JPS6018983A - Q-switched solid-state laser - Google Patents

Q-switched solid-state laser

Info

Publication number
JPS6018983A
JPS6018983A JP58126718A JP12671883A JPS6018983A JP S6018983 A JPS6018983 A JP S6018983A JP 58126718 A JP58126718 A JP 58126718A JP 12671883 A JP12671883 A JP 12671883A JP S6018983 A JPS6018983 A JP S6018983A
Authority
JP
Japan
Prior art keywords
laser
output
laser beam
rod
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58126718A
Other languages
Japanese (ja)
Other versions
JPH0426229B2 (en
Inventor
Yukio Morishige
幸雄 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58126718A priority Critical patent/JPS6018983A/en
Publication of JPS6018983A publication Critical patent/JPS6018983A/en
Publication of JPH0426229B2 publication Critical patent/JPH0426229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1304Stabilisation of laser output parameters, e.g. frequency or amplitude by using an active reference, e.g. second laser, klystron or other standard frequency source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain stabilized output by a method wherein a probe laser beam subjected to an amplitude modulation at a period shorter than the fluorescent lifetime of the laser rod of a Q-switched solid-state laser is detected; a component, which synchronizes with the solid-state laser, is extracted from the output, and a Q-switching is started at a point when the output traverses the prescribed value. CONSTITUTION:In addition to the conventional circuits, polarizing plates 11 and 12 have been anew provided at both ends of a laser rod 13 as well as a probe laser 13 has been provided with the laser rod 3 along the optical axis of the resonator and an HPF14 and a detector 15 have been provided between a photo detector 5 and a comparator 7. Moreover, the cut-off frequency of the HPF14 has been chosen between a frequency, which is decided by the inverse number of the fluorescent lifetime of the rod 3, and the modulation frequency of the probe laser beam, and when the probe laser beam is in an ON state, the amplified probe laser beam and the fluorescent are light- received, and in a condition that the probe laser beam is in an OFF state, the fluorescent only is light-received. At this time, the circuit 15 performs the envelope detection of output amplitude of the HPF14 and when the output traverses the threshold value with the comparator, the Q-switching starting signal is generated from a driver 9.

Description

【発明の詳細な説明】 本発明は高い出力安定度を持つQスイッチ固体レーザ装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Q-switched solid-state laser device with high output stability.

近年Qスイッチ固体レーザの精密加工、計測なと゛への
応用が進むにつれ、高い出力安定度を持つQスイッチ固
体レーザ装置がめられている。
In recent years, as the application of Q-switched solid-state lasers to precision processing, measurement, etc. has progressed, Q-switched solid-state laser devices with high output stability have been sought after.

従来レーザ出力を安定化する方法の一つとして螢光モニ
ターQスイッチ法が知られている。
A fluorescent monitor Q-switch method is known as one of the conventional methods for stabilizing laser output.

第1図はこの従来法の例を示すものであり、第2図はそ
の動作のタイミングチャートを示す図である。第1図に
おいて、高反射率反射鏡1. Qスイッ−?素子2. 
レーザロッド3. 出力鏡4. Qスイ、チドライバー
9.励起ユニットlOから々る固体レーザにレーザロッ
ド3からの螢光を検出する光検出器5.増幅器6. コ
ンパレータ7、立ち下がり検出回路8が付加されて構成
されている。
FIG. 1 shows an example of this conventional method, and FIG. 2 shows a timing chart of its operation. In FIG. 1, a high reflectance reflector 1. Q switch? Element 2.
Laser rod 3. Output mirror 4. Q Sui, Chi Driver 9. A photodetector 5 for detecting the fluorescence from the laser rod 3 to the solid-state laser coming from the excitation unit IO. Amplifier 6. A comparator 7 and a fall detection circuit 8 are added.

第2図では上から順に螢光、コンパレーター出力信号、
Qスイッチトリガ信号、共振器損失、Qスイッチパルス
の波形を示している。
In Figure 2, from the top, the fluorescence, comparator output signal,
The waveforms of the Q-switch trigger signal, resonator loss, and Q-switch pulse are shown.

