JPS60189857A - Energy analyzer in electron microscope or the like - Google Patents

Energy analyzer in electron microscope or the like

Info

Publication number
JPS60189857A
JPS60189857A JP59045777A JP4577784A JPS60189857A JP S60189857 A JPS60189857 A JP S60189857A JP 59045777 A JP59045777 A JP 59045777A JP 4577784 A JP4577784 A JP 4577784A JP S60189857 A JPS60189857 A JP S60189857A
Authority
JP
Japan
Prior art keywords
circuit
lens
voltage signal
energy
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59045777A
Other languages
Japanese (ja)
Inventor
Tetsuo Oikawa
哲夫 及川
Kazunari Nakanishi
中西 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP59045777A priority Critical patent/JPS60189857A/en
Publication of JPS60189857A publication Critical patent/JPS60189857A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To invariably obtain a high-resolution energy spectrum or an electron microscope image by switching the exciting currents of a lens in response to the switching of energies. CONSTITUTION:A voltage signal proportional to the main exciting current Iso from a main power supply 10a and a voltage signal proportional to the sweep current Is from a sweep power supply 10b are fed to a dividing circuit 18. A voltage signal from the circuit 18 is fed to a multiplying circuit 19. A reference signal generating circuit 20 generates a reference voltage signal in response to the exciting current of an incident lens 16 when the energy of an incident electron beam is Eo. This reference voltage signal is fed to an adding circuit 21 to be added to the output voltage signal of the circuit 19, and an outgoing lens 16 is excited in proportion to the output voltage of the adding circuit 21. Accordingly, a high-resolution energy spectrum or an electron microspcope image can be invariably obtained.

Description

【発明の詳細な説明】 本発明は試1′Nlを透過した電子線のエネルギーを分
析したり、エネルギーフィルターされた電子線に某づい
て試料像を表示するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for analyzing the energy of an electron beam transmitted through sample 1'Nl and for displaying a sample image based on an energy-filtered electron beam.

第1図IJ、従来の電子顕微鏡等にa5りるエネルギー
分析装「ジを示りIこめのもので、電子銃1よりの電子
線2を集束し〉ズ系3にJ、り試料4に照QJし、試1
31 /Iを)聞過した電子線2を対物レンズ5゜中間
レンズ6、投影レンズ7を介してスペク1〜[」メータ
ー8に導さ、このスペク1〜1」メーター8において電
子線をエネルギーに応じて分散して、出用スリッh 1
 !:i土に−(Φの帯スペクトルを形成り−るように
し−(いる。10aはスペクl−1:1メーター8の主
コイル11ε1に主電流を供給彩るための主電源であり
、10bはエネルギー品引用コイル11bに1!l)明
電流を供給するための揺引電源である。
Figure 1 IJ is an energy analyzer that shows the energy analysis device attached to a conventional electron microscope, etc., and focuses the electron beam 2 from the electron gun 1 to the sample 4. Teru QJ, trial 1
31 /I) is guided through the objective lens 5, the intermediate lens 6, and the projection lens 7 to the spectrum 1~['' meter 8, where the electron beam is energized. Distributed according to the issue, 1
! 10a is the main power supply for supplying the main current to the main coil 11ε1 of the spec l-1:1 meter 8, and 10b is This is a swinging power supply for supplying 1!l) bright current to the energy supply coil 11b.

この揺引電Δj;+ 10 bよりjll引電流を発生
さけ−(スベク1−1」メーター8のエネルギー1,1
引を行ない、このL%引に伴う検出器13よりの出力信
月を記録A112に供給づ−るど共に、記録計12をこ
のエネルギーに同期しU IM引すれば、エネル1!−
スベクl〜ルが表示できる。尚、9は入用絞りであり、
14は増幅器である。ざC1このような装置にJ5い°
Cは、エネルギー分散能δはスペクト[1メーターのL
ネルギー分子ik能1)と、出用絞りの幅しによつ(以
]ミの関係式にJ、り決められてしまう。
From this oscillating current Δj;
If the output signal from the detector 13 associated with this L% discount is supplied to the recorder A112, and the recorder 12 is synchronized with this energy and UIM is subtracted, energy 1! −
Subekle can be displayed. In addition, 9 is the required aperture,
14 is an amplifier. C1 J5° to such a device
C is the energy dispersion power δ is the spectrum [L of 1 meter
J is determined by the following relational expression depending on the energy molecule ik function 1) and the width of the output aperture.

