポリマー
溶液とじでメチルアルコールとDMSOとの1:1(重
量比)混合溶媒が使用さJIた。同様に光照射を行なっ
たところ、−〇、3ボルト;tJ、5scEで約3μA
 / caのカソード光電流、十0.8ボルト対5.5
6Eで約20μA/洲のアノード光電流が生じた。
Example 0 An experiment similar to Example 5 was conducted using a membrane in which the viologen polymer of formula (B) was retained in the Nafion membrane instead of polyxylyl viologen. In this case, a 1:1 (weight ratio) mixed solvent of methyl alcohol and DMSO was used to prepare the viologen polymer solution. When irradiated with light in the same way, -0, 3 volts; tJ, 5 scE, approximately 3 μA
Cathode photocurrent in /ca, 5.5 vs. 0.8 volts
At 6E, an anode photocurrent of approximately 20 μA/s occurred.

実施例7゜ ス・・ワタ−法で約100A前後(光透過率45%)の
白@薄膜をナフィオン(膜番号120)の片(111j
表面に作製(−だ。該膜中に実施例1および2と同様の
方法により、ルテニウム錯体およびメチルビオロゲ/を
保持させた。白金薄膜ヲコーティングしていない他の一
方の膜片側方向から実施例1と同様の方法により光を照
射した時、−0,3ボルト対5SCEの電位で約0.5
〜lμA/−のカソード光電流が生シ、+9.3ホルト
対sS CE(7)N位テ約0.1〜0.3μA/ct
&のアノード光電流が生じた、。
Example 7: A white thin film of about 100A (light transmittance 45%) was prepared using the water method using a piece of Nafion (film number 120) (111j).
A ruthenium complex and methyl biologe were prepared on the surface (-) by the same method as in Examples 1 and 2 to hold the ruthenium complex and methyl biologe in the film.Example 1 When irradiated with light in the same manner as above, the potential of -0.3 volts versus 5SCE is approximately 0.5
The cathode photocurrent of ~lμA/- is generated, +9.3 Holt vs.
An anode photocurrent of &.

弁理士 川 瀬 良 治″、1 373−Patent attorney Ryoji Kawase'', 1 373-

Claims (1)

【特許請求の範囲】 (1)ポリアニオン型高分子電解質膜中に、周期律表第
■族金属のトリス(ポリピリジル)金属(II)錯体を
保持せしめたことを特徴とする光応答性高分子耐解質膜
。 (2)ポリアニオン型高分子邂解質膜中ζこ、周期律表
第■族金属のトリス(ポリピリジル)金属(ID錯体と
酸化還元試剤とを保持せしめたこと全特徴とする光応答
性高分子電解質膜。 (8)周期律表第v■族金属のトリス(ポリピリジル)
金属(II)錯体と酸化還元試剤とが保持されさらに要
すれば金属微粒子が保持されたポリアニオン型高分子電
解質膜とその少なくとも片面に被着された電気伝導性も
しくは半伝導性物質の薄膜とから成る光応答性高分子耐
解質膜。
[Scope of Claims] (1) A photoresponsive polymer electrolyte membrane characterized by retaining a tris(polypyridyl) metal (II) complex of Group I metal of the periodic table in a polyanionic polymer electrolyte membrane. desolate membrane. (2) A photoresponsive polymer characterized by retaining tris (polypyridyl) metal (ID complex and redox reagent), which is a metal of group Ⅰ of the periodic table, in the polyanion type polymer electrolyte film. Electrolyte membrane. (8) Tris (polypyridyl), a group V■ metal of the periodic table.
A polyanionic polymer electrolyte membrane that retains a metal (II) complex and a redox reagent and, if necessary, metal fine particles, and a thin film of an electrically conductive or semiconductive substance deposited on at least one side of the membrane. A photoresponsive polymer decomposition-resistant membrane.
JP57154582A 1982-09-07 1982-09-07 Photoresponsive high-polymer electrolyte film Pending JPS5944773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154582A JPS5944773A (en) 1982-09-07 1982-09-07 Photoresponsive high-polymer electrolyte film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154582A JPS5944773A (en) 1982-09-07 1982-09-07 Photoresponsive high-polymer electrolyte film

Publications (1)

Publication Number Publication Date
JPS5944773A true JPS5944773A (en) 1984-03-13

Family

ID=15587356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154582A Pending JPS5944773A (en) 1982-09-07 1982-09-07 Photoresponsive high-polymer electrolyte film