次に第2図を参照しながらこの従来装置の動作を、より
詳細に説明する。励起ユニット10によりレーザロッド
3が励起されると、レーザロッド3に反転分布の形でエ
ネルギーが蓄積される。このエネルギーにゆらぎがある
と、Qスイッチパルスのエネルギーがゆらぐ。レーザ始
準位からの螢光強度は、レーザ始準位の分布密度に比例
しているので、励起エネルギーのゆらぎが螢光波形の振
幅の変化として表われる。そこで螢光一定、即ち始準位
の分布密度一定の条件でQスイッチを行うことによりQ
スイッチパルスエネルギーのゆらぎをある程度低く抑え
ることができる。この従来装置の構成において、コンパ
レータ7は螢光の強度が所定の値になる点を判別する。
Next, the operation of this conventional device will be explained in more detail with reference to FIG. When the laser rod 3 is excited by the excitation unit 10, energy is accumulated in the laser rod 3 in the form of population inversion. If this energy fluctuates, the energy of the Q-switch pulse will fluctuate. Since the fluorescence intensity from the laser starting level is proportional to the distribution density of the laser starting level, fluctuations in excitation energy appear as changes in the amplitude of the fluorescent light waveform. Therefore, by performing Q-switching under the condition that the fluorescence is constant, that is, the distribution density of the starting level is constant, the Q
Fluctuations in switch pulse energy can be suppressed to a certain degree. In the configuration of this conventional device, the comparator 7 determines the point at which the intensity of fluorescent light reaches a predetermined value.

コンパレータ7で生成されたパルスの立ち下がりのタイ
ミングが立ち下がり検出回路8で検出され、Qスイッチ
ドライバー9にQスイッチ開始信号が送られ、Qスイッ
チが開始される。
The falling timing of the pulse generated by the comparator 7 is detected by the falling detection circuit 8, and a Q-switch start signal is sent to the Q-switch driver 9 to start the Q-switch.

しかしながら、この従来装置には以下に示すような欠点
がある。先に述べたように、螢光強度はレーザ始準位の
分布密度に比例するが、°レーザ終準位の分布密度は反
映していない。このため3準位レーザでは、レーザロッ
ド3の温度と共に終準位の分布密度が大きく変化するの
で従来の構成だけでは、レーザの出力安定度を改善でき
ない。
However, this conventional device has the following drawbacks. As mentioned above, the fluorescence intensity is proportional to the distribution density of the laser starting level, but does not reflect the distribution density of the laser ending level. For this reason, in a three-level laser, the distribution density of the final level changes greatly with the temperature of the laser rod 3, so the output stability of the laser cannot be improved only with the conventional configuration.

4準位レーザでも3準位レーザはど顕著ではないが基底
レベルと、レーザ終準位とのエネルギー差が小さい場合
には、レーザロッド30濡度の影響が出力変動に表われ
る。この場合レーザ冷却媒質の温度を安定化すれば良い
と考えられるが、Qスイッチパルスの繰り返しを変化さ
せると、レーザ発振に寄与するレーザロッド3の中心部
の温度が変化し、出力変動を発生するという欠点があり
、実用上不便であった。
Although it is not as noticeable in a 4-level laser as in a 3-level laser, when the energy difference between the base level and the final laser level is small, the influence of the wetness of the laser rod 30 appears in the output fluctuation. In this case, it may be sufficient to stabilize the temperature of the laser cooling medium, but if the repetition of the Q-switch pulse is changed, the temperature at the center of the laser rod 3, which contributes to laser oscillation, will change, causing output fluctuations. This has the disadvantage of being inconvenient in practice.

また、レーザロッド3からの螢光は指向性が悪く、レー
ザ発振に関係のないレーザロッド3の周辺部からの螢光
が、レーザロッド3の中心部からの螢光に混入して光検
出器5に導びかれる。このためレーザロッド3内に不均
一な励起が行われている場合には、レーザ発振に寄与し
ない部分からの螢光を受光することになり、高ψ出力安
定度を得ることは困難であった。
Furthermore, the fluorescent light from the laser rod 3 has poor directivity, and the fluorescent light from the periphery of the laser rod 3, which is not related to laser oscillation, mixes with the fluorescent light from the center of the laser rod 3 and is detected by the photodetector. 5. For this reason, if non-uniform excitation is performed within the laser rod 3, fluorescent light will be received from parts that do not contribute to laser oscillation, making it difficult to obtain high ψ output stability. .