δ−=1./D ・・パ(1) ところか、通常t LL C1械的精度に1:Nづく制
限から1μrTl稈石が限庶である1、−め、δはDに
よって一義的に決定されるのが実情であり。従って、D
が小さく/、する高加速電1t 11、’lや小型のス
ベク1−11メータを使用づる時には、スペクトロメー
ター6の出1.11:前記分散能l)を増大さlるため
の出射レンズ16’aHut″Jでいる。ところが、こ
のような従来の装置にJ3いては、出射レンズ16の励
!&電流は同定され(いるため、スペクトロメーターに
よって選択りるエネルギーが変化J−ると、帯スペクト
ル像を形成するための電子を出射スリン1−15上に)
A−カスし得ない場合が生じ、高分解能のスペクトルな
+4ることはできなかった。
δ-=1. /D...Pa (1) However, 1μrTl culm stone is the limit due to the 1:N limit on the mechanical precision of t LL C1. 1, -me, δ is uniquely determined by D. That's the reality. Therefore, D
When using a high-acceleration electric current 1t11,'l or a small Svek 1-11 meter with a small / 'aHut''J. However, in such a conventional device, the excitation and current of the exit lens 16 are identified (therefore, when the energy selected by the spectrometer changes, the band (onto Surin 1-15 which emits electrons to form a spectral image)
There were cases in which A-resolution was not possible, and it was not possible to obtain a high-resolution spectrum.

叉、第2図に示すにうに電子顕微鏡像に1を形成−4る
電子線をスペクトロメーター8に導き、特定のエネルギ
ーの電子のみを〕パ択し、この選択された電子に基づい
て形成される電子顕微鏡像に2を出11Jレンズ16に
より拡大し゛C蛍光板17上に投影して電子顕微鏡像K
 3をISるJ、うにした装置t゛1もあるが、このよ
うな装置においても、出射レンズ16の励磁電流が固定
されていたため、掃引電流10bにより設定されるエネ
ルギーによっては出射レンズ1Gは像に2を蛍光板17
上に正6Fに結像し得ない場合もあった。
As shown in Figure 2, the electron beam that forms 1-4 in the electron microscope image is guided into the spectrometer 8, and only electrons with a specific energy are selected. The electron microscope image 11J is magnified by the lens 16 and projected onto the fluorescent screen 17 to produce the electron microscope image K.
There is also a device t1 in which the excitation current of the exit lens 16 is fixed, so depending on the energy set by the sweep current 10b, the exit lens 1G is 2 to fluorescent screen 17
In some cases, it was not possible to form an image at 6F.

本発明はこのJ、うな従来の欠点を解決して、高分解能
のスペクトル又は電子顕微鏡像を得ることのできる電子
顕微鏡等にお【ノるエネルギー分析装置を提供りること
を目的としている。
It is an object of the present invention to solve these conventional drawbacks and provide an energy analysis device for an electron microscope or the like that can obtain high-resolution spectra or electron microscope images.

以上、本発明にa3いて基本となっ−(いる考えを・説
明り−る。
The above explains the basic idea of the present invention.