Country Status (1)

Country Link
JP (1) JPS5944773A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189877A (en) * 1984-03-09 1985-09-27 Rikagaku Kenkyusho Polymer metal complex film covered photo response electrode
US4555477A (en) * 1985-01-02 1985-11-26 Eastman Kodak Company Photographic element and process utilizing metal complex color masking dyes
US4555478A (en) * 1985-01-02 1985-11-26 Eastman Kodak Company Photographic element and process for providing metal complex color images
US4557998A (en) * 1985-01-02 1985-12-10 Eastman Kodak Company Colorless ligand-releasing monomers and polymers and their use to provide dyes with metal ions
US4568633A (en) * 1985-01-02 1986-02-04 Eastman Kodak Company Photographic elements and processes utilizing imagewise reduction of ferric ions
US4680356A (en) * 1985-01-02 1987-07-14 Eastman Kodak Company Colorless ligand-releasing monomers and polymers and their use to provide dyes with metal ions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189877A (en) * 1984-03-09 1985-09-27 Rikagaku Kenkyusho Polymer metal complex film covered photo response electrode
JPH0564435B2 (en) * 1984-03-09 1993-09-14 Rikagaku Kenkyusho
US4555477A (en) * 1985-01-02 1985-11-26 Eastman Kodak Company Photographic element and process utilizing metal complex color masking dyes
US4555478A (en) * 1985-01-02 1985-11-26 Eastman Kodak Company Photographic element and process for providing metal complex color images
US4557998A (en) * 1985-01-02 1985-12-10 Eastman Kodak Company Colorless ligand-releasing monomers and polymers and their use to provide dyes with metal ions
US4568633A (en) * 1985-01-02 1986-02-04 Eastman Kodak Company Photographic elements and processes utilizing imagewise reduction of ferric ions
US4680356A (en) * 1985-01-02 1987-07-14 Eastman Kodak Company Colorless ligand-releasing monomers and polymers and their use to provide dyes with metal ions

Similar Documents

Publication Publication Date Title
JP2997773B1 (en) Metal complexes, oxide semiconductor electrodes and solar cells useful as sensitizers
US6664462B2 (en) Metal complex having β-diketonate, process for production thereof, photoelectric conversion element, and photochemical cell
US6639073B2 (en) Ruthenium complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
JP3945038B2 (en) Dye-sensitized solar cell
WO2008109467A1 (en) Electrically conducting porphyrin and porphyrin-fullerene electropolymers
Bae et al. Modulating Charge Separation Efficiency of Water Oxidation Photoanodes with Polyelectrolyte‐Assembled Interfacial Dipole Layers
TW201840737A (en) Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar bettery
JP3849005B2 (en) Platinum complexes useful as sensitizers
US8440905B2 (en) Copper complex dye sensitized solar cell
JPS5944773A (en) Photoresponsive high-polymer electrolyte film
JP5181550B2 (en) Photoelectric conversion element
EP2116534A1 (en) Process for production of binuclear metal complex
Yang et al. A 3D electropolymerized thin film based on a thiophene-functionalized Ru (II) complex: Electrochemical and photoelectrochemical insights
Nasr-Esfahani et al. Fabrication and characterization of a new dye sensitized solar cell with a new Schiff base cobalt complex as a redox mediator
Xue et al. pH-induced photocurrent switching based on a highly stable drop-casting film of imidazole moiety-containing dinuclear Ru (II) Complex
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
WO2005100484A1 (en) Dye and dye-sensitized solar cell
Yin et al. Oxidative electropolymerization films of a styrene-appending ruthenium complex with highly performed electrochemical, solar photoelectric conversion and photoelectrochemical oxygen reduction properties
JP2002063949A (en) Dye sensitized solar battery
Vishwanath et al. Chemically immobilized triazine based CuIIS3C3N3 metallopolymer on copper as a photocathode for photoelectrochemical hydrogen evolution
JP2009093909A (en) Dye-sensitized photoelectric conversion element, and manufacturing method thereof
CN112441992B (en) Nitrogen-containing heterocyclic compound and soluble porous polymer
JPH0324747B2 (en)
JP5206010B2 (en) Dye-sensitized photoelectric conversion element and solar cell
KR20110013372A (en) Novel photosensitizer and photovoltaic element