本発明の目的は上記欠点を解決するQスイッチ固体レー
ザ装置を提供することである。本発明によれば、レーザ
ロッドの励起のゆらぎゃ、レーザロッドの温度変動、繰
り返し速度の変更による出力安定度の低下がなく、高ψ
出力安定度を維持するQスイッチ固体レーザ装置が得ら
れる。
An object of the present invention is to provide a Q-switched solid-state laser device that overcomes the above-mentioned drawbacks. According to the present invention, there is no decrease in output stability due to fluctuations in excitation of the laser rod, temperature fluctuations in the laser rod, or changes in repetition rate, and high ψ
A Q-switched solid-state laser device that maintains output stability is obtained.

本発明のQスイッチ固体レーザ装置は、Qスイッチ固体
レーザと発振波長が前記固体レーザと同じで、前記固体
レーザのレーザロッドの螢光寿命よりも充分短い周期で
振幅変調されたプシープレーザ光を発するプローブレー
ザと前記固体レーザの共振器の光軸に沿りて前記プロー
ブレーザ光を前記レーザロッドに入射させる手段と前記
レーザロッドを通過した前記プローブレーザ光を受光す
る光検出器と前記周期で変化する前記光検出器からの信
号成分を抽出し、検波する回路と前記検波後の出力が所
定値を横切る時点を検出してQスイッチ開始信号を発生
する回路とを備えることを特徴とする構成になっている
The Q-switched solid-state laser device of the present invention includes a Q-switched solid-state laser and a probe that emits puss laser light having the same oscillation wavelength as the solid-state laser and whose amplitude is modulated at a cycle sufficiently shorter than the fluorescence lifetime of the laser rod of the solid-state laser. means for making the probe laser beam incident on the laser rod along the optical axis of the laser and the resonator of the solid-state laser; a photodetector that receives the probe laser beam that has passed through the laser rod; and a photodetector that receives the probe laser beam that has passed through the laser rod; The configuration is characterized by comprising a circuit that extracts and detects a signal component from the photodetector, and a circuit that detects a point in time when the output after the detection crosses a predetermined value and generates a Q-switch start signal. ing.

本発明の特徴は、レーザ始準位の分布密度をモニターす
る従来法に代わり、反転分布密度に比例する増幅率を直
接モニターし、この増幅率を一定とする条件で、格段に
出力安定度に優れたQスイッチを行うことにある。
The feature of the present invention is that instead of the conventional method of monitoring the distribution density of the laser starting level, the amplification factor proportional to the population inversion density is directly monitored, and under the condition that this amplification factor is kept constant, the output stability is significantly improved. The purpose is to perform an excellent Q-switch.

次に本発明を図面を用いて詳細に説明する。Next, the present invention will be explained in detail using the drawings.

第3図は本発明の一実施例の構成図であり、以下の点を
除いて構成、名称は第1図と同一である。
FIG. 3 is a block diagram of an embodiment of the present invention, and the structure and names are the same as in FIG. 1 except for the following points.

第3図において、第1図に新たに追加されたものはレー
ザロッド3の両端の偏光板11及び12. 共振器の光
軸に沿ってレーザロッド3に10−ブレーザ13.光検
出器5とコンパレーター7の間に高域透過フィルター回
路14と検波回路15を備えていることである。プシー
プレーザ光は、波長がレーザ装置の発振波長に等しく、
レーザロッド3の螢光寿命よりも充分短い時間で断続さ
れている。
In FIG. 3, what is newly added to FIG. 1 are polarizing plates 11 and 12 at both ends of the laser rod 3. 10 - blazer 13. on the laser rod 3 along the optical axis of the resonator. A high-pass filter circuit 14 and a detection circuit 15 are provided between the photodetector 5 and the comparator 7. The wavelength of the push laser light is equal to the oscillation wavelength of the laser device,
The light is interrupted for a sufficiently shorter time than the fluorescent life of the laser rod 3.

その偏光方向は固体レーザの偏光方向と直交するように
すると偏光板11.12による損失が少い。
If the direction of polarization is perpendicular to the direction of polarization of the solid-state laser, the loss due to the polarizing plates 11 and 12 will be reduced.

また、光検出器5はレーザロッド3を通過したプローブ
レーザ光が偏光板11で反射されて進む方向に配置され
ている。第4図は信号処理のタイミングチャートを示し
た図である。第4図において横軸は時間、縦軸は上から
順に光検出器の出力高域透過フィルター回路14の出力
、検波回路15の出力、コンパレーター7の出力であり
% thハコンパレーター7の閾値を示している。
Further, the photodetector 5 is arranged in the direction in which the probe laser beam that has passed through the laser rod 3 is reflected by the polarizing plate 11 and proceeds. FIG. 4 is a diagram showing a timing chart of signal processing. In Fig. 4, the horizontal axis is time, and the vertical axis is the output of the photodetector, the output of the high-pass filter circuit 14, the output of the detection circuit 15, and the output of the comparator 7, starting from the top. It shows.