電子の負が及び電荷句を各々111及びe、スペクトロ
メーター内における磁界の強さをBと1れば、スペク1
−ロメーター内で速頂Vを右1Jる電子のilA心半径
rは r= (mv)/ (eB) ・ (2)C表わされる
。電子のエネルギーeど速度VのIJI係は c2/(mv)=− c/ (2mo V (1+9.787xlO−7V)
 ) −(3>とイ「る。但し、mOは電子の静止質量
、■は加速重重である。、史にスペクトロメーター内の
磁界の強さBどくのヨI−励F1電流1soどの関係は
、/lOをジ°1空の透磁率、1−をスペクトロメータ
ーのvA補極間距島゛1.]を励磁のターン数とすると
1’3 =(tto / L−) I soT ・・・
(4)CJうえられる。(2>、(3)、(4)式より
相丼 λ・j論抽正を名にλ(した電子のエネルギー[はスベ
ク1− I−1メーターの前記主励磁電流1soを用い
゛(7 −C(μo r−1−1so) 2/ (2mo L2
)−(5)と表ね−りことができる。さて、入射電子の
エネルギーがしく) ぐ(S・)る場合に励磁電流11
oで使用している電子レンズにおいて、入射電子のエネ
ルギーがΔ1−だ【プ羽化したときの色収差Δ(JはΔ
11を励磁電流の変化量、G[を軸上色収差係数、Cm
を18率色収差係数、Crを回転色収差係数、αを電子
の聞き角、LJaを電子軌道の試11面における中心か
らの距離とすれば、 で与えられるから、レンズ電流を ΔE/Fo=2 (Ilo−Tlo)/Ilo ・・・
(7)を満足するにうな電流11に変化させれば、色収
差が生じないことになる。いま、スペクトロメーターの
前記作用電源にり供給される(111引電流をISOと
寸れぽ、(5)式より ΔE/Eo = (Is 2− lSO2) / l5
o2・・・(8)であるから、(7)、(8)式より色
収差を生じないための前記レンズ励磁電流■1は If = Ilo+(Is’2 − l5o2 )/ 
(21so2)・・・(9) で与えられることが分る。従って、スペクトロメーター
の主励磁電流ISOと掃引電流ISを検出して、それに
基づいて(9)式で〜えられるレンズ電流11をレンズ
に供給すれば、どのエネルギーを選択した際に61常に
正確にフォーカスされた像を得ることができる。
If the negative and charge terms of the electron are 111 and e, respectively, and the strength of the magnetic field in the spectrometer is B, then the spectrum is 1.
- The ilA core radius r of an electron moving 1J to the right of the velocity peak V in the rometer is expressed as r= (mv)/(eB) (2)C. The IJI ratio of electron energy e and velocity V is c2/(mv) = - c/ (2mo V (1+9.787xlO-7V)
) - (3> and I'. However, mO is the rest mass of the electron, and ■ is the acceleration mass. What is the relationship between the magnetic field strength B in the spectrometer, I - excitation F1 current 1so? , /lO is the magnetic permeability of di°1, and 1- is the vA interpole distance island of the spectrometer ゛1.] is the number of excitation turns, then 1'3 = (tto / L-) IsoT...
(4) CJ is accepted. From equations (2>, (3), and (4), the energy of the electron λ() is calculated by using the above-mentioned main excitation current 1so of the Svek 1-I-1 meter in the name of the Adon λ・j theory abstraction. -C(μor-1-1so) 2/ (2mo L2
)-(5). Now, when the energy of the incident electron changes (S), the excitation current 11
In the electron lens used at
11 is the amount of change in excitation current, G[ is the longitudinal chromatic aberration coefficient, Cm
If is the 18th chromatic aberration coefficient, Cr is the rotational chromatic aberration coefficient, α is the listening angle of the electron, and LJa is the distance from the center of the electron orbit in the 11th plane, then the lens current is given by ΔE/Fo=2 ( Ilo-Tlo)/Ilo...
If the current 11 is changed to a value that satisfies (7), no chromatic aberration will occur. Now, if the current (111) supplied by the working power source of the spectrometer is equal to ISO, from equation (5), ΔE/Eo = (Is 2 - lSO2) / l5
o2... (8) Therefore, from formulas (7) and (8), the lens excitation current (1) to prevent chromatic aberration is If = Ilo + (Is'2 - l5o2)/
(21so2)...(9) It can be seen that it is given by the following. Therefore, by detecting the main excitation current ISO and sweep current IS of the spectrometer and supplying the lens current 11 calculated by equation (9) based on them to the lens, 61 will always be accurate no matter which energy is selected. A focused image can be obtained.

本発明は電子銃と、該電子銃よりの電子線を隼中しで試
′A:1に照a=+りるための手段と、該試わ1を透過
しlこ電r f’i! ’i 、1ネルA゛−分散させ
るためのスペク1〜(」メーターと、該スベク1〜ロメ
ーターにJ:つ−’C’r5X択される電子のエネルギ
ーを切換えるための手段と、該スベクI−ロメーターの
後段に配置されスベクI−ル像又は該スベク1〜ロメー
ターにJ、って1式111!された電子線に基づく像を
拡大づるためのレンズどを備えた装;uにおいて、該レ
ンズの励磁電流を該切換え手段にJ、るエネルギーの切
換えに連ωJして切換えるための手段を具備し′Cいる
ことを1JI徴どしている。
The present invention provides an electron gun, a means for transmitting an electron beam from the electron gun into a sample A: 1 in the air, and a means for transmitting an electron beam through the sample 1 and transmitting an electron beam rf'i. ! 'i, 1 spectral A'-meter for dispersing; a means for switching the energy of electrons to be selected for the spectral meter; - a device equipped with a lens etc. disposed after the chromometer and for enlarging the subekir image or the image based on the electron beam generated by the subek 1~rometer; The switching means is provided with means for switching the excitation current of the lens in conjunction with the switching of the energy.

以1・、−L ’rd’r シ/、: 、を二えにj、
(づく本発明の実施例を計jホする。
1., -L 'rd'r shi/, : , then j,
(The following is an example of the present invention.

本発明の一実施例を示づ第33図において、第1図と同
一の471.成要A・;に対しては同一番目をf]シて
いる。18は?l’l ”γ回路ひあり、この割算回路
18にLll電電7ビQ a J、りの主励磁電流1s
oに比例しlこ電IJ(i尼ど(1吊引電源10b、l
、りの作用電流TSに比例した電圧45号が供給されて
いる。この割算同一’lI 1 Bよりの電)1信号は
110)回路19に供給されでいる。20は基準信号発
生回路であり、この基準信号発生回路20は八〇・1す
る電子線のエネルギーが[0である場合の入用レンズ1
6の励磁711流11oに対応した基準電圧信号を発生
する。この導;j t%1.電fix(菖シー〕は加算
回路2゛1に供給されており、この加算回路21におい
て掛算回路19の出力電圧イム号と加C)され、この加
幹[」路2′1の出力電圧に比例して出q4レンズ16
が励磁されるようになっている。
In FIG. 33 showing an embodiment of the present invention, 471. For component A;, the same number is set f]. What about 18? l'l "γ circuit is present, this divider circuit 18 has a main excitation current of 1s
Proportional to o
A voltage No. 45 proportional to the working current TS of , , and ri is supplied. The voltage 1 signal from this divided `lI 1 B is supplied to the 110) circuit 19. Reference numeral 20 denotes a reference signal generation circuit, and this reference signal generation circuit 20 is used to generate the lens 1 when the energy of the electron beam equal to 80.1 is [0].
A reference voltage signal corresponding to the excitation 711 flow 11o of No. 6 is generated. This lead; j t%1. The electric current fix is supplied to the adder circuit 2'1, where it is added to the output voltage im of the multiplier circuit 19, and the output voltage of the adder circuit 2'1 is proportional output q4 lens 16
is now energized.

このような411.H成に(13いて、14)相電源1
0 bを稼動さばて(吊用用コイル11bに供給する励
磁電流Isをj;1)引りれば、出用スリブ+−15に
J、す)選択される電子のエネルギーが1.■引される
。さて、このとき割偉回路18の出力信号はIs/IS
Oに比例したものとなるため、掛算回路19にはIs/
Isoに比例した電圧信号と、基準信号発生回路20よ
りの励磁電流■toに比例した電圧信号が供給されるた
め、掛τ)回路19J、りの出力はllo・IS/IS
Oに比例したものとなる。一方加障回路21には)、目
へて、信Y〕発生回路20J、すlloに比例しノこ電
月(iニジ−tか供給され(いるため、11+1 CT
h回路21の出カイ、10はl 1o−i 1 lo・
ls、/lsoに比例したしのどなり。従っ(、回路定
数を設定りることにJ、す、;I QJレンズ10に流
れる励磁電流11をl 1 = l to−+1to・
Is/Iso ・・・(10)とりることか(−さる。
411 like this. In H configuration (13 and 14) phase power supply 1
The energy of the selected electron is 1. ■It is pulled. Now, at this time, the output signal of the dividing circuit 18 is Is/IS
Since it is proportional to O, the multiplication circuit 19 has Is/
Since a voltage signal proportional to Iso and a voltage signal proportional to excitation current ■to from the reference signal generation circuit 20 are supplied, the output of the multiplication τ) circuit 19J is llo IS/IS.
It is proportional to O. On the other hand, the interference circuit 21 is supplied with a signal Y in proportion to the signal Y generation circuit 20J.
The output of h circuit 21, 10 is l 1o-i 1 lo・
A roar proportional to ls, /lso. Therefore, to set the circuit constants, the excitation current 11 flowing through the QJ lens 10 is expressed as l 1 = l to−+1to・
Is/Iso...(10) To take? (-Saru.