コンパレーター7以降のタイミングは従来の螢光モニタ
ーQスイッチ法と同じである。高域透過フィルター回路
14のカットオフ周波数は、レーザロッド3の螢光寿命
の逆数で決まる周波数とプローブレーザ光の変調周波数
の間に選んでいる。光検出器5の受光信号波形は、第4
図に示すように増幅されたプローブレーザ光とレーザロ
ッド3からの螢光が重なり合って表われる。プローブレ
ーザ光がある時は、増幅されたスロープレーザ光と螢光
が、プローブレーザ光が切れている状態では螢光のみが
、それぞれ受光される。高域透過フィルター回路14は
第4図に示すように螢光成分を除去する働きを持つ。検
波回路15は高域透過フィルター回路14の出力振幅の
包絡線検波を行う働きを持ち、その結果プローブレーザ
光の増幅率に比例した信号を取り出すことができる。
The timing after comparator 7 is the same as in the conventional fluorescent monitor Q-switch method. The cutoff frequency of the high-pass filter circuit 14 is selected between the frequency determined by the reciprocal of the fluorescence lifetime of the laser rod 3 and the modulation frequency of the probe laser beam. The light reception signal waveform of the photodetector 5 is the fourth
As shown in the figure, the amplified probe laser light and the fluorescent light from the laser rod 3 appear to overlap. When the probe laser beam is present, the amplified slope laser beam and fluorescent light are received, and when the probe laser beam is off, only the fluorescent light is received. The high-pass filter circuit 14 has the function of removing fluorescent components, as shown in FIG. The detection circuit 15 has the function of performing envelope detection of the output amplitude of the high-pass filter circuit 14, and as a result, it is possible to extract a signal proportional to the amplification factor of the probe laser beam.

なお、上記の説明ではプローブレーザ光を断続的に変調
した例を示したが、これ以外にも正弦波変調でも効果は
同等である。
In addition, although the above explanation shows an example in which the probe laser beam is modulated intermittently, the same effect can be obtained by using sinusoidal wave modulation.

本発明の他の一実施例の構成図を第5図に示す。A configuration diagram of another embodiment of the present invention is shown in FIG.

第5図では、光検出器5とコンパレーター7の間の信号
処理部以外の構成及び名称は第3図と同一である。第5
図の信号処理部はプローブレーザ光の断続の周期に同期
して光検出器5の出力をサンプルホールドする第1及び
第2のサンプルホールド回路16及び17の出力信号の
差信号を出力する差動増幅器18から成る。第1のサン
プルホールド回路16は、プローブレーザ光がある時に
第2のサンプルホールド回路17は、プローブレーザ光
が切れているタイミングで、それぞれサンプルホールド
ラ行う。第1及び第2のサンプルホールド回路の時定数
は、プローブレーザ光の断続周期よりも長く設定し、第
1及び第2のサンプルホールド回路の出力が滑らかに変
化するよう設定されている。
In FIG. 5, the configuration and names other than the signal processing section between the photodetector 5 and the comparator 7 are the same as in FIG. 3. Fifth
The signal processing section shown in the figure is a differential circuit that outputs a difference signal between the output signals of first and second sample and hold circuits 16 and 17 that sample and hold the output of the photodetector 5 in synchronization with the intermittent period of the probe laser beam. It consists of an amplifier 18. The first sample and hold circuit 16 performs a sample and hold operation when the probe laser beam is present, and the second sample and hold circuit 17 performs a sample and hold operation at a timing when the probe laser beam is cut off. The time constants of the first and second sample and hold circuits are set to be longer than the intermittent period of the probe laser beam, and are set so that the outputs of the first and second sample and hold circuits change smoothly.

第6図は第5図の構成におけるタイミングチャートを示
す図である。第6図は上から順に光検出器5の出力、第
1のサンプルホールド回路16の出力、第2のサンプル
ホールド回路17の出力差動増幅器18の出力である。
FIG. 6 is a diagram showing a timing chart in the configuration of FIG. 5. FIG. 6 shows, from the top, the output of the photodetector 5, the output of the first sample and hold circuit 16, the output of the second sample and hold circuit 17, and the output of the differential amplifier 18.