どころC1前記(9)式の右辺は、Isが小さい場合に
は、略110+110・is/lsoとなるから、この
ような励磁電流を出(IJレンズ16に供給りることに
J、す、エネルギーの雇用を行むっても、常に帯スペク
トル像を出射スリット15十に結像り゛ることができる
。従って、1’:i分解能のスペクトルを記録計12に
表示づることがでさる。
On the contrary, the right side of the above equation (9) becomes approximately 110+110・is/lso when Is is small. Even if the output slit 150 is employed, a band spectral image can always be focused on the exit slit 150. Therefore, a spectrum with a resolution of 1':i can be displayed on the recorder 12.

尚、」−述した実施例にa3いては、第1図に示し/j
電子顕微鏡等のエネルギー分析装置に本発明を適用した
例について説明したが、第2図に示した装置に、第3図
に示した構成と同一の4h或をf」加りることにJ、す
、第2図に示した型の従来装置にb本発明を同様に適用
できる。
In addition, in the embodiment described above, a3 is shown in FIG.
An example in which the present invention is applied to an energy analysis device such as an electron microscope has been described. The present invention can be similarly applied to conventional devices of the type shown in FIG.

又、上)ホし1こ説明においては、所謂しフタ−型のス
ペクトIJメーターを用いた装置に本発明を通用した例
についてAi2明したが、所謂ω型のスペクトL1メー
ターを用いる装置にも本発明は同様に通用できる。
In addition, in the above explanation, an example in which the present invention was applied to a device using a so-called lid-type spectrum IJ meter was explained, but it can also be applied to a device using a so-called ω-type spectrum L1 meter. The present invention is equally applicable.

」ニ述しノこ説明から明らかなJ、うに、本発明に1.
Lづく装置によれば、選11<す“るエネルギーの切換
えにかから4つず、常にi:71分解能の一■ネルギー
スペクトル又4.L電子!!1微鏡像をiqることがで
さる。
”It is clear from the explanation that J, uni, that the present invention has 1.
According to the L-based device, it is possible to always obtain an energy spectrum with an i:71 resolution or a microscopic image of 4.L electrons!!1 by switching the energy selected. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及びり′32図は従来装置を説明するだめの図、
第3図は本y5明の一実施例を承りだめの図である。 1:電子銃、2:電子線、3:集束レンズ系、4:試別
、5:対物レンズ、6:中間レンズ、7:投影レンズ、
8:スペクトロメーター、9:入口・1絞り、15:f
fl!)lスリット、10a:主電源、10 b: l
/i)引用電源、11a:主コイル、11b二昂引用コ
イル、12:記録計、13:検出器、14:増幅器、1
6:出射レンズ、17:蛍光版、18二割鈴回路、19
:掛算回路、20:基準イ5シ〕発生回路、21:加算
回路。
Figures 1 and 32 are diagrams for explaining the conventional device;
FIG. 3 is a diagram showing one embodiment of this Y5 light. 1: Electron gun, 2: Electron beam, 3: Focusing lens system, 4: Testing, 5: Objective lens, 6: Intermediate lens, 7: Projection lens,
8: Spectrometer, 9: Inlet/1 aperture, 15: f
Fl! )l slit, 10a: main power supply, 10b: l
/i) Reference power source, 11a: Main coil, 11b Second reference coil, 12: Recorder, 13: Detector, 14: Amplifier, 1
6: Output lens, 17: Fluorescent plate, 18 20% bell circuit, 19
: Multiplication circuit, 20: Reference I5] generation circuit, 21: Addition circuit.

Claims (1)

【特許請求の範囲】[Claims] 電子銃と、該電子銃J:りの電子線を集束して試オパ1
に照!J=1 覆るための手段と、該試料を透過した電
J−線を土ネル1゛−分11′Iさゼるためのスペクト
ロメーターと、該スベク1−ロメーターにJ:つて選1
7<される電子の」−ネルギーを切換えるための手段と
、該スペクトロメーターの後段に配置されスペクトル像
には該スペクトロメーターによって選択された電子線に
基づく像を拡大するだめのレンズとをiNi+え/、:
装置にJ3い(、該レンズの励磁゛電流を該切IZえ手
段によるエネルギーの切換えに連動して切換えるための
手段を只lNi1 L/ていることを特徴どりる電子顕
微鏡等におけるエネルギー分析装置。
The electron gun and the electron gun J: Focus the electron beam of the sample
Nisho! A means for covering J=1, a spectrometer for transmitting the electric J-rays transmitted through the sample by 11'I, and a means for covering J: 1 to the spectrometer.
7. A means for switching the energy of the electrons to be produced, and a lens disposed after the spectrometer and for enlarging the image based on the electron beam selected by the spectrometer in the spectral image. /、:
An energy analysis device for an electron microscope or the like, characterized in that the device includes a means for switching the excitation current of the lens in conjunction with switching of energy by the switching means.
JP59045777A 1984-03-10 1984-03-10 Energy analyzer in electron microscope or the like Pending JPS60189857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59045777A JPS60189857A (en) 1984-03-10 1984-03-10 Energy analyzer in electron microscope or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045777A JPS60189857A (en) 1984-03-10 1984-03-10 Energy analyzer in electron microscope or the like

Publications (1)

Publication Number Publication Date
JPS60189857A true JPS60189857A (en) 1985-09-27

Family

ID=12728719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045777A Pending JPS60189857A (en) 1984-03-10 1984-03-10 Energy analyzer in electron microscope or the like

Country Status (1)

Country Link
JP (1) JPS60189857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162772A (en) * 1996-12-03 1998-06-19 Jeol Ltd Energy filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546162A (en) * 1978-09-29 1980-03-31 Jeol Ltd Energy analyzer
JPS57212755A (en) * 1981-06-25 1982-12-27 Internatl Precision Inc Transmission-type electron microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546162A (en) * 1978-09-29 1980-03-31 Jeol Ltd Energy analyzer
JPS57212755A (en) * 1981-06-25 1982-12-27 Internatl Precision Inc Transmission-type electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162772A (en) * 1996-12-03 1998-06-19 Jeol Ltd Energy filter

Similar Documents

Publication Publication Date Title
US4740704A (en) Omega-type electron energy filter
Sheppard Advances in optical and electron microscopy
US4988872A (en) Electron probe microanalyzer having wavelength-dispersive x-ray spectrometer and energy-dispersive x-ray spectrometer
US4760261A (en) Alpha-type electron energy filter
EP2804200B1 (en) Device for mass selective determination of an ion
US2469206A (en) X-ray absorption photometer
US5298747A (en) Scanning interference electron microscopy
JPH04500126A (en) Method and apparatus for rapid spectral analysis of signals at single or multiple measurement points
JPS5812984B2 (en) sekisouchi
Denbigh et al. Scanning electron diffraction with energy analysis
Egerton et al. Modification of a transmission electron microscope to give energy-filtered images and diffraction patterns, and electron energy loss spectra
JPS60189857A (en) Energy analyzer in electron microscope or the like
US4134014A (en) Spectroscopy
Winzen et al. Laser spectroscopy of the 2 S 1/2-2 P 1/2, 2 P 3/2 transitions in stored and cooled relativistic C 3+ ions
Ding et al. X-ray spectrometry using polycapillary X-ray optics and position sensitive detector
US2566037A (en) Apparatus for analysis by mass spectrometry
US2440640A (en) Electron microanalyzer
US3777254A (en) Nuclear magnetic resonance spectrometer with jointly functioning external and internal resonance stabilization systems
US2969462A (en) Mass spectrometry
An et al. Laser-induced fluorescence-dip spectroscopy of Rydberg states of xenon for electric field measurement in plasma
Duncumb Recent advances in electron probe microanalysis
US3478203A (en) Linear scan readout for quantities which vary in proportion to the second or higher powers of applied scan field and mass spectrometers using same
Perkins Cathode-ray tube terminology
Cuthill et al. Metallurgical microanalysis with the electron probe
Kelman et al. High precision prism beta spectrometer