第6図に示すように第1のサンプルホールド回路16は
、光検出器5の出力の上側の包絡線を、第2のサンプル
ホールド回路17は、光検出器5の出力の下側の包絡線
を各々出力する。差動増幅器18は第1及び第2のサン
プルホールド回路16及び17の出力差全出力する。つ
まり、第3図の実施例と同じく螢光成分を除去したレー
ザロッド3の増幅率に比例しだ信号だけを出力すること
ができる。第5図に示す実施例において、第1及び第2
のサンプルホールド回路16及び17と差動増幅器18
の間にそれぞれプローブレーザ光の断続周波数よ沙は低
く、螢光寿命の逆数で決まる周波数よりは高いカットオ
フ周波数を持つ低域通過フィルター回路を挿入すれば、
より高い精度で発振開始時の反転分布密度を定めること
ができる。
As shown in FIG. 6, the first sample and hold circuit 16 detects the upper envelope of the output of the photodetector 5, and the second sample and hold circuit 17 detects the lower envelope of the output of the photodetector 5. Output each. The differential amplifier 18 outputs the entire output difference between the first and second sample and hold circuits 16 and 17. In other words, as in the embodiment shown in FIG. 3, only a signal proportional to the amplification factor of the laser rod 3 from which the fluorescent component has been removed can be output. In the embodiment shown in FIG.
sample and hold circuits 16 and 17 and differential amplifier 18
By inserting a low-pass filter circuit in which the intermittent frequency of the probe laser beam is low and the cutoff frequency is higher than the frequency determined by the reciprocal of the fluorescence lifetime,
The population inversion density at the start of oscillation can be determined with higher accuracy.

なお、第3図及び第5図において、偏光板11及び12
の位置は、必ずしもレーザロッド3の両側に配置する必
要はない。例えば、一方の偏光板を出力鏡4の外側に配
置すれば、共振器のアラインメントが容易になる利点が
ある。
In addition, in FIGS. 3 and 5, polarizing plates 11 and 12
It is not necessarily necessary to arrange the positions on both sides of the laser rod 3. For example, if one polarizing plate is placed outside the output mirror 4, there is an advantage that alignment of the resonator becomes easier.

本発明の反転分布を直接モニターするという以外の利点
は、プローブレーザ光の強度を螢光強度よりも容易に強
くできること及びプローブレーザ光の指向性を利用して
光検出器出力のシN比を高く取れることである。87N
比を高く取れればQスイッチ開始のタイミングを、従来
の螢光モニタQスイッチ法に比べ、さらく精度よく決め
ることができ、出力安定度を一層改善することができる
The advantages of the present invention other than direct monitoring of population inversion are that the intensity of the probe laser beam can be easily made stronger than the fluorescent light intensity, and that the signal-to-noise ratio of the photodetector output can be increased by using the directivity of the probe laser beam. It is possible to get a high price. 87N
If the ratio can be made high, the timing for starting the Q-switch can be determined more accurately than in the conventional fluorescent monitor Q-switch method, and the output stability can be further improved.

まだ、プローブレーザ光をレーザロッド3の中心部付近
に集中して透過させるようにすれば、従来の螢光モニタ
ーQスイッチ方式で問題となった四ツ1周辺部からの螢
光の影響を低減でき、レーザ発振に寄与する部分の反転
分布密度だけを一層高い精度でモニターすることができ
る。
However, if the probe laser beam is concentrated near the center of the laser rod 3 and transmitted, the influence of fluorescence from the periphery of the four parts 1, which was a problem with the conventional fluorescent monitor Q switch method, can be reduced. Therefore, only the population inversion density of the portion contributing to laser oscillation can be monitored with higher accuracy.

なお、第3図及び第5図に示す実施例においては偏光板
11及び12により、Qスイッチ光パルスの偏光面とプ
ローブレーザ光の偏光面を直父させられるので、高性能
の分枝能力を壱する偏光板を用いれば、プローブレーザ
13及び光検出器5へのQスイッチ光パルスによる損傷
などの恐れはほとんどない。
In the embodiments shown in FIGS. 3 and 5, the polarizing plates 11 and 12 allow the polarization plane of the Q-switch optical pulse to be directly aligned with the polarization plane of the probe laser beam, so that high-performance branching ability can be achieved. If a similar polarizing plate is used, there is almost no fear that the probe laser 13 and photodetector 5 will be damaged by the Q-switched optical pulse.

以上、2つの実施例を用いて本発明の説明を行ったが、
レーザロッド3の増幅量を実時間でモニターするという
本発明のef徴を失うことなく池の構成を用いることも
可^Hである。例えば、従来の螢光モニターQスイッチ
法で行われるように、光検出器5の前にプローブレーザ
光を選択して受光するだめのフィルターやアパーチャー
やレンズを挿入すれば、信号のみ儒此の教養を計ること
ができる。また、プローブレーザ13と固体レーザの間
に光アイソレータを置き、戻り光によるプローブレーザ
光の出力変動などを抑えることもできる。
The present invention has been explained above using two examples, but
It is also possible to use the pond configuration without losing the EF feature of the present invention of monitoring the amplification amount of the laser rod 3 in real time. For example, if a filter, aperture, or lens to select and receive the probe laser beam is inserted in front of the photodetector 5, as is done in the conventional fluorescent monitor Q-switch method, only the signal can be transmitted. can be measured. Furthermore, an optical isolator can be placed between the probe laser 13 and the solid-state laser to suppress output fluctuations of the probe laser light due to returned light.

また、信号処理の過程において、光検出器5の後に増幅
器を置いてs/Iq比を上げることは自明のことである
Furthermore, in the process of signal processing, it is obvious that an amplifier is placed after the photodetector 5 to increase the s/Iq ratio.

第1図は従来の復党モニターQスイッチ法の一例を示す
構成図であり、第20は第1図に示す螢光モニターQス
イッチ法の動作を示すタイミングチャートを示す図であ
り、上から順に;談光強度、コンパレーター出力信号、
Qスイッチトリガ信号共振器損失、Qスイッチパルスの
波形を示す。
FIG. 1 is a block diagram showing an example of the conventional return monitor Q-switch method, and FIG. 20 is a timing chart showing the operation of the fluorescent monitor Q-switch method shown in FIG. ; Light communication intensity, comparator output signal,
The Q-switch trigger signal resonator loss and the waveform of the Q-switch pulse are shown.

第3図と第5図は各々本発明の一実施例の構成図であり
、第4図と第6図は各々、43図及び第5図に示す構成
での動作のタイミングチャートを示す図である。第4図
では上からMl(に光、)(出器出力高域透過フィルタ
ー回路出力、検波回路出力、コンバレー々出力を示し、
第6図では上から順に光検出器出力、第1のサンプルホ
ールド回路のルカ。
3 and 5 are respectively configuration diagrams of one embodiment of the present invention, and FIGS. 4 and 6 are diagrams showing timing charts of operations in the configurations shown in FIGS. 43 and 5, respectively. be. In Figure 4, from the top, Ml (light, ) (output output, high-pass transmission filter circuit output, detection circuit output, converter output) are shown.
In Fig. 6, from the top, the photodetector output and the first sample and hold circuit are shown.

第2のサンプルホールド回路の出力、差動増1隔器の出
力、コンパレータ広力を示している。
The output of the second sample and hold circuit, the output of the differential amplifier, and the comparator wide output are shown.

図において、1は高反射率反射鏡、、2はQスイッチ素
子、3はレーザロッド、4は出力椀、5は光検出器、6
は増幅器、7はコンパレーター、8は立ち下がり検出回
路、9はQスイッチドライバ、10は励起ユニット、1
1及び12は偏向板、13はプ四−プレーザ、14は高
域透過フィルター、15は検波回路、16は第1のサン
プルホールド回路、17は第2のサンプルホールド回路
、18は差動増1II11器である。
In the figure, 1 is a high reflectance mirror, 2 is a Q-switch element, 3 is a laser rod, 4 is an output bowl, 5 is a photodetector, and 6
is an amplifier, 7 is a comparator, 8 is a falling detection circuit, 9 is a Q-switch driver, 10 is an excitation unit, 1
1 and 12 are deflection plates, 13 is a prism laser, 14 is a high-pass transmission filter, 15 is a detection circuit, 16 is a first sample and hold circuit, 17 is a second sample and hold circuit, and 18 is a differential amplifier 1II11 It is a vessel.

73図 第4図Figure 73 Figure 4

Claims (1)

【特許請求の範囲】[Claims] Qスイッチドライバーと励起ユニットと一対の反射鏡と
、この反射鏡間に設置されたQスイッチ素子及びレーザ
ロッドとから成るQスイッチ固体レーザと発振波長が前
記固体レーザと同じで、前記固体レーザのレーザロッド
の螢光寿命よりも充分短い周期で振幅変調されたプロー
ブレーザ光を発するプローブレーザと前記固体レーザの
共振器の光軸に沿って前記プローブレーザ光を前記レー
ザロッドに入射させる手段と前記レーザロッドを通過し
た前記プローブレーザ光を受光する光検出器と前記周期
で変化する前記光検出器からの信号成分を抽出し検波す
る回路と前記検波後の出力が所定値−を穂切る時点を検
出してQスイッチ開始信号を発生する回路とを備えたこ
とを特徴とするQスイッチ固体レーザ装置。
A Q-switched solid-state laser consisting of a Q-switched driver, an excitation unit, a pair of reflecting mirrors, a Q-switched element and a laser rod installed between the reflecting mirrors, and a laser whose oscillation wavelength is the same as that of the solid-state laser; A probe laser that emits a probe laser beam whose amplitude is modulated at a cycle sufficiently shorter than the fluorescence lifetime of the rod; a means for making the probe laser beam incident on the laser rod along the optical axis of a resonator of the solid-state laser; and the laser. A photodetector that receives the probe laser beam that has passed through the rod, a circuit that extracts and detects a signal component from the photodetector that changes with the period, and detects a point in time when the output after the detection cuts off a predetermined value -. A Q-switch solid-state laser device comprising: a circuit for generating a Q-switch start signal.
JP58126718A 1983-07-12 1983-07-12 Q-switched solid-state laser Granted JPS6018983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126718A JPS6018983A (en) 1983-07-12 1983-07-12 Q-switched solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126718A JPS6018983A (en) 1983-07-12 1983-07-12 Q-switched solid-state laser

Publications (2)

Publication Number Publication Date
JPS6018983A true JPS6018983A (en) 1985-01-31
JPH0426229B2 JPH0426229B2 (en) 1992-05-06

Family

ID=14942144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126718A Granted JPS6018983A (en) 1983-07-12 1983-07-12 Q-switched solid-state laser

Country Status (1)

Country Link
JP (1) JPS6018983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191239A (en) * 2007-08-31 2012-10-04 Robert Bosch Gmbh Laser device and driving method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191239A (en) * 2007-08-31 2012-10-04 Robert Bosch Gmbh Laser device and driving method of the same
US8707921B2 (en) 2007-08-31 2014-04-29 Robert Bosch Gmbh Laser device and method for operating same

Also Published As

Publication number Publication date
JPH0426229B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
CN109211414B (en) Ultrahigh-precision optical frequency tester and testing method thereof
JP2896782B2 (en) Pulse type lightwave distance meter
JP2575324B2 (en) Optical fiber type temperature distribution measuring device
JP4793675B2 (en) Distance measuring device
Haroche et al. Observation of fine-structure quantum beats following stepwise excitation in sodium D states
US5137361A (en) Optical detection of a surface motion of an object using a stabilized interferometric cavity
JP2012033771A (en) Light source device and imaging apparatus using the same
JP2006184181A (en) Distance measuring device
US5042040A (en) Amplitude noise reduction for optically pumped modelocked lasers
US5007717A (en) Real time analyzer for pulsed laser systems
CA2416011A1 (en) Laser-ultrasonic testing system
JPS6018983A (en) Q-switched solid-state laser
JP2635732B2 (en) Optical fiber sensing method
CN103760135A (en) Speed transfer laser spectrum measuring device and method of V-type energy level structure atoms
KR101894791B1 (en) Method of manufacturing acousto-optic modulator, acousto-optic modulator and laser generating apparatus using the same
EP0428924B1 (en) Frequency detector for discriminating multi-longitudinal mode laser operation
JPH05232229A (en) Pulse signal detector and optical distance meter
JP2726881B2 (en) Backscattered light measurement device
JPS6045081A (en) Q-switching method for laser
JP3378502B2 (en) Optical signal waveform measurement method
JPH08105971A (en) Ranging method using multi-pulse and device therefor
CN203630039U (en) Speed transfer laser spectrum measurement device for V-shaped energy level structure atoms
JP2756967B2 (en) Spectrum analyzer
SU1505450A3 (en) Method and apparatus for checking adjustment of multiple-beam units
Tyurikov et al. Saturated dispersion spectroscopy of the OsO/sub 4/. Application to high precision optical frequency